A heterogeneous parallel implementation of the Markov clustering algorithm for large-scale biological networks on distributed CPU–GPU clusters
Biological interaction databases accommodate information about interacted proteins or genes. Clustering on the networks formed by the interaction information for finding regions highly connected could reveal the functional affinities or structural similarities between protein or gene entities. With...
Saved in:
| Published in: | The Journal of supercomputing Vol. 78; no. 7; pp. 9017 - 9037 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.05.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Biological interaction databases accommodate information about interacted proteins or genes. Clustering on the networks formed by the interaction information for finding regions highly connected could reveal the functional affinities or structural similarities between protein or gene entities. With the ever-increasing amounts of information in these databases, the runtime of a clustering task is more and more unaffordable. In this paper, we propose a heterogeneous parallel algorithm focusing on accelerating clustering tasks using distributed CPU–GPU clusters. Our parallel implementation is based on the original serial algorithm of the Markov clustering (MCL). In our parallel implementation, we utilize both the CPUs and GPUs to exploit the power of heterogeneous platforms. With the BioGRID biological interaction database, we have tested the proposed algorithm on a computer cluster equipped with NVIDIA Tesla P100 GPU accelerators. The result shows that, the algorithm is efficient in GPU memory usage and inter-node data transmission, and it can complete the clustering task in 3.2 minutes with the best speedup of 70.02 times compared to the serial counterpart.We believe our work can provide key insights for realizing fast MCL analyses on large-scale biological data, with distributed CPU–GPU computer clusters. |
|---|---|
| AbstractList | Biological interaction databases accommodate information about interacted proteins or genes. Clustering on the networks formed by the interaction information for finding regions highly connected could reveal the functional affinities or structural similarities between protein or gene entities. With the ever-increasing amounts of information in these databases, the runtime of a clustering task is more and more unaffordable. In this paper, we propose a heterogeneous parallel algorithm focusing on accelerating clustering tasks using distributed CPU–GPU clusters. Our parallel implementation is based on the original serial algorithm of the Markov clustering (MCL). In our parallel implementation, we utilize both the CPUs and GPUs to exploit the power of heterogeneous platforms. With the BioGRID biological interaction database, we have tested the proposed algorithm on a computer cluster equipped with NVIDIA Tesla P100 GPU accelerators. The result shows that, the algorithm is efficient in GPU memory usage and inter-node data transmission, and it can complete the clustering task in 3.2 minutes with the best speedup of 70.02 times compared to the serial counterpart.We believe our work can provide key insights for realizing fast MCL analyses on large-scale biological data, with distributed CPU–GPU computer clusters. |
| Author | Zhou, Wei Fu, You |
| Author_xml | – sequence: 1 givenname: You surname: Fu fullname: Fu, You organization: College of Computer Science and Engineering, Shandong University of Science and Technology – sequence: 2 givenname: Wei orcidid: 0000-0001-7239-6321 surname: Zhou fullname: Zhou, Wei email: zhwcn@126.com organization: College of Computer Science and Engineering, Shandong University of Science and Technology, Network Information Center, Weifang Medical University |
| BookMark | eNp9kE1u2zAQRonCAeq4vUBXBLpWQlKUZC0Do0kDOKgX9Zrgz0imQ4sqSSXILkcokBvmJJGjFgW68GpmgHnfDN45mnW-A4S-UHJBCakuI6WMVRlhNCOcEZ6VH9CcFlU-jks-Q3NSM5ItC84-ovMY94QQnlf5HP2-wjtIEHwLHfgh4l4G6Rw4bA-9gwN0SSbrO-wbnHaA72S49w9YuyGOlO1aLF3rg027A258wE6GFrKopQOsrHe-tWOPO0iPPtxHPCYZG1Owakhg8GqzfX1-udls_ybGT-iskS7C5z91gbbX336uvmfrHze3q6t1phmvU7Y0knOlVVnovNFlSXJjCNSNzDkUdW1MrapKMl5KDopWtWo0N4VRAHWhlCH5An2dcvvgfw0Qk9j7IXTjScHKgpWUcM7GreW0pYOPMUAjtJ2EpCCtE5SIo38x-Rejf_HuX5Qjyv5D-2APMjydhvIJiv1RLoR_X52g3gArdp95 |
| CitedBy_id | crossref_primary_10_32604_cmc_2023_038462 crossref_primary_10_3390_agronomy14091920 crossref_primary_10_1002_cpe_8318 |
| Cites_doi | 10.1109/TCBB.2011.68 10.1186/1471-2105-7-488 10.1073/pnas.061034498 10.1007/s11227-020-03267-1 10.1007/s11227-020-03193-2 10.1007/s11227-020-03154-9 10.3758/s13423-016-1015-8 10.1007/s10462-020-09918-2 10.1002/pro.4096 10.1093/nar/gkx1313 10.38094/jastt1466 10.1145/1557019.1557101 10.1007/s11265-016-1216-4 10.1038/msb4100129 10.1093/nar/gkj109 10.1038/nrg1272 10.1137/1.9780898718003 10.3233/JIFS-169296 10.1016/j.cie.2018.12.067 10.1186/1471-2105-10-99 10.1186/s12859-019-2856-8 10.1109/CIT.2010.208 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-021-04204-6 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 9037 |
| ExternalDocumentID | 10_1007_s11227_021_04204_6 |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017YFB0202002 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c249t-8da44bcb65c3fc6603dd0e9fa34e599dd9b77a246a4eb179bfc4d5dbee95bbd03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743018900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:44:46 EDT 2025 Tue Nov 18 21:42:55 EST 2025 Sat Nov 29 04:27:41 EST 2025 Fri Feb 21 02:46:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Parallel computing Biological interaction network Compute Unified Device Architecture Heterogenous computing Cluster computing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-8da44bcb65c3fc6603dd0e9fa34e599dd9b77a246a4eb179bfc4d5dbee95bbd03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7239-6321 |
| PQID | 2652610442 |
| PQPubID | 2043774 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2652610442 crossref_citationtrail_10_1007_s11227_021_04204_6 crossref_primary_10_1007_s11227_021_04204_6 springer_journals_10_1007_s11227_021_04204_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BroheeSVan HeldenJEvaluation of clustering algorithms for protein-protein interaction networksBMC Bioinform20067148810.1186/1471-2105-7-488 Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3(1) VlasblomJWodakSJMarkov clustering versus affinity propagation for the partitioning of protein interaction graphsBMC Bioinform20091019910.1186/1471-2105-10-99 Lim Y, Yu I, Seo D et al (2019) PS-MCL: parallel shotgun coarsened markov clustering of protein interaction networks. BMC Bioinform 20(Suppl 13) Mpich (2019) Retrieved Jan, 2020. http://www.mpich.org Fu Y, Zhou W (2020) A novel parallel markov clustering method in biological interaction network analysis under multi-gpu computing environment. J Supercomput pp 1–18 AzadAPavlopoulosGAOuzounisCAHipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networksNucleic Acids Res2018466e33e3310.1093/nar/gkx1313 Van Dongen SM (2000) Graph clustering by flow simulation. Ph.D. thesis HuangLTWeiKCWuCCChenCYWangJAA lightweight BLASTP and its implementation on CUDA GPUsJ Supercomput202177132234210.1007/s11227-020-03267-1 ShukurHZeebareeSRAhmedAJZebariRRAhmedOTahirBSASadeeqMAA state of art survey for concurrent computation and clustering of parallel computing for distributed systemsJ Appl Sci Technol Trends20201414815410.38094/jastt1466 NVIDIA: Nvidia cuda c programming guide v11.4.1. Retrieved September, 2021. http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf (2021) Van RavenzwaaijDCasseyPBrownSDA simple introduction to Markov Chain Monte-Carlo samplingPsychonomic Bull Review201825114315410.3758/s13423-016-1015-8 BustamamABurrageKHamiltonNAFast parallel markov clustering in bioinformatics using massively parallel computing on gpu with cuda and ellpack-r sparse formatIEEE/ACM Trans Comput Biol Bioinform (TCBB)20129367969210.1109/TCBB.2011.68 ChengJRGenMAccelerating genetic algorithms with GPU computing: a selective overviewComput Ind Eng201912851452510.1016/j.cie.2018.12.067 StarkCBreitkreutzBJRegulyTBoucherLBreitkreutzATyersMBiogrid: a general repository for interaction datasetsNucleic Acids Res200634suppl 1D535D53910.1093/nar/gkj109 Satuluri V, Parthasarathy S (2009) Scalable Graph Clustering Using Stochastic Flows: applications to Community Discovery. In: Acm Sigkdd International Conference on Knowledge Discovery and Data Mining ACM Pantoja M, Weyrich M, Fernández-Escribano G (2020) Acceleration of MRI analysis using multicore and manycore paradigms. J Supercomput 1–12 Vazquez F, Ortega G, Fernandez JJ, Garzon EM (2010) Improving the performance of the sparse matrix vector product with gpus. In: 2010 10th IEEE International Conference on Computer and Information Technology, pp 1146-1151. IEEE RoseOughtredThe BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactionsProtein Sci20213018720010.1002/pro.4096 Saad Y (2003) Iterative methods for sparse linear systems, vol. 82. siam DafirZLamariYSlaouiSCA survey on parallel clustering algorithms for big dataArtif Intell Rev20215442411244310.1007/s10462-020-09918-2 Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nature Rev Genet 5(2):101 Cheng J, Grossman M, McKercher T (2014) Professional Cuda C Programming. Wiley Hennessy JL, Patterson DA (2019) Computer architecture: a quantitative approach (Sixth Edition). Elsevier Butenhof DR (1997) Programming with POSIX threads. Addison-Wesley Professional ItoTChibaTOzawaRYoshidaMHattoriMSakakiYA comprehensive two-hybrid analysis to explore the yeast protein interactomeProceed Nat Acad Sci20019884569457410.1073/pnas.061034498 HeLLuLWangQAn optimal parallel implementation of Markov Clustering based on the coordination of CPU and GPUJ Intell Fuzzy Syst20173253609361710.3233/JIFS-169296 StollDTemplinMBachmannJJoosTProtein microarrays: applications and future challengesCurrent Opin Drug Discov Develop200582239252 (2019) The top500 systems. Retrieved Jan, 2020. https://www.top500.org/lists/2019/11 LiuYSchmidtBLightspmv: faster cuda-compatible sparse matrix-vector multiplication using compressed sparse rowsJ Signal Process Syst2018901698610.1007/s11265-016-1216-4 4204_CR2 4204_CR1 Y Liu (4204_CR29) 2018; 90 4204_CR10 C Stark (4204_CR17) 2006; 34 4204_CR14 4204_CR4 LT Huang (4204_CR12) 2021; 77 4204_CR18 S Brohee (4204_CR3) 2006; 7 4204_CR15 4204_CR16 Oughtred Rose (4204_CR30) 2021; 30 4204_CR19 D Stoll (4204_CR7) 2005; 8 H Shukur (4204_CR9) 2020; 1 Z Dafir (4204_CR11) 2021; 54 A Bustamam (4204_CR13) 2012; 9 4204_CR20 4204_CR21 D Van Ravenzwaaij (4204_CR24) 2018; 25 4204_CR22 4204_CR23 J Vlasblom (4204_CR5) 2009; 10 4204_CR28 4204_CR26 L He (4204_CR25) 2017; 32 JR Cheng (4204_CR8) 2019; 128 T Ito (4204_CR6) 2001; 98 A Azad (4204_CR27) 2018; 46 |
| References_xml | – reference: ChengJRGenMAccelerating genetic algorithms with GPU computing: a selective overviewComput Ind Eng201912851452510.1016/j.cie.2018.12.067 – reference: Cheng J, Grossman M, McKercher T (2014) Professional Cuda C Programming. Wiley – reference: Pantoja M, Weyrich M, Fernández-Escribano G (2020) Acceleration of MRI analysis using multicore and manycore paradigms. J Supercomput 1–12 – reference: Van Dongen SM (2000) Graph clustering by flow simulation. Ph.D. thesis – reference: Van RavenzwaaijDCasseyPBrownSDA simple introduction to Markov Chain Monte-Carlo samplingPsychonomic Bull Review201825114315410.3758/s13423-016-1015-8 – reference: HuangLTWeiKCWuCCChenCYWangJAA lightweight BLASTP and its implementation on CUDA GPUsJ Supercomput202177132234210.1007/s11227-020-03267-1 – reference: RoseOughtredThe BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactionsProtein Sci20213018720010.1002/pro.4096 – reference: StarkCBreitkreutzBJRegulyTBoucherLBreitkreutzATyersMBiogrid: a general repository for interaction datasetsNucleic Acids Res200634suppl 1D535D53910.1093/nar/gkj109 – reference: Satuluri V, Parthasarathy S (2009) Scalable Graph Clustering Using Stochastic Flows: applications to Community Discovery. In: Acm Sigkdd International Conference on Knowledge Discovery and Data Mining ACM – reference: Mpich (2019) Retrieved Jan, 2020. http://www.mpich.org/ – reference: NVIDIA: Nvidia cuda c programming guide v11.4.1. Retrieved September, 2021. http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf (2021) – reference: Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nature Rev Genet 5(2):101 – reference: Fu Y, Zhou W (2020) A novel parallel markov clustering method in biological interaction network analysis under multi-gpu computing environment. J Supercomput pp 1–18 – reference: VlasblomJWodakSJMarkov clustering versus affinity propagation for the partitioning of protein interaction graphsBMC Bioinform20091019910.1186/1471-2105-10-99 – reference: DafirZLamariYSlaouiSCA survey on parallel clustering algorithms for big dataArtif Intell Rev20215442411244310.1007/s10462-020-09918-2 – reference: Lim Y, Yu I, Seo D et al (2019) PS-MCL: parallel shotgun coarsened markov clustering of protein interaction networks. BMC Bioinform 20(Suppl 13) – reference: Butenhof DR (1997) Programming with POSIX threads. Addison-Wesley Professional – reference: ShukurHZeebareeSRAhmedAJZebariRRAhmedOTahirBSASadeeqMAA state of art survey for concurrent computation and clustering of parallel computing for distributed systemsJ Appl Sci Technol Trends20201414815410.38094/jastt1466 – reference: StollDTemplinMBachmannJJoosTProtein microarrays: applications and future challengesCurrent Opin Drug Discov Develop200582239252 – reference: (2019) The top500 systems. Retrieved Jan, 2020. https://www.top500.org/lists/2019/11/ – reference: LiuYSchmidtBLightspmv: faster cuda-compatible sparse matrix-vector multiplication using compressed sparse rowsJ Signal Process Syst2018901698610.1007/s11265-016-1216-4 – reference: HeLLuLWangQAn optimal parallel implementation of Markov Clustering based on the coordination of CPU and GPUJ Intell Fuzzy Syst20173253609361710.3233/JIFS-169296 – reference: Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3(1) – reference: BroheeSVan HeldenJEvaluation of clustering algorithms for protein-protein interaction networksBMC Bioinform20067148810.1186/1471-2105-7-488 – reference: Vazquez F, Ortega G, Fernandez JJ, Garzon EM (2010) Improving the performance of the sparse matrix vector product with gpus. In: 2010 10th IEEE International Conference on Computer and Information Technology, pp 1146-1151. IEEE – reference: Hennessy JL, Patterson DA (2019) Computer architecture: a quantitative approach (Sixth Edition). Elsevier – reference: AzadAPavlopoulosGAOuzounisCAHipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networksNucleic Acids Res2018466e33e3310.1093/nar/gkx1313 – reference: Saad Y (2003) Iterative methods for sparse linear systems, vol. 82. siam – reference: BustamamABurrageKHamiltonNAFast parallel markov clustering in bioinformatics using massively parallel computing on gpu with cuda and ellpack-r sparse formatIEEE/ACM Trans Comput Biol Bioinform (TCBB)20129367969210.1109/TCBB.2011.68 – reference: ItoTChibaTOzawaRYoshidaMHattoriMSakakiYA comprehensive two-hybrid analysis to explore the yeast protein interactomeProceed Nat Acad Sci20019884569457410.1073/pnas.061034498 – volume: 9 start-page: 679 issue: 3 year: 2012 ident: 4204_CR13 publication-title: IEEE/ACM Trans Comput Biol Bioinform (TCBB) doi: 10.1109/TCBB.2011.68 – volume: 7 start-page: 488 issue: 1 year: 2006 ident: 4204_CR3 publication-title: BMC Bioinform doi: 10.1186/1471-2105-7-488 – volume: 98 start-page: 4569 issue: 8 year: 2001 ident: 4204_CR6 publication-title: Proceed Nat Acad Sci doi: 10.1073/pnas.061034498 – volume: 77 start-page: 322 issue: 1 year: 2021 ident: 4204_CR12 publication-title: J Supercomput doi: 10.1007/s11227-020-03267-1 – ident: 4204_CR16 doi: 10.1007/s11227-020-03193-2 – ident: 4204_CR21 – ident: 4204_CR10 doi: 10.1007/s11227-020-03154-9 – volume: 25 start-page: 143 issue: 1 year: 2018 ident: 4204_CR24 publication-title: Psychonomic Bull Review doi: 10.3758/s13423-016-1015-8 – ident: 4204_CR2 – volume: 54 start-page: 2411 issue: 4 year: 2021 ident: 4204_CR11 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09918-2 – volume: 30 start-page: 187 year: 2021 ident: 4204_CR30 publication-title: Protein Sci doi: 10.1002/pro.4096 – volume: 46 start-page: e33 issue: 6 year: 2018 ident: 4204_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1313 – volume: 1 start-page: 148 issue: 4 year: 2020 ident: 4204_CR9 publication-title: J Appl Sci Technol Trends doi: 10.38094/jastt1466 – ident: 4204_CR14 – ident: 4204_CR28 doi: 10.1145/1557019.1557101 – ident: 4204_CR18 – volume: 90 start-page: 69 issue: 1 year: 2018 ident: 4204_CR29 publication-title: J Signal Process Syst doi: 10.1007/s11265-016-1216-4 – ident: 4204_CR4 doi: 10.1038/msb4100129 – volume: 34 start-page: D535 issue: suppl 1 year: 2006 ident: 4204_CR17 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj109 – ident: 4204_CR1 doi: 10.1038/nrg1272 – ident: 4204_CR20 – ident: 4204_CR22 – ident: 4204_CR23 doi: 10.1137/1.9780898718003 – volume: 32 start-page: 3609 issue: 5 year: 2017 ident: 4204_CR25 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-169296 – volume: 128 start-page: 514 year: 2019 ident: 4204_CR8 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.12.067 – volume: 8 start-page: 239 issue: 2 year: 2005 ident: 4204_CR7 publication-title: Current Opin Drug Discov Develop – volume: 10 start-page: 99 issue: 1 year: 2009 ident: 4204_CR5 publication-title: BMC Bioinform doi: 10.1186/1471-2105-10-99 – ident: 4204_CR26 doi: 10.1186/s12859-019-2856-8 – ident: 4204_CR15 doi: 10.1109/CIT.2010.208 – ident: 4204_CR19 |
| SSID | ssj0004373 |
| Score | 2.292471 |
| Snippet | Biological interaction databases accommodate information about interacted proteins or genes. Clustering on the networks formed by the interaction information... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9017 |
| SubjectTerms | Algorithms Clustering Compilers Computer Science Data transmission Interpreters Processor Architectures Programming Languages Proteins |
| Title | A heterogeneous parallel implementation of the Markov clustering algorithm for large-scale biological networks on distributed CPU–GPU clusters |
| URI | https://link.springer.com/article/10.1007/s11227-021-04204-6 https://www.proquest.com/docview/2652610442 |
| Volume | 78 |
| WOSCitedRecordID | wos000743018900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYK5cAFaKFieWkO3NpIWcdx7CNCPA4VWrXdilvkV8pK2QRtdvfMT0DiH_JLGOdB1AqQyjnOyPI39sxoZr4h5FhSExlh8fWLBQYoVDGfJLSBElJoa2WkdM0z-z25uhLX13LUNoVVXbV7l5KsX-q-2W1IaRL4kgJUtJAFfIV8RHMn_MCGHz9_992QUZNXlhgYiZjRtlXmZRl_m6Pex_wnLVpbm_PN9-1zi2y03iWcNOrwiXxwxWey2U1ugPYib5P7E7jxdTAlqo_D2B88A3ieuxwm066g3CMGZQboIYLv6CmXYPKF51XA3YDK_5SzyfxmCuj1Qu7ryYMK8XbQ0Dp57KFoaswrQEnWM_T64VrOwulo_Hj3cDEadxKrHTI-P_t1ehm0sxkCgwHbPBBWMaaN5rGJMsN5GFkbOpmpiLlYSkRZJ4mijCuG1iCROjPMxlY7J2OtbRh9IatFWbhdAiFGydoNOWdcsFg7KWymUCKXzAyFdQMy7CBKTUtc7udn5GlPueyPPMUjT-sjT_mAfH3-57ah7Xhz9UGHfNpe4SqlPMboMmSMDsi3Dun-8-vS9v5v-T5Zp76loi6iPCCr89nCHZI1s5xPqtlRrdpP0qz2Tg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQYILpTzEQkvnwI1GyjqOYx-rilLEslpBF_UW-ZV2pXSDNtue-xMq8Q_5JYzzICqiSHCOM7L8jT0zmplvAN4oZhMrHb1-qaQAhWkekoQu0lJJ45xKtGl4ZifZdCpPTtSsawqr-2r3PiXZvNRDs9uYsSwKJQWkaDGPxF24x8liBcb8z1--Dt2QSZtXVhQYyZSzrlXmzzJumqPBx_wtLdpYm8PN_9vnY3jUeZe436rDFtzxyyew2U9uwO4iP4XrfTwLdTAVqY-n2B8DA3hZ-hIX531BeUAMqwLJQ8TQ0VNdoi0vAq8C7QZ1eVqtFuuzcySvF8tQTx7VhLfHltYpYI_Ltsa8RpLkAkNvGK7lHR7M5j-uvr-fzXuJ9TOYH747PjiKutkMkaWAbR1Jpzk31ojUJoUVIk6ci70qdMJ9qhShbLJMMy40J2uQKVNY7lJnvFepMS5OnsPGslr6F4AxRcnGj4XgQvLUeCVdoUmiUNyOpfMjGPcQ5bYjLg_zM8p8oFwOR57TkefNkediBG9__fOtpe346-rtHvm8u8J1zkRK0WXMORvBXo_08Pl2aS__bfkuPDg6_jTJJx-mH1_BQxbaK5qCym3YWK8u_A7ct5frRb163aj5T2XL-TI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagINRLW17qlrbMgRtEzTqOYx-rwkLVarUSLOot8it0pTSpNtme-xMq9R_2lzDOgxQESIhzkpHl-RzPaL75hpA3kprICIt_v1hggkIV80VCGyghhbZWRko3OrOnyXQqzs7k7F4Xf8N270uSbU-DV2kq6oNLmx0MjW9jSpPA0wsQdCEL-EPyiHkivc_XP38dOiOjtsYsMUkSMaNd28zvbfx8NQ3x5i8l0ubmmWz-_5q3yEYXdcJhC5On5IErnpHNfqIDdAf8Obk5hHPPjykRVq5cVeCVwfPc5bC46Inm3pNQZoCRI_hOn_IKTL7yegu4MlD5t3K5qM8vAKNhyD3PPKgQBw5auSePCSha7nkFaMl65V4_dMtZOJrN765vP87mvcXqBZlPPnw5-hR0MxsCg4lcHQirGNNG89hEmeE8jKwNncxUxFwsJXpfJ4mijCuGt0QidWaYja12TsZa2zB6SdaKsnDbBELMnrUbc864YLF2UthMoUUumRkL60Zk3LsrNZ2guZ-rkaeDFLPf8hS3PG22POUj8vbHN5etnMdf397tUZB2R7tKKY8x6wwZoyPyrvf68PjP1nb-7fXX5Mns_SQ9PZ6evCLr1HddNDzLXbJWL1dujzw2V_WiWu43iP8OAzECJQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+heterogeneous+parallel+implementation+of+the+Markov+clustering+algorithm+for+large-scale+biological+networks+on+distributed+CPU%E2%80%93GPU+clusters&rft.jtitle=The+Journal+of+supercomputing&rft.au=Fu%2C+You&rft.au=Zhou%2C+Wei&rft.date=2022-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=7&rft.spage=9017&rft.epage=9037&rft_id=info:doi/10.1007%2Fs11227-021-04204-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |