A heterogeneous parallel implementation of the Markov clustering algorithm for large-scale biological networks on distributed CPU–GPU clusters

Biological interaction databases accommodate information about interacted proteins or genes. Clustering on the networks formed by the interaction information for finding regions highly connected could reveal the functional affinities or structural similarities between protein or gene entities. With...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 78; no. 7; pp. 9017 - 9037
Main Authors: Fu, You, Zhou, Wei
Format: Journal Article
Language:English
Published: New York Springer US 01.05.2022
Springer Nature B.V
Subjects:
ISSN:0920-8542, 1573-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Biological interaction databases accommodate information about interacted proteins or genes. Clustering on the networks formed by the interaction information for finding regions highly connected could reveal the functional affinities or structural similarities between protein or gene entities. With the ever-increasing amounts of information in these databases, the runtime of a clustering task is more and more unaffordable. In this paper, we propose a heterogeneous parallel algorithm focusing on accelerating clustering tasks using distributed CPU–GPU clusters. Our parallel implementation is based on the original serial algorithm of the Markov clustering (MCL). In our parallel implementation, we utilize both the CPUs and GPUs to exploit the power of heterogeneous platforms. With the BioGRID biological interaction database, we have tested the proposed algorithm on a computer cluster equipped with NVIDIA Tesla P100 GPU accelerators. The result shows that, the algorithm is efficient in GPU memory usage and inter-node data transmission, and it can complete the clustering task in 3.2 minutes with the best speedup of 70.02 times compared to the serial counterpart.We believe our work can provide key insights for realizing fast MCL analyses on large-scale biological data, with distributed CPU–GPU computer clusters.
AbstractList Biological interaction databases accommodate information about interacted proteins or genes. Clustering on the networks formed by the interaction information for finding regions highly connected could reveal the functional affinities or structural similarities between protein or gene entities. With the ever-increasing amounts of information in these databases, the runtime of a clustering task is more and more unaffordable. In this paper, we propose a heterogeneous parallel algorithm focusing on accelerating clustering tasks using distributed CPU–GPU clusters. Our parallel implementation is based on the original serial algorithm of the Markov clustering (MCL). In our parallel implementation, we utilize both the CPUs and GPUs to exploit the power of heterogeneous platforms. With the BioGRID biological interaction database, we have tested the proposed algorithm on a computer cluster equipped with NVIDIA Tesla P100 GPU accelerators. The result shows that, the algorithm is efficient in GPU memory usage and inter-node data transmission, and it can complete the clustering task in 3.2 minutes with the best speedup of 70.02 times compared to the serial counterpart.We believe our work can provide key insights for realizing fast MCL analyses on large-scale biological data, with distributed CPU–GPU computer clusters.
Author Zhou, Wei
Fu, You
Author_xml – sequence: 1
  givenname: You
  surname: Fu
  fullname: Fu, You
  organization: College of Computer Science and Engineering, Shandong University of Science and Technology
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-7239-6321
  surname: Zhou
  fullname: Zhou, Wei
  email: zhwcn@126.com
  organization: College of Computer Science and Engineering, Shandong University of Science and Technology, Network Information Center, Weifang Medical University
BookMark eNp9kE1u2zAQRonCAeq4vUBXBLpWQlKUZC0Do0kDOKgX9Zrgz0imQ4sqSSXILkcokBvmJJGjFgW68GpmgHnfDN45mnW-A4S-UHJBCakuI6WMVRlhNCOcEZ6VH9CcFlU-jks-Q3NSM5ItC84-ovMY94QQnlf5HP2-wjtIEHwLHfgh4l4G6Rw4bA-9gwN0SSbrO-wbnHaA72S49w9YuyGOlO1aLF3rg027A258wE6GFrKopQOsrHe-tWOPO0iPPtxHPCYZG1Owakhg8GqzfX1-udls_ybGT-iskS7C5z91gbbX336uvmfrHze3q6t1phmvU7Y0knOlVVnovNFlSXJjCNSNzDkUdW1MrapKMl5KDopWtWo0N4VRAHWhlCH5An2dcvvgfw0Qk9j7IXTjScHKgpWUcM7GreW0pYOPMUAjtJ2EpCCtE5SIo38x-Rejf_HuX5Qjyv5D-2APMjydhvIJiv1RLoR_X52g3gArdp95
CitedBy_id crossref_primary_10_32604_cmc_2023_038462
crossref_primary_10_3390_agronomy14091920
crossref_primary_10_1002_cpe_8318
Cites_doi 10.1109/TCBB.2011.68
10.1186/1471-2105-7-488
10.1073/pnas.061034498
10.1007/s11227-020-03267-1
10.1007/s11227-020-03193-2
10.1007/s11227-020-03154-9
10.3758/s13423-016-1015-8
10.1007/s10462-020-09918-2
10.1002/pro.4096
10.1093/nar/gkx1313
10.38094/jastt1466
10.1145/1557019.1557101
10.1007/s11265-016-1216-4
10.1038/msb4100129
10.1093/nar/gkj109
10.1038/nrg1272
10.1137/1.9780898718003
10.3233/JIFS-169296
10.1016/j.cie.2018.12.067
10.1186/1471-2105-10-99
10.1186/s12859-019-2856-8
10.1109/CIT.2010.208
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-021-04204-6
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 9037
ExternalDocumentID 10_1007_s11227_021_04204_6
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFB0202002
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c249t-8da44bcb65c3fc6603dd0e9fa34e599dd9b77a246a4eb179bfc4d5dbee95bbd03
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743018900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:44:46 EDT 2025
Tue Nov 18 21:42:55 EST 2025
Sat Nov 29 04:27:41 EST 2025
Fri Feb 21 02:46:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Parallel computing
Biological interaction network
Compute Unified Device Architecture
Heterogenous computing
Cluster computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-8da44bcb65c3fc6603dd0e9fa34e599dd9b77a246a4eb179bfc4d5dbee95bbd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7239-6321
PQID 2652610442
PQPubID 2043774
PageCount 21
ParticipantIDs proquest_journals_2652610442
crossref_citationtrail_10_1007_s11227_021_04204_6
crossref_primary_10_1007_s11227_021_04204_6
springer_journals_10_1007_s11227_021_04204_6
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BroheeSVan HeldenJEvaluation of clustering algorithms for protein-protein interaction networksBMC Bioinform20067148810.1186/1471-2105-7-488
Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3(1)
VlasblomJWodakSJMarkov clustering versus affinity propagation for the partitioning of protein interaction graphsBMC Bioinform20091019910.1186/1471-2105-10-99
Lim Y, Yu I, Seo D et al (2019) PS-MCL: parallel shotgun coarsened markov clustering of protein interaction networks. BMC Bioinform 20(Suppl 13)
Mpich (2019) Retrieved Jan, 2020. http://www.mpich.org
Fu Y, Zhou W (2020) A novel parallel markov clustering method in biological interaction network analysis under multi-gpu computing environment. J Supercomput pp 1–18
AzadAPavlopoulosGAOuzounisCAHipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networksNucleic Acids Res2018466e33e3310.1093/nar/gkx1313
Van Dongen SM (2000) Graph clustering by flow simulation. Ph.D. thesis
HuangLTWeiKCWuCCChenCYWangJAA lightweight BLASTP and its implementation on CUDA GPUsJ Supercomput202177132234210.1007/s11227-020-03267-1
ShukurHZeebareeSRAhmedAJZebariRRAhmedOTahirBSASadeeqMAA state of art survey for concurrent computation and clustering of parallel computing for distributed systemsJ Appl Sci Technol Trends20201414815410.38094/jastt1466
NVIDIA: Nvidia cuda c programming guide v11.4.1. Retrieved September, 2021. http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf (2021)
Van RavenzwaaijDCasseyPBrownSDA simple introduction to Markov Chain Monte-Carlo samplingPsychonomic Bull Review201825114315410.3758/s13423-016-1015-8
BustamamABurrageKHamiltonNAFast parallel markov clustering in bioinformatics using massively parallel computing on gpu with cuda and ellpack-r sparse formatIEEE/ACM Trans Comput Biol Bioinform (TCBB)20129367969210.1109/TCBB.2011.68
ChengJRGenMAccelerating genetic algorithms with GPU computing: a selective overviewComput Ind Eng201912851452510.1016/j.cie.2018.12.067
StarkCBreitkreutzBJRegulyTBoucherLBreitkreutzATyersMBiogrid: a general repository for interaction datasetsNucleic Acids Res200634suppl 1D535D53910.1093/nar/gkj109
Satuluri V, Parthasarathy S (2009) Scalable Graph Clustering Using Stochastic Flows: applications to Community Discovery. In: Acm Sigkdd International Conference on Knowledge Discovery and Data Mining ACM
Pantoja M, Weyrich M, Fernández-Escribano G (2020) Acceleration of MRI analysis using multicore and manycore paradigms. J Supercomput 1–12
Vazquez F, Ortega G, Fernandez JJ, Garzon EM (2010) Improving the performance of the sparse matrix vector product with gpus. In: 2010 10th IEEE International Conference on Computer and Information Technology, pp 1146-1151. IEEE
RoseOughtredThe BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactionsProtein Sci20213018720010.1002/pro.4096
Saad Y (2003) Iterative methods for sparse linear systems, vol. 82. siam
DafirZLamariYSlaouiSCA survey on parallel clustering algorithms for big dataArtif Intell Rev20215442411244310.1007/s10462-020-09918-2
Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nature Rev Genet 5(2):101
Cheng J, Grossman M, McKercher T (2014) Professional Cuda C Programming. Wiley
Hennessy JL, Patterson DA (2019) Computer architecture: a quantitative approach (Sixth Edition). Elsevier
Butenhof DR (1997) Programming with POSIX threads. Addison-Wesley Professional
ItoTChibaTOzawaRYoshidaMHattoriMSakakiYA comprehensive two-hybrid analysis to explore the yeast protein interactomeProceed Nat Acad Sci20019884569457410.1073/pnas.061034498
HeLLuLWangQAn optimal parallel implementation of Markov Clustering based on the coordination of CPU and GPUJ Intell Fuzzy Syst20173253609361710.3233/JIFS-169296
StollDTemplinMBachmannJJoosTProtein microarrays: applications and future challengesCurrent Opin Drug Discov Develop200582239252
(2019) The top500 systems. Retrieved Jan, 2020. https://www.top500.org/lists/2019/11
LiuYSchmidtBLightspmv: faster cuda-compatible sparse matrix-vector multiplication using compressed sparse rowsJ Signal Process Syst2018901698610.1007/s11265-016-1216-4
4204_CR2
4204_CR1
Y Liu (4204_CR29) 2018; 90
4204_CR10
C Stark (4204_CR17) 2006; 34
4204_CR14
4204_CR4
LT Huang (4204_CR12) 2021; 77
4204_CR18
S Brohee (4204_CR3) 2006; 7
4204_CR15
4204_CR16
Oughtred Rose (4204_CR30) 2021; 30
4204_CR19
D Stoll (4204_CR7) 2005; 8
H Shukur (4204_CR9) 2020; 1
Z Dafir (4204_CR11) 2021; 54
A Bustamam (4204_CR13) 2012; 9
4204_CR20
4204_CR21
D Van Ravenzwaaij (4204_CR24) 2018; 25
4204_CR22
4204_CR23
J Vlasblom (4204_CR5) 2009; 10
4204_CR28
4204_CR26
L He (4204_CR25) 2017; 32
JR Cheng (4204_CR8) 2019; 128
T Ito (4204_CR6) 2001; 98
A Azad (4204_CR27) 2018; 46
References_xml – reference: ChengJRGenMAccelerating genetic algorithms with GPU computing: a selective overviewComput Ind Eng201912851452510.1016/j.cie.2018.12.067
– reference: Cheng J, Grossman M, McKercher T (2014) Professional Cuda C Programming. Wiley
– reference: Pantoja M, Weyrich M, Fernández-Escribano G (2020) Acceleration of MRI analysis using multicore and manycore paradigms. J Supercomput 1–12
– reference: Van Dongen SM (2000) Graph clustering by flow simulation. Ph.D. thesis
– reference: Van RavenzwaaijDCasseyPBrownSDA simple introduction to Markov Chain Monte-Carlo samplingPsychonomic Bull Review201825114315410.3758/s13423-016-1015-8
– reference: HuangLTWeiKCWuCCChenCYWangJAA lightweight BLASTP and its implementation on CUDA GPUsJ Supercomput202177132234210.1007/s11227-020-03267-1
– reference: RoseOughtredThe BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactionsProtein Sci20213018720010.1002/pro.4096
– reference: StarkCBreitkreutzBJRegulyTBoucherLBreitkreutzATyersMBiogrid: a general repository for interaction datasetsNucleic Acids Res200634suppl 1D535D53910.1093/nar/gkj109
– reference: Satuluri V, Parthasarathy S (2009) Scalable Graph Clustering Using Stochastic Flows: applications to Community Discovery. In: Acm Sigkdd International Conference on Knowledge Discovery and Data Mining ACM
– reference: Mpich (2019) Retrieved Jan, 2020. http://www.mpich.org/
– reference: NVIDIA: Nvidia cuda c programming guide v11.4.1. Retrieved September, 2021. http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf (2021)
– reference: Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nature Rev Genet 5(2):101
– reference: Fu Y, Zhou W (2020) A novel parallel markov clustering method in biological interaction network analysis under multi-gpu computing environment. J Supercomput pp 1–18
– reference: VlasblomJWodakSJMarkov clustering versus affinity propagation for the partitioning of protein interaction graphsBMC Bioinform20091019910.1186/1471-2105-10-99
– reference: DafirZLamariYSlaouiSCA survey on parallel clustering algorithms for big dataArtif Intell Rev20215442411244310.1007/s10462-020-09918-2
– reference: Lim Y, Yu I, Seo D et al (2019) PS-MCL: parallel shotgun coarsened markov clustering of protein interaction networks. BMC Bioinform 20(Suppl 13)
– reference: Butenhof DR (1997) Programming with POSIX threads. Addison-Wesley Professional
– reference: ShukurHZeebareeSRAhmedAJZebariRRAhmedOTahirBSASadeeqMAA state of art survey for concurrent computation and clustering of parallel computing for distributed systemsJ Appl Sci Technol Trends20201414815410.38094/jastt1466
– reference: StollDTemplinMBachmannJJoosTProtein microarrays: applications and future challengesCurrent Opin Drug Discov Develop200582239252
– reference: (2019) The top500 systems. Retrieved Jan, 2020. https://www.top500.org/lists/2019/11/
– reference: LiuYSchmidtBLightspmv: faster cuda-compatible sparse matrix-vector multiplication using compressed sparse rowsJ Signal Process Syst2018901698610.1007/s11265-016-1216-4
– reference: HeLLuLWangQAn optimal parallel implementation of Markov Clustering based on the coordination of CPU and GPUJ Intell Fuzzy Syst20173253609361710.3233/JIFS-169296
– reference: Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3(1)
– reference: BroheeSVan HeldenJEvaluation of clustering algorithms for protein-protein interaction networksBMC Bioinform20067148810.1186/1471-2105-7-488
– reference: Vazquez F, Ortega G, Fernandez JJ, Garzon EM (2010) Improving the performance of the sparse matrix vector product with gpus. In: 2010 10th IEEE International Conference on Computer and Information Technology, pp 1146-1151. IEEE
– reference: Hennessy JL, Patterson DA (2019) Computer architecture: a quantitative approach (Sixth Edition). Elsevier
– reference: AzadAPavlopoulosGAOuzounisCAHipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networksNucleic Acids Res2018466e33e3310.1093/nar/gkx1313
– reference: Saad Y (2003) Iterative methods for sparse linear systems, vol. 82. siam
– reference: BustamamABurrageKHamiltonNAFast parallel markov clustering in bioinformatics using massively parallel computing on gpu with cuda and ellpack-r sparse formatIEEE/ACM Trans Comput Biol Bioinform (TCBB)20129367969210.1109/TCBB.2011.68
– reference: ItoTChibaTOzawaRYoshidaMHattoriMSakakiYA comprehensive two-hybrid analysis to explore the yeast protein interactomeProceed Nat Acad Sci20019884569457410.1073/pnas.061034498
– volume: 9
  start-page: 679
  issue: 3
  year: 2012
  ident: 4204_CR13
  publication-title: IEEE/ACM Trans Comput Biol Bioinform (TCBB)
  doi: 10.1109/TCBB.2011.68
– volume: 7
  start-page: 488
  issue: 1
  year: 2006
  ident: 4204_CR3
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-7-488
– volume: 98
  start-page: 4569
  issue: 8
  year: 2001
  ident: 4204_CR6
  publication-title: Proceed Nat Acad Sci
  doi: 10.1073/pnas.061034498
– volume: 77
  start-page: 322
  issue: 1
  year: 2021
  ident: 4204_CR12
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03267-1
– ident: 4204_CR16
  doi: 10.1007/s11227-020-03193-2
– ident: 4204_CR21
– ident: 4204_CR10
  doi: 10.1007/s11227-020-03154-9
– volume: 25
  start-page: 143
  issue: 1
  year: 2018
  ident: 4204_CR24
  publication-title: Psychonomic Bull Review
  doi: 10.3758/s13423-016-1015-8
– ident: 4204_CR2
– volume: 54
  start-page: 2411
  issue: 4
  year: 2021
  ident: 4204_CR11
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09918-2
– volume: 30
  start-page: 187
  year: 2021
  ident: 4204_CR30
  publication-title: Protein Sci
  doi: 10.1002/pro.4096
– volume: 46
  start-page: e33
  issue: 6
  year: 2018
  ident: 4204_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1313
– volume: 1
  start-page: 148
  issue: 4
  year: 2020
  ident: 4204_CR9
  publication-title: J Appl Sci Technol Trends
  doi: 10.38094/jastt1466
– ident: 4204_CR14
– ident: 4204_CR28
  doi: 10.1145/1557019.1557101
– ident: 4204_CR18
– volume: 90
  start-page: 69
  issue: 1
  year: 2018
  ident: 4204_CR29
  publication-title: J Signal Process Syst
  doi: 10.1007/s11265-016-1216-4
– ident: 4204_CR4
  doi: 10.1038/msb4100129
– volume: 34
  start-page: D535
  issue: suppl 1
  year: 2006
  ident: 4204_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj109
– ident: 4204_CR1
  doi: 10.1038/nrg1272
– ident: 4204_CR20
– ident: 4204_CR22
– ident: 4204_CR23
  doi: 10.1137/1.9780898718003
– volume: 32
  start-page: 3609
  issue: 5
  year: 2017
  ident: 4204_CR25
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-169296
– volume: 128
  start-page: 514
  year: 2019
  ident: 4204_CR8
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.12.067
– volume: 8
  start-page: 239
  issue: 2
  year: 2005
  ident: 4204_CR7
  publication-title: Current Opin Drug Discov Develop
– volume: 10
  start-page: 99
  issue: 1
  year: 2009
  ident: 4204_CR5
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-10-99
– ident: 4204_CR26
  doi: 10.1186/s12859-019-2856-8
– ident: 4204_CR15
  doi: 10.1109/CIT.2010.208
– ident: 4204_CR19
SSID ssj0004373
Score 2.292471
Snippet Biological interaction databases accommodate information about interacted proteins or genes. Clustering on the networks formed by the interaction information...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9017
SubjectTerms Algorithms
Clustering
Compilers
Computer Science
Data transmission
Interpreters
Processor Architectures
Programming Languages
Proteins
Title A heterogeneous parallel implementation of the Markov clustering algorithm for large-scale biological networks on distributed CPU–GPU clusters
URI https://link.springer.com/article/10.1007/s11227-021-04204-6
https://www.proquest.com/docview/2652610442
Volume 78
WOSCitedRecordID wos000743018900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYK5cAFaKFieWkO3NpIWcdx7CNCPA4VWrXdilvkV8pK2QRtdvfMT0DiH_JLGOdB1AqQyjnOyPI39sxoZr4h5FhSExlh8fWLBQYoVDGfJLSBElJoa2WkdM0z-z25uhLX13LUNoVVXbV7l5KsX-q-2W1IaRL4kgJUtJAFfIV8RHMn_MCGHz9_992QUZNXlhgYiZjRtlXmZRl_m6Pex_wnLVpbm_PN9-1zi2y03iWcNOrwiXxwxWey2U1ugPYib5P7E7jxdTAlqo_D2B88A3ieuxwm066g3CMGZQboIYLv6CmXYPKF51XA3YDK_5SzyfxmCuj1Qu7ryYMK8XbQ0Dp57KFoaswrQEnWM_T64VrOwulo_Hj3cDEadxKrHTI-P_t1ehm0sxkCgwHbPBBWMaaN5rGJMsN5GFkbOpmpiLlYSkRZJ4mijCuG1iCROjPMxlY7J2OtbRh9IatFWbhdAiFGydoNOWdcsFg7KWymUCKXzAyFdQMy7CBKTUtc7udn5GlPueyPPMUjT-sjT_mAfH3-57ah7Xhz9UGHfNpe4SqlPMboMmSMDsi3Dun-8-vS9v5v-T5Zp76loi6iPCCr89nCHZI1s5xPqtlRrdpP0qz2Tg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQYILpTzEQkvnwI1GyjqOYx-rilLEslpBF_UW-ZV2pXSDNtue-xMq8Q_5JYzzICqiSHCOM7L8jT0zmplvAN4oZhMrHb1-qaQAhWkekoQu0lJJ45xKtGl4ZifZdCpPTtSsawqr-2r3PiXZvNRDs9uYsSwKJQWkaDGPxF24x8liBcb8z1--Dt2QSZtXVhQYyZSzrlXmzzJumqPBx_wtLdpYm8PN_9vnY3jUeZe436rDFtzxyyew2U9uwO4iP4XrfTwLdTAVqY-n2B8DA3hZ-hIX531BeUAMqwLJQ8TQ0VNdoi0vAq8C7QZ1eVqtFuuzcySvF8tQTx7VhLfHltYpYI_Ltsa8RpLkAkNvGK7lHR7M5j-uvr-fzXuJ9TOYH747PjiKutkMkaWAbR1Jpzk31ojUJoUVIk6ci70qdMJ9qhShbLJMMy40J2uQKVNY7lJnvFepMS5OnsPGslr6F4AxRcnGj4XgQvLUeCVdoUmiUNyOpfMjGPcQ5bYjLg_zM8p8oFwOR57TkefNkediBG9__fOtpe346-rtHvm8u8J1zkRK0WXMORvBXo_08Pl2aS__bfkuPDg6_jTJJx-mH1_BQxbaK5qCym3YWK8u_A7ct5frRb163aj5T2XL-TI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagINRLW17qlrbMgRtEzTqOYx-rwkLVarUSLOot8it0pTSpNtme-xMq9R_2lzDOgxQESIhzkpHl-RzPaL75hpA3kprICIt_v1hggkIV80VCGyghhbZWRko3OrOnyXQqzs7k7F4Xf8N270uSbU-DV2kq6oNLmx0MjW9jSpPA0wsQdCEL-EPyiHkivc_XP38dOiOjtsYsMUkSMaNd28zvbfx8NQ3x5i8l0ubmmWz-_5q3yEYXdcJhC5On5IErnpHNfqIDdAf8Obk5hHPPjykRVq5cVeCVwfPc5bC46Inm3pNQZoCRI_hOn_IKTL7yegu4MlD5t3K5qM8vAKNhyD3PPKgQBw5auSePCSha7nkFaMl65V4_dMtZOJrN765vP87mvcXqBZlPPnw5-hR0MxsCg4lcHQirGNNG89hEmeE8jKwNncxUxFwsJXpfJ4mijCuGt0QidWaYja12TsZa2zB6SdaKsnDbBELMnrUbc864YLF2UthMoUUumRkL60Zk3LsrNZ2guZ-rkaeDFLPf8hS3PG22POUj8vbHN5etnMdf397tUZB2R7tKKY8x6wwZoyPyrvf68PjP1nb-7fXX5Mns_SQ9PZ6evCLr1HddNDzLXbJWL1dujzw2V_WiWu43iP8OAzECJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+heterogeneous+parallel+implementation+of+the+Markov+clustering+algorithm+for+large-scale+biological+networks+on+distributed+CPU%E2%80%93GPU+clusters&rft.jtitle=The+Journal+of+supercomputing&rft.au=Fu%2C+You&rft.au=Zhou%2C+Wei&rft.date=2022-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=7&rft.spage=9017&rft.epage=9037&rft_id=info:doi/10.1007%2Fs11227-021-04204-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon