Fast modular reduction and squaring in GF(2m)

We present an efficient bit-parallel algorithm for squaring in GF(2m) using polynomial basis. This algorithm achieves competitive efficiency while being aimed at any choice of low-weight irreducible polynomial. For a large class of irreducible polynomials it is more efficient than the previously bes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information processing letters Ročník 132; s. 33 - 38
Hlavní autoři: Niehues, L. Boppre, Custódio, R., Panario, D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2018
Témata:
ISSN:0020-0190, 1872-6119
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present an efficient bit-parallel algorithm for squaring in GF(2m) using polynomial basis. This algorithm achieves competitive efficiency while being aimed at any choice of low-weight irreducible polynomial. For a large class of irreducible polynomials it is more efficient than the previously best general squarer. In contrast, other efficient squarers often require a change of basis or are suitable for only a small number of irreducible polynomials. Additionally, we present a simple algorithm for modular reduction with equivalent cost to the state of the art for general irreducible polynomials. This fast reduction is used in our squaring method. •We propose a new algorithm for squaring elements in binary finite field extensions.•The algorithm is very efficient for squaring elements defined using any low weight polynomial.•A general efficient algorithm for polynomial modular reduction of any weight is described.•The square algorithm is extended to finite field extensions of any odd characteristic.
AbstractList We present an efficient bit-parallel algorithm for squaring in GF(2m) using polynomial basis. This algorithm achieves competitive efficiency while being aimed at any choice of low-weight irreducible polynomial. For a large class of irreducible polynomials it is more efficient than the previously best general squarer. In contrast, other efficient squarers often require a change of basis or are suitable for only a small number of irreducible polynomials. Additionally, we present a simple algorithm for modular reduction with equivalent cost to the state of the art for general irreducible polynomials. This fast reduction is used in our squaring method. •We propose a new algorithm for squaring elements in binary finite field extensions.•The algorithm is very efficient for squaring elements defined using any low weight polynomial.•A general efficient algorithm for polynomial modular reduction of any weight is described.•The square algorithm is extended to finite field extensions of any odd characteristic.
Author Custódio, R.
Niehues, L. Boppre
Panario, D.
Author_xml – sequence: 1
  givenname: L. Boppre
  orcidid: 0000-0003-1285-492X
  surname: Niehues
  fullname: Niehues, L. Boppre
  email: lucasboppre@inf.ufsc.br
  organization: Department of Informatics and Statistics, Federal University of Santa Catarina, Brazil
– sequence: 2
  givenname: R.
  surname: Custódio
  fullname: Custódio, R.
  email: ricardo.custodio@ufsc.br
  organization: Department of Informatics and Statistics, Federal University of Santa Catarina, Brazil
– sequence: 3
  givenname: D.
  surname: Panario
  fullname: Panario, D.
  email: daniel@math.carleton.ca
  organization: School of Mathematics and Statistics, Carleton University, Canada
BookMark eNp9j01Lw0AURQepYFv9Ae6y1EXie5NkJsGVFFuFghtdD6_zIRPaSZ1JBP-9KXXt6sHlncs9CzYLfbCM3SIUCCgeusIf9wUHlAXyAoBfsDk2kucCsZ2x-ZRADtjCFVuk1AGAqEo5Z_ma0pAdejPuKWbRmlEPvg8ZBZOlr5GiD5-ZD9lmfccP99fs0tE-2Zu_u2Qf6-f31Uu-fdu8rp62ueZVO-SNw4Y4NUilcC0X0JJwu9JISyRwV2MJdeVcjSRRkyvLSgpToZRtpa2dPpcMz7069ilF69Qx-gPFH4WgTr6qU5OvOvkq5Gqym5jHM2OnYd_eRpW0t0Fb46PVgzK9_4f-BeyMXe8
Cites_doi 10.1109/TC.2002.1017695
10.1109/TC.2009.70
10.1016/j.ffa.2014.10.008
10.1049/el.2014.0006
10.1016/j.vlsi.2011.07.005
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ipl.2017.12.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6119
EndPage 38
ExternalDocumentID 10_1016_j_ipl_2017_12_002
S0020019017302168
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c249t-8f18a2a81a36f92609a6fb3d7eaa61b513054ff51a71caf33476d417794ceefb3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000427218800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0190
IngestDate Sat Nov 29 03:44:22 EST 2025
Fri Feb 23 02:16:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polynomial
Finite field
Cryptography
Number theory
Squaring
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-8f18a2a81a36f92609a6fb3d7eaa61b513054ff51a71caf33476d417794ceefb3
ORCID 0000-0003-1285-492X
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_ipl_2017_12_002
elsevier_sciencedirect_doi_10_1016_j_ipl_2017_12_002
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationTitle Information processing letters
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fan, Hasan (br0010) 2015; 32
Hariri, Reyhani-Masoleh (br0080) 2009; 58
Wu (br0050) 2002; 51
Doche (br0060) 2005
Adrian (br0030) 2015
Hankerson, Menezes, Vanstone (br0040) 2006
Park (br0070) 2012; 45
Xiong, Fan (br0090) 2014; 50
Bernstein, Lange, Niederhagen (br0020) 2016
Bernstein (10.1016/j.ipl.2017.12.002_br0020) 2016
Hankerson (10.1016/j.ipl.2017.12.002_br0040) 2006
Wu (10.1016/j.ipl.2017.12.002_br0050) 2002; 51
Fan (10.1016/j.ipl.2017.12.002_br0010) 2015; 32
Adrian (10.1016/j.ipl.2017.12.002_br0030) 2015
Doche (10.1016/j.ipl.2017.12.002_br0060) 2005
Park (10.1016/j.ipl.2017.12.002_br0070) 2012; 45
Hariri (10.1016/j.ipl.2017.12.002_br0080) 2009; 58
Xiong (10.1016/j.ipl.2017.12.002_br0090) 2014; 50
References_xml – volume: 51
  start-page: 750
  year: 2002
  end-page: 758
  ident: br0050
  article-title: Bit-parallel finite field multiplier and squarer using polynomial basis
  publication-title: IEEE Trans. Comput.
– volume: 32
  start-page: 5
  year: 2015
  end-page: 43
  ident: br0010
  article-title: A survey of some recent bit-parallel
  publication-title: Finite Fields Appl.
– start-page: 122
  year: 2005
  end-page: 133
  ident: br0060
  article-title: Redundant trinomials for finite fields of characteristic 2
  publication-title: Information Security and Privacy
– volume: 45
  start-page: 205
  year: 2012
  end-page: 210
  ident: br0070
  article-title: Explicit formulae of polynomial basis squarer for pentanomials using weakly dual basis
  publication-title: Integr. VLSI J.
– volume: 50
  start-page: 655
  year: 2014
  end-page: 657
  ident: br0090
  article-title: bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials
  publication-title: Electron. Lett.
– start-page: 5
  year: 2015
  end-page: 17
  ident: br0030
  article-title: Imperfect forward secrecy: how Diffie–Hellman fails in practice
  publication-title: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security
– year: 2006
  ident: br0040
  article-title: Guide to Elliptic Curve Cryptography
– volume: 58
  start-page: 1332
  year: 2009
  end-page: 1345
  ident: br0080
  article-title: Bit-serial and bit-parallel Montgomery multiplication and squaring over
  publication-title: IEEE Trans. Comput.
– start-page: 256
  year: 2016
  end-page: 281
  ident: br0020
  article-title: Dual EC: a standardized back door
  publication-title: The New Codebreakers
– year: 2006
  ident: 10.1016/j.ipl.2017.12.002_br0040
– volume: 51
  start-page: 750
  issue: 7
  year: 2002
  ident: 10.1016/j.ipl.2017.12.002_br0050
  article-title: Bit-parallel finite field multiplier and squarer using polynomial basis
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2002.1017695
– volume: 58
  start-page: 1332
  issue: 10
  year: 2009
  ident: 10.1016/j.ipl.2017.12.002_br0080
  article-title: Bit-serial and bit-parallel Montgomery multiplication and squaring over GF(2m)
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2009.70
– volume: 32
  start-page: 5
  year: 2015
  ident: 10.1016/j.ipl.2017.12.002_br0010
  article-title: A survey of some recent bit-parallel GF(2n) multipliers
  publication-title: Finite Fields Appl.
  doi: 10.1016/j.ffa.2014.10.008
– start-page: 122
  year: 2005
  ident: 10.1016/j.ipl.2017.12.002_br0060
  article-title: Redundant trinomials for finite fields of characteristic 2
– start-page: 256
  year: 2016
  ident: 10.1016/j.ipl.2017.12.002_br0020
  article-title: Dual EC: a standardized back door
– volume: 50
  start-page: 655
  issue: 9
  year: 2014
  ident: 10.1016/j.ipl.2017.12.002_br0090
  article-title: GF(2n) bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials
  publication-title: Electron. Lett.
  doi: 10.1049/el.2014.0006
– start-page: 5
  year: 2015
  ident: 10.1016/j.ipl.2017.12.002_br0030
  article-title: Imperfect forward secrecy: how Diffie–Hellman fails in practice
– volume: 45
  start-page: 205
  issue: 2
  year: 2012
  ident: 10.1016/j.ipl.2017.12.002_br0070
  article-title: Explicit formulae of polynomial basis squarer for pentanomials using weakly dual basis
  publication-title: Integr. VLSI J.
  doi: 10.1016/j.vlsi.2011.07.005
SSID ssj0006437
Score 2.1606746
Snippet We present an efficient bit-parallel algorithm for squaring in GF(2m) using polynomial basis. This algorithm achieves competitive efficiency while being aimed...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 33
SubjectTerms Cryptography
Finite field
Number theory
Polynomial
Squaring
Title Fast modular reduction and squaring in GF(2m)
URI https://dx.doi.org/10.1016/j.ipl.2017.12.002
Volume 132
WOSCitedRecordID wos000427218800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFJ8gePCCghpBMHPwgJI2O522Mz0CsqAxG2Mw2Vsz7XRiN1DKtmv4833z1d2IJGDiHiabyfTrvZc3v_c1D6H3mVSC8FIGpIQBLAYaFLIYBSORUCGprGKpTLMJNpnw6TT75soVO9NOgDUNv73N2v_KapgDZuvS2Uewe7gpTMB_YDqMwHYYH8T4seh63eDG5JfO9cmsvU857m5AIFwRy9kYsGV05T0BM5_RPlQzHra2hkCvvzRFPwP8ntTVz4XVL1_Dw-Prtl2m0J4sul5H34-prI0b9nu4DFM18Hgz-SlcdTcQvpKlYnxgd-pgXE2ATm-zjT_DyqpSziIwTJ1C9LrWOTOttrRHYLh91x7yckejW-fCLKxbHSgizDhvR9Fy-xqSCnXcWSNWWEQBuaT8CdqIWJKBut44-nw6_TLs0DpYaVN_7Fv7aLfJ-_vjQX_HKysY5OIF2nTGAz6yTN9Ca1WzjZ77xhzY6emXKNAygJ0M4EEGMMgA9jKA6wafjQ-iqw-v0I_x6cXJeeD6YgQlGMt9wBXhIhKcCJqqDAzSTKSqoJJVQqSkSACWJLFSCRGMlEJRGrNUxoSB6gVIBCtfo_XmuqneIJwAoagYVfCTcVkwobigkUxZlpSKK7mDPvqvz1t7_Enu8wJnOZAq16TKSZQDqXZQ7OmTO_xmcVkOzLz_st1_u-wteraUzz203s8X1T56Wv7q627-zrH8Nw8iZPE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+modular+reduction+and+squaring+in+GF%282m%29&rft.jtitle=Information+processing+letters&rft.au=Niehues%2C+L.+Boppre&rft.au=Cust%C3%B3dio%2C+R.&rft.au=Panario%2C+D.&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0020-0190&rft.eissn=1872-6119&rft.volume=132&rft.spage=33&rft.epage=38&rft_id=info:doi/10.1016%2Fj.ipl.2017.12.002&rft.externalDocID=S0020019017302168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon