Open-world structured sequence learning via dense target encoding

Structured sequences are popularly used to describe graph data with time-evolving node features and edges. A typical real-world scenario of structured sequences is that unknown class labels continuously arrive and thus the training and testing often across different class spaces. This scenario is al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 680; S. 121147
Hauptverfasser: Zhang, Qin, Liu, Ziqi, Li, Qincai, Xiang, Haolong, Yu, Zhizhi, Chen, Junyang, Zhang, Peng, Chen, Xiaojun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.10.2024
Schlagworte:
ISSN:0020-0255
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Structured sequences are popularly used to describe graph data with time-evolving node features and edges. A typical real-world scenario of structured sequences is that unknown class labels continuously arrive and thus the training and testing often across different class spaces. This scenario is also referred to as the open-world learning problem on structured sequences. In this paper, we present a new Dense Open-world Structured Sequence Learning model (DOSSL for short) to learn graph streams in the open-world learning setting. To capture both structural and temporal information, DOSSL uses a GNN-based stochastic recurrent neural network for learning node representation in graph streams, then a truncated Laplacian distribution to describe the latent distribution of graph nodes, and a sampling function is used to generate node representations. Further, DOSSL learns dense target embeddings for the known classes to improve the compactness of known class distribution and reserve enough space for open-world unknown classes. The ultimate open-world classifier is optimized to detect the samples from unknown classes under the constraints of DVAE loss, label loss, class uncertainty loss, and dense target loss. Through empirical analysis conducted on real-world datasets, it has been demonstrated that the advanced technique known as DOSSL exhibits the ability to acquire precise node classifiers by harnessing the power of graph streams. •We represent an initial endeavor in investigating the open-world learning problem within the context of graph streams. To address this challenge, we introduce a novel dense open-world structured sequence learning model, DOSSL, as a proposed solution.•We effectively solve the technical obstacles pertaining to the temporal and structural dynamics, as well as the fluctuating class labels observed in open-world graph streams. DOSSL employs a recurrent neural network based on GCN, which enables the capturing of both temporal and structural dynamics. To enhance the learning process, stochastic states are introduced alongside the conventional deterministic states within the Gaussian distribution. The stochastic components enable the learning of a latent probabilistic model for each node at every time step.•We enhance the proposed DOSSL model with the learning of dense target embedding. It can change the representation of the target classes and better match the known class space. According to the number of different topological spaces enabled by the type of encoding, dense target encoding avoids the limitation of the space complexity represented by the one-hot target encoding.
AbstractList Structured sequences are popularly used to describe graph data with time-evolving node features and edges. A typical real-world scenario of structured sequences is that unknown class labels continuously arrive and thus the training and testing often across different class spaces. This scenario is also referred to as the open-world learning problem on structured sequences. In this paper, we present a new Dense Open-world Structured Sequence Learning model (DOSSL for short) to learn graph streams in the open-world learning setting. To capture both structural and temporal information, DOSSL uses a GNN-based stochastic recurrent neural network for learning node representation in graph streams, then a truncated Laplacian distribution to describe the latent distribution of graph nodes, and a sampling function is used to generate node representations. Further, DOSSL learns dense target embeddings for the known classes to improve the compactness of known class distribution and reserve enough space for open-world unknown classes. The ultimate open-world classifier is optimized to detect the samples from unknown classes under the constraints of DVAE loss, label loss, class uncertainty loss, and dense target loss. Through empirical analysis conducted on real-world datasets, it has been demonstrated that the advanced technique known as DOSSL exhibits the ability to acquire precise node classifiers by harnessing the power of graph streams. •We represent an initial endeavor in investigating the open-world learning problem within the context of graph streams. To address this challenge, we introduce a novel dense open-world structured sequence learning model, DOSSL, as a proposed solution.•We effectively solve the technical obstacles pertaining to the temporal and structural dynamics, as well as the fluctuating class labels observed in open-world graph streams. DOSSL employs a recurrent neural network based on GCN, which enables the capturing of both temporal and structural dynamics. To enhance the learning process, stochastic states are introduced alongside the conventional deterministic states within the Gaussian distribution. The stochastic components enable the learning of a latent probabilistic model for each node at every time step.•We enhance the proposed DOSSL model with the learning of dense target embedding. It can change the representation of the target classes and better match the known class space. According to the number of different topological spaces enabled by the type of encoding, dense target encoding avoids the limitation of the space complexity represented by the one-hot target encoding.
ArticleNumber 121147
Author Chen, Junyang
Chen, Xiaojun
Zhang, Peng
Yu, Zhizhi
Zhang, Qin
Liu, Ziqi
Li, Qincai
Xiang, Haolong
Author_xml – sequence: 1
  givenname: Qin
  orcidid: 0000-0002-1449-5046
  surname: Zhang
  fullname: Zhang, Qin
  email: qinzhang@szu.edu.cn
  organization: Big Data Institute, College of Computer Science and Software Engineering, ShenZhen University, ShenZhen, 518060, China
– sequence: 2
  givenname: Ziqi
  surname: Liu
  fullname: Liu, Ziqi
  email: liuziqi2022@email.szu.edu.cn
  organization: Big Data Institute, College of Computer Science and Software Engineering, ShenZhen University, ShenZhen, 518060, China
– sequence: 3
  givenname: Qincai
  surname: Li
  fullname: Li, Qincai
  email: liqincai2020@email.szu.edu.cn
  organization: Big Data Institute, College of Computer Science and Software Engineering, ShenZhen University, ShenZhen, 518060, China
– sequence: 4
  givenname: Haolong
  orcidid: 0000-0003-4565-8829
  surname: Xiang
  fullname: Xiang, Haolong
  email: 200078@nuist.edu.cn
  organization: School of Software, Nanjing University of Information Science and Technology, NanJing, 210044, China
– sequence: 5
  givenname: Zhizhi
  surname: Yu
  fullname: Yu, Zhizhi
  email: yuzhizhi@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
– sequence: 6
  givenname: Junyang
  surname: Chen
  fullname: Chen, Junyang
  email: junyangchen@szu.edu.cn
  organization: Big Data Institute, College of Computer Science and Software Engineering, ShenZhen University, ShenZhen, 518060, China
– sequence: 7
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  email: p.zhang@gzhu.edu.cn
  organization: Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006, China
– sequence: 8
  givenname: Xiaojun
  surname: Chen
  fullname: Chen, Xiaojun
  email: xjchen@szu.edu.cn
  organization: Big Data Institute, College of Computer Science and Software Engineering, ShenZhen University, ShenZhen, 518060, China
BookMark eNp9j8tqwzAQRbVIoUnaD-jOP2B39LBs01UIfUEgm3YtZGkcZFw5leyU_n1t3HVWd-Byhns2ZOV7j4Q8UMgoUPnYZs7HjAETGWWUimJF1gAMUmB5fks2MbYAIAop12R3PKNPf_rQ2SQOYTTDGHA68XtEbzDpUAfv_Cm5OJ1Y9BGTQYcTDslU93Zq7shNo7uI9_-5JZ8vzx_7t_RwfH3f7w6pYaIa0rJu0FZVyctC1LoseAUNUiYamtdCcMwLjiCFKJEXYJnhUjaQo5BY1dKImm8JXf6a0McYsFHn4L50-FUU1OytWjV5q9lbLd4T87QwOA27OAwqGjd7WRfQDMr27gr9B3xcZDw
Cites_doi 10.1186/s40537-023-00760-1
10.1109/TPAMI.2015.2487986
10.1007/s00362-008-0183-7
10.1109/TASLP.2020.2983593
10.1016/0010-0285(73)90017-0
10.1016/j.ipm.2023.103292
10.1162/neco.2007.11-06-397
10.1109/5.58325
10.1109/TPAMI.2022.3200384
10.1016/j.patcog.2019.107000
10.1016/j.ipm.2020.102433
10.1007/s11633-020-1243-2
10.1109/TPAMI.2020.3045079
10.1016/j.imavis.2018.04.004
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2024.121147
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
ExternalDocumentID 10_1016_j_ins_2024_121147
S0020025524010612
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c249t-8bfed9983874ba87390fe124f15b443e573e06448e370d2c366f05e46e9b6c4b3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302683400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 02:44:15 EST 2025
Sat Aug 24 15:41:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Dense target encoding
Open-world learning
Structured sequence
Dynamical variational autoencoders
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-8bfed9983874ba87390fe124f15b443e573e06448e370d2c366f05e46e9b6c4b3
ORCID 0000-0002-1449-5046
0000-0003-4565-8829
ParticipantIDs crossref_primary_10_1016_j_ins_2024_121147
elsevier_sciencedirect_doi_10_1016_j_ins_2024_121147
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Manessi, Rozza, Manzo (br0150) 2020; 97
Li, Yu, Zhu, Chen, Yu, Zheng, Tian, Wu, Meng (br0040) 2023
Chen, Peng, Wang, Tian (br0330) 2021; 44
Park, Kim, Kim (br0430) 2019
Xu, Cheng, Luo, Liu, Zhang (br0020) 2019
Li, Zhao, Gan, Cai, Liu, Mu, Sun (br0070) 2021; 58
Perera, Morariu, Jain, Manjunatha, Wigington, Ordonez, Patel (br0120) 2020
Zheng, Chen, Huang (br0240) 2020; 28
Sun, Yang, Zhang, Ling, Peng (br0050) 2020
Ma, Guo, Ren, Tang, Yin (br0080) 2020
Liu, Liang, Zhao, Tu, Zhou, Gan, Liu, He (br0220) 2024
Wang, Wang, Shan, Chen (br0340) 2017
Arslan (br0460) 2010; 51
You, Du, Leskovec (br0030) 2022
Akata, Perronnin, Harchaoui, Schmid (br0270) 2015; 38
Cavalin, Ribeiro, Appel, Pinhanez (br0280) 2020
Sato, Yamada (br0320) 1995; 8
Chen, Qiao, Shi, Peng, Li, Huang, Pu, Tian (br0400) 2020
Fan, Yao, Joe-Wong (br0180) 2021
Joseph, Khan, Khan, Balasubramanian (br0110) 2021
Bendale, Boult (br0230) 2016
Huang, Wang, Hu, Cheng (br0410) 2022
Yang, Zhang, Yin, Yang, Liu (br0290) 2020
Ritter, Botev, Barber (br0440) 2018
Hamilton, Ying, Leskovec (br0470) 2017; 30
Zhang, Li, Lu, Qiu, Pan, Chen, Chen (br0260) 2024; 38
Almeida, Brás, Sargento, Pinto (br0010) 2023; 10
Rosch (br0300) 1973; 4
Valin, Büthe, Mustafa (br0450) 2023
Rodríguez, Bautista, Gonzalez, Escalera (br0140) 2018; 75
Gao (br0420) 2008; 20
Huang, Lei (br0200) 2023; 60
Sankar, Wu, Gou, Zhang, Yang (br0190) 2020
Fraccaro, Sønderby, Paquet, Winther (br0370) 2016; 29
Zhang, Li, Chen, Zhang, Pan, Fournier-Viger, Huang (br0060) 2022
Pinhanez, Cavalin (br0130) 2022
Huang, Poursafaei, Danovitch, Fey, Hu, Rossi, Leskovec, Bronstein, Rabusseau, Rabbany (br0210) 2024; 36
Kipf, Welling (br0360) 2017
Wu, Pan, Zhu (br0090) 2021
Pareja, Domeniconi, Chen, Ma, Suzumura, Kanezashi, Kaler, Schardl, Leiserson (br0170) 2020
Li, Zhao, Botta, Ionescu, Hu (br0390) 2020
Kohonen (br0310) 1990; 78
Zhang, Shi, Zhang, Chen, Fournier-Viger, Pan (br0100) 2023
Domański (br0380) 2020; 17
Snell, Swersky, Zemel (br0350) 2017; 30
Yan, Fan, Li, Liu, Zhang, Wu, Lam (br0250) 2020
Rossi, Chamberlain, Frasca, Eynard, Monti, Bronstein (br0160) 2020
Veličković, Cucurull, Casanova, Romero, Liò, Bengio (br0480) 2018
Chen (10.1016/j.ins.2024.121147_br0330) 2021; 44
Huang (10.1016/j.ins.2024.121147_br0210) 2024; 36
Kohonen (10.1016/j.ins.2024.121147_br0310) 1990; 78
Zhang (10.1016/j.ins.2024.121147_br0260) 2024; 38
Li (10.1016/j.ins.2024.121147_br0070) 2021; 58
Li (10.1016/j.ins.2024.121147_br0040) 2023
Kipf (10.1016/j.ins.2024.121147_br0360) 2017
Akata (10.1016/j.ins.2024.121147_br0270) 2015; 38
Arslan (10.1016/j.ins.2024.121147_br0460) 2010; 51
Fan (10.1016/j.ins.2024.121147_br0180) 2021
Liu (10.1016/j.ins.2024.121147_br0220) 2024
Sato (10.1016/j.ins.2024.121147_br0320) 1995; 8
Ritter (10.1016/j.ins.2024.121147_br0440) 2018
Valin (10.1016/j.ins.2024.121147_br0450) 2023
Perera (10.1016/j.ins.2024.121147_br0120) 2020
Zhang (10.1016/j.ins.2024.121147_br0100) 2023
Huang (10.1016/j.ins.2024.121147_br0410) 2022
Veličković (10.1016/j.ins.2024.121147_br0480) 2018
Huang (10.1016/j.ins.2024.121147_br0200) 2023; 60
Wu (10.1016/j.ins.2024.121147_br0090) 2021
Almeida (10.1016/j.ins.2024.121147_br0010) 2023; 10
Yang (10.1016/j.ins.2024.121147_br0290) 2020
Joseph (10.1016/j.ins.2024.121147_br0110) 2021
Manessi (10.1016/j.ins.2024.121147_br0150) 2020; 97
Bendale (10.1016/j.ins.2024.121147_br0230) 2016
You (10.1016/j.ins.2024.121147_br0030) 2022
Ma (10.1016/j.ins.2024.121147_br0080) 2020
Zhang (10.1016/j.ins.2024.121147_br0060) 2022
Snell (10.1016/j.ins.2024.121147_br0350) 2017; 30
Rossi (10.1016/j.ins.2024.121147_br0160)
Zheng (10.1016/j.ins.2024.121147_br0240) 2020; 28
Hamilton (10.1016/j.ins.2024.121147_br0470) 2017; 30
Rodríguez (10.1016/j.ins.2024.121147_br0140) 2018; 75
Li (10.1016/j.ins.2024.121147_br0390) 2020
Sankar (10.1016/j.ins.2024.121147_br0190) 2020
Xu (10.1016/j.ins.2024.121147_br0020) 2019
Domański (10.1016/j.ins.2024.121147_br0380) 2020; 17
Gao (10.1016/j.ins.2024.121147_br0420) 2008; 20
Yan (10.1016/j.ins.2024.121147_br0250) 2020
Wang (10.1016/j.ins.2024.121147_br0340) 2017
Fraccaro (10.1016/j.ins.2024.121147_br0370) 2016; 29
Rosch (10.1016/j.ins.2024.121147_br0300) 1973; 4
Park (10.1016/j.ins.2024.121147_br0430) 2019
Pinhanez (10.1016/j.ins.2024.121147_br0130)
Chen (10.1016/j.ins.2024.121147_br0400) 2020
Sun (10.1016/j.ins.2024.121147_br0050) 2020
Pareja (10.1016/j.ins.2024.121147_br0170) 2020
Cavalin (10.1016/j.ins.2024.121147_br0280) 2020
References_xml – volume: 36
  year: 2024
  ident: br0210
  article-title: Temporal graph benchmark for machine learning on temporal graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 29
  year: 2016
  ident: br0370
  article-title: Sequential neural models with stochastic layers
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 8588
  year: 2023
  end-page: 8596
  ident: br0040
  article-title: Scaling up dynamic graph representation learning via spiking neural networks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37
– start-page: 1060
  year: 2021
  end-page: 1065
  ident: br0180
  article-title: Gcn-se: attention as explainability for node classification in dynamic graphs
  publication-title: 2021 IEEE International Conference on Data Mining (ICDM)
– start-page: 3947
  year: 2019
  end-page: 3953
  ident: br0020
  article-title: Spatio-temporal attentive rnn for node classification in temporal attributed graphs
  publication-title: IJCAI
– start-page: 1
  year: 2021
  end-page: 26
  ident: br0090
  article-title: Openwgl: open-world graph learning for unseen class node classification
  publication-title: Knowl. Inf. Syst.
– year: 2020
  ident: br0160
  article-title: Temporal graph networks for deep learning on dynamic graphs
– year: 2020
  ident: br0290
  article-title: Convolutional prototype network for open set recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 83
  year: 2023
  ident: br0010
  article-title: Time series big data: a survey on data stream frameworks, analysis and algorithms
  publication-title: J. Big Data
– volume: 58
  year: 2021
  ident: br0070
  article-title: Robust adaptive semi-supervised classification method based on dynamic graph and self-paced learning
  publication-title: Inf. Process. Manag.
– volume: 20
  start-page: 555
  year: 2008
  end-page: 572
  ident: br0420
  article-title: Robust l1 principal component analysis and its bayesian variational inference
  publication-title: Neural Comput.
– start-page: 5830
  year: 2021
  end-page: 5840
  ident: br0110
  article-title: Towards open world object detection
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 5032
  year: 2019
  end-page: 5041
  ident: br0430
  article-title: Variational Laplace autoencoders
  publication-title: International Conference on Machine Learning, PMLR
– year: 2022
  ident: br0130
  article-title: Exploring the advantages of dense-vector to one-hot encoding of intent classes in out-of-scope detection tasks
– start-page: 11814
  year: 2020
  end-page: 11823
  ident: br0120
  article-title: Generative-discriminative feature representations for open-set recognition
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: br0480
  article-title: Graph attention networks
  publication-title: International Conference on Learning Representations
– volume: 75
  start-page: 21
  year: 2018
  end-page: 31
  ident: br0140
  article-title: Beyond one-hot encoding: lower dimensional target embedding
  publication-title: Image Vis. Comput.
– start-page: 1
  year: 2023
  end-page: 5
  ident: br0450
  article-title: Low-bitrate redundancy coding of speech using a rate-distortion-optimized variational autoencoder
  publication-title: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 1563
  year: 2016
  end-page: 1572
  ident: br0230
  article-title: Towards open set deep networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: br0440
  article-title: A scalable Laplace approximation for neural networks
  publication-title: 6th International Conference on Learning Representations, ICLR 2018-Conference Track Proceedings, Vol. 6, International Conference on Representation Learning
– year: 2022
  ident: br0410
  article-title: Class-specific semantic reconstruction for open set recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  year: 1995
  ident: br0320
  article-title: Generalized learning vector quantization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 44
  start-page: 8065
  year: 2021
  end-page: 8081
  ident: br0330
  article-title: Adversarial reciprocal points learning for open set recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3952
  year: 2020
  end-page: 3961
  ident: br0280
  article-title: Improving out-of-scope detection in intent classification by using embeddings of the word graph space of the classes
  publication-title: Empirical Methods in Natural Language Processing (EMNLP)
– start-page: 1050
  year: 2020
  end-page: 1060
  ident: br0250
  article-title: Unknown intent detection using gaussian mixture model with an application to zero-shot intent classification
  publication-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
– volume: 17
  start-page: 788
  year: 2020
  end-page: 811
  ident: br0380
  article-title: Study on statistical outlier detection and labelling
  publication-title: Int. J. Autom. Comput.
– year: 2024
  ident: br0220
  article-title: Self-supervised temporal graph learning with temporal and structural intensity alignment
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 2358
  year: 2022
  end-page: 2366
  ident: br0030
  article-title: Roland: graph learning framework for dynamic graphs
  publication-title: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
– start-page: 507
  year: 2020
  end-page: 522
  ident: br0400
  article-title: Learning open set network with discriminative reciprocal points
  publication-title: European Conference on Computer Vision
– volume: 38
  start-page: 9350
  year: 2024
  end-page: 9358
  ident: br0260
  article-title: Rog
  publication-title: Proc. AAAI Conf. Artif. Intell.
– start-page: 703
  year: 2022
  end-page: 712
  ident: br0060
  article-title: A dynamic variational framework for open-world node classification in structured sequences
  publication-title: 2022 IEEE International Conference on Data Mining (ICDM)
– start-page: 4576
  year: 2023
  end-page: 4583
  ident: br0100
  article-title: G2pxy: generative open-set node classification on graphs with proxy unknowns
  publication-title: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, International Joint Conferences on Artificial Intelligence Organization
– start-page: 13480
  year: 2020
  end-page: 13489
  ident: br0050
  article-title: Conditional gaussian distribution learning for open set recognition
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 28
  start-page: 1198
  year: 2020
  end-page: 1209
  ident: br0240
  article-title: Out-of-domain detection for natural language understanding in dialog systems
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– start-page: 719
  year: 2020
  end-page: 728
  ident: br0080
  article-title: Streaming graph neural networks
  publication-title: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval
– volume: 78
  start-page: 1464
  year: 1990
  end-page: 1480
  ident: br0310
  article-title: The self-organizing map
  publication-title: Proc. IEEE
– start-page: 344
  year: 2017
  end-page: 360
  ident: br0340
  article-title: Prototype discriminative learning for face image set classification
  publication-title: Asian Conference on Computer Vision
– volume: 51
  start-page: 865
  year: 2010
  end-page: 887
  ident: br0460
  article-title: An alternative multivariate skew Laplace distribution: properties and estimation
  publication-title: Stat. Pap.
– start-page: 5363
  year: 2020
  end-page: 5370
  ident: br0170
  article-title: Evolvegcn: evolving graph convolutional networks for dynamic graphs
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34
– start-page: 519
  year: 2020
  end-page: 527
  ident: br0190
  article-title: Dysat: deep neural representation learning on dynamic graphs via self-attention networks
  publication-title: Proceedings of the 13th International Conference on Web Search and Data Mining
– volume: 60
  year: 2023
  ident: br0200
  article-title: Temporal group-aware graph diffusion networks for dynamic link prediction
  publication-title: Inf. Process. Manag.
– volume: 4
  start-page: 328
  year: 1973
  end-page: 350
  ident: br0300
  article-title: Natural categories
  publication-title: Cogn. Psychol.
– volume: 38
  start-page: 1425
  year: 2015
  end-page: 1438
  ident: br0270
  article-title: Label-embedding for image classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2017
  ident: br0360
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: International Conference on Learning Representations
– volume: 30
  year: 2017
  ident: br0350
  article-title: Prototypical networks for few-shot learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  year: 2017
  ident: br0470
  article-title: Inductive representation learning on large graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 97
  year: 2020
  ident: br0150
  article-title: Dynamic graph convolutional networks
  publication-title: Pattern Recognit.
– start-page: 1118
  year: 2020
  end-page: 1123
  ident: br0390
  article-title: Copod: copula-based outlier detection
  publication-title: 2020 IEEE International Conference on Data Mining (ICDM)
– year: 2017
  ident: 10.1016/j.ins.2024.121147_br0360
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 5032
  year: 2019
  ident: 10.1016/j.ins.2024.121147_br0430
  article-title: Variational Laplace autoencoders
– volume: 10
  start-page: 83
  issue: 1
  year: 2023
  ident: 10.1016/j.ins.2024.121147_br0010
  article-title: Time series big data: a survey on data stream frameworks, analysis and algorithms
  publication-title: J. Big Data
  doi: 10.1186/s40537-023-00760-1
– start-page: 344
  year: 2017
  ident: 10.1016/j.ins.2024.121147_br0340
  article-title: Prototype discriminative learning for face image set classification
– volume: 38
  start-page: 1425
  issue: 7
  year: 2015
  ident: 10.1016/j.ins.2024.121147_br0270
  article-title: Label-embedding for image classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2487986
– volume: 51
  start-page: 865
  issue: 4
  year: 2010
  ident: 10.1016/j.ins.2024.121147_br0460
  article-title: An alternative multivariate skew Laplace distribution: properties and estimation
  publication-title: Stat. Pap.
  doi: 10.1007/s00362-008-0183-7
– volume: 30
  year: 2017
  ident: 10.1016/j.ins.2024.121147_br0470
  article-title: Inductive representation learning on large graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 4576
  year: 2023
  ident: 10.1016/j.ins.2024.121147_br0100
  article-title: G2pxy: generative open-set node classification on graphs with proxy unknowns
– ident: 10.1016/j.ins.2024.121147_br0160
– volume: 28
  start-page: 1198
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0240
  article-title: Out-of-domain detection for natural language understanding in dialog systems
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2020.2983593
– volume: 38
  start-page: 9350
  issue: 8
  year: 2024
  ident: 10.1016/j.ins.2024.121147_br0260
  article-title: RogPL: robust open-set graph learning via region-based prototype learning
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 4
  start-page: 328
  issue: 3
  year: 1973
  ident: 10.1016/j.ins.2024.121147_br0300
  article-title: Natural categories
  publication-title: Cogn. Psychol.
  doi: 10.1016/0010-0285(73)90017-0
– volume: 30
  year: 2017
  ident: 10.1016/j.ins.2024.121147_br0350
  article-title: Prototypical networks for few-shot learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 13480
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0050
  article-title: Conditional gaussian distribution learning for open set recognition
– start-page: 2358
  year: 2022
  ident: 10.1016/j.ins.2024.121147_br0030
  article-title: Roland: graph learning framework for dynamic graphs
– volume: 60
  issue: 3
  year: 2023
  ident: 10.1016/j.ins.2024.121147_br0200
  article-title: Temporal group-aware graph diffusion networks for dynamic link prediction
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2023.103292
– year: 2018
  ident: 10.1016/j.ins.2024.121147_br0440
  article-title: A scalable Laplace approximation for neural networks
– start-page: 1
  year: 2021
  ident: 10.1016/j.ins.2024.121147_br0090
  article-title: Openwgl: open-world graph learning for unseen class node classification
  publication-title: Knowl. Inf. Syst.
– start-page: 1060
  year: 2021
  ident: 10.1016/j.ins.2024.121147_br0180
  article-title: Gcn-se: attention as explainability for node classification in dynamic graphs
– volume: 8
  year: 1995
  ident: 10.1016/j.ins.2024.121147_br0320
  article-title: Generalized learning vector quantization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 44
  start-page: 8065
  issue: 11
  year: 2021
  ident: 10.1016/j.ins.2024.121147_br0330
  article-title: Adversarial reciprocal points learning for open set recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1563
  year: 2016
  ident: 10.1016/j.ins.2024.121147_br0230
  article-title: Towards open set deep networks
– start-page: 8588
  year: 2023
  ident: 10.1016/j.ins.2024.121147_br0040
  article-title: Scaling up dynamic graph representation learning via spiking neural networks
– volume: 20
  start-page: 555
  issue: 2
  year: 2008
  ident: 10.1016/j.ins.2024.121147_br0420
  article-title: Robust l1 principal component analysis and its bayesian variational inference
  publication-title: Neural Comput.
  doi: 10.1162/neco.2007.11-06-397
– start-page: 519
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0190
  article-title: Dysat: deep neural representation learning on dynamic graphs via self-attention networks
– start-page: 5830
  year: 2021
  ident: 10.1016/j.ins.2024.121147_br0110
  article-title: Towards open world object detection
– year: 2018
  ident: 10.1016/j.ins.2024.121147_br0480
  article-title: Graph attention networks
– start-page: 1
  year: 2023
  ident: 10.1016/j.ins.2024.121147_br0450
  article-title: Low-bitrate redundancy coding of speech using a rate-distortion-optimized variational autoencoder
– start-page: 1050
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0250
  article-title: Unknown intent detection using gaussian mixture model with an application to zero-shot intent classification
– start-page: 5363
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0170
  article-title: Evolvegcn: evolving graph convolutional networks for dynamic graphs
– start-page: 3947
  year: 2019
  ident: 10.1016/j.ins.2024.121147_br0020
  article-title: Spatio-temporal attentive rnn for node classification in temporal attributed graphs
– start-page: 719
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0080
  article-title: Streaming graph neural networks
– volume: 78
  start-page: 1464
  issue: 9
  year: 1990
  ident: 10.1016/j.ins.2024.121147_br0310
  article-title: The self-organizing map
  publication-title: Proc. IEEE
  doi: 10.1109/5.58325
– year: 2022
  ident: 10.1016/j.ins.2024.121147_br0410
  article-title: Class-specific semantic reconstruction for open set recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3200384
– volume: 97
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0150
  article-title: Dynamic graph convolutional networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107000
– year: 2024
  ident: 10.1016/j.ins.2024.121147_br0220
  article-title: Self-supervised temporal graph learning with temporal and structural intensity alignment
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 507
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0400
  article-title: Learning open set network with discriminative reciprocal points
– start-page: 1118
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0390
  article-title: Copod: copula-based outlier detection
– volume: 58
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2024.121147_br0070
  article-title: Robust adaptive semi-supervised classification method based on dynamic graph and self-paced learning
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2020.102433
– volume: 17
  start-page: 788
  issue: 6
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0380
  article-title: Study on statistical outlier detection and labelling
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-020-1243-2
– year: 2020
  ident: 10.1016/j.ins.2024.121147_br0290
  article-title: Convolutional prototype network for open set recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3045079
– ident: 10.1016/j.ins.2024.121147_br0130
– volume: 75
  start-page: 21
  year: 2018
  ident: 10.1016/j.ins.2024.121147_br0140
  article-title: Beyond one-hot encoding: lower dimensional target embedding
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2018.04.004
– start-page: 703
  year: 2022
  ident: 10.1016/j.ins.2024.121147_br0060
  article-title: A dynamic variational framework for open-world node classification in structured sequences
– start-page: 3952
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0280
  article-title: Improving out-of-scope detection in intent classification by using embeddings of the word graph space of the classes
– start-page: 11814
  year: 2020
  ident: 10.1016/j.ins.2024.121147_br0120
  article-title: Generative-discriminative feature representations for open-set recognition
– volume: 29
  year: 2016
  ident: 10.1016/j.ins.2024.121147_br0370
  article-title: Sequential neural models with stochastic layers
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 36
  year: 2024
  ident: 10.1016/j.ins.2024.121147_br0210
  article-title: Temporal graph benchmark for machine learning on temporal graphs
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0004766
Score 2.4565854
Snippet Structured sequences are popularly used to describe graph data with time-evolving node features and edges. A typical real-world scenario of structured...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 121147
SubjectTerms Dense target encoding
Dynamical variational autoencoders
Open-world learning
Structured sequence
Title Open-world structured sequence learning via dense target encoding
URI https://dx.doi.org/10.1016/j.ins.2024.121147
Volume 680
WOSCitedRecordID wos001302683400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004766
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA-6edCD6FScOslBPFgqXZN-HYdM1MNQmLBbabJUukOd7oP9-b40STunA3fwUkpo05D36_tIXn4PoSv4wcDKu22bucK3acQ53BHfZilJiBsysDJJUWwi6PXCwSB61uWOJkU5gSDPw8UiGv-rqKENhC2Pzm4g7rJTaIB7EDpcQexw_ZPgZYqIXRChWoocdiZTzE3KtCkT8WbNs8QCpTMRlsoGtySlZWnJRibDvTzdaGljWTrh5VrzS1bl9WSzYrsj-8iqJv0MT8q2QaZffUhA-epP6rUHl5ZZbNVZAGhwFdGu0ae-Ks2kNaKkkFOcmj-UtVo3GEGEIXnTXXpbPfudGHvFYJVphCZDbRRDF7HsIlZdbKO6G3gRKOp657E7eKpOygZq99qM2-xzFxl_K-P43VNZ8j76B2hfhw24o8R9iLZE3kB7S2SSDdTSR1DwNV6SGtbK-wh1KmDgChjYAAMbYGAABi6AgRUwsAHGMXq97_bvHmxdQMPmEFVP7ZClYgjxNAkDypIwIJGTCnDo0rbHKCXCC4hwZIAuSOAMXU58P3U8QX0RMZ9TRk5QLX_PxSnCQhL1scQR7SiknLBItFPfY4TwUDCI2ZvoxkxWPFY8KfFa8TQRNdMZa-wqBy4GaKx_7WyTb5yj3QqxF6gG8ypaaIfPp9nk81Lj4gvXvXG_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open-world+structured+sequence+learning+via+dense+target+encoding&rft.jtitle=Information+sciences&rft.au=Zhang%2C+Qin&rft.au=Liu%2C+Ziqi&rft.au=Li%2C+Qincai&rft.au=Xiang%2C+Haolong&rft.date=2024-10-01&rft.issn=0020-0255&rft.volume=680&rft.spage=121147&rft_id=info:doi/10.1016%2Fj.ins.2024.121147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2024_121147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon