Integer factorization as subset-sum problem
This paper elaborates on a sieving technique that has first been applied in 2018 for improving bounds on deterministic integer factorization. We will generalize the sieve in order to obtain a polynomial-time reduction from integer factorization to a specific instance of the multiple choice subset-su...
Gespeichert in:
| Veröffentlicht in: | Journal of number theory Jg. 249; S. 93 - 118 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.08.2023
|
| Schlagworte: | |
| ISSN: | 0022-314X, 1096-1658 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper elaborates on a sieving technique that has first been applied in 2018 for improving bounds on deterministic integer factorization. We will generalize the sieve in order to obtain a polynomial-time reduction from integer factorization to a specific instance of the multiple choice subset-sum problem. As an application, we will improve upon special purpose factorization algorithms for integers composed of divisors with small difference. In particular, we will refine the runtime complexity of Fermat's factorization algorithm by a large subexponential factor. Our first procedure is deterministic, rigorous, easy to implement and has negligible space complexity. Our second procedure is heuristically faster than the first, but has non-negligible space complexity. |
|---|---|
| AbstractList | This paper elaborates on a sieving technique that has first been applied in 2018 for improving bounds on deterministic integer factorization. We will generalize the sieve in order to obtain a polynomial-time reduction from integer factorization to a specific instance of the multiple choice subset-sum problem. As an application, we will improve upon special purpose factorization algorithms for integers composed of divisors with small difference. In particular, we will refine the runtime complexity of Fermat's factorization algorithm by a large subexponential factor. Our first procedure is deterministic, rigorous, easy to implement and has negligible space complexity. Our second procedure is heuristically faster than the first, but has non-negligible space complexity. |
| Author | Hittmeir, Markus |
| Author_xml | – sequence: 1 givenname: Markus orcidid: 0000-0002-3363-6270 surname: Hittmeir fullname: Hittmeir, Markus email: mhittmeir@sba-research.org organization: SBA Research, Floragasse 7, 1040 Vienna, Austria |
| BookMark | eNp9j8FLwzAUxoNMcJv-Ad56l9b3kiZt8SRD52DgRcFbSNMXSdnakWSC_vV2zLOnd_je7-P7LdhsGAdi7BahQEB13xf9kAoOXBTAC0C4YHOERuWoZD1jcwDOc4HlxxVbxNgDIMpKztndZkj0SSFzxqYx-B-T_DhkJmbx2EZKeTzus0MY2x3tr9mlM7tIN393yd6fn95WL_n2db1ZPW5zy8sm5XVFaG1TVy0XVjQS2gpa2zYCsLYkhVNkjFFO8ClX07d0ypChrlQou9KJJcNzrw1jjIGcPgS_N-FbI-iTre71ZKtPthq4nmwn5uHM0DTsy1PQ0XoaLHU-kE26G_0_9C-uqF8q |
| Cites_doi | 10.1090/S0025-5718-2013-02707-X 10.1090/mcom/3313 10.1007/s11537-012-1140-8 10.1090/S0025-5718-99-01133-3 10.1090/S0025-5718-1974-0340163-2 10.1090/mcom/3623 10.1007/BF01581144 10.1137/S0097539795293172 10.1090/mcom/3658 10.1063/1.4965330 10.1016/j.neucom.2013.12.063 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Inc. |
| Copyright_xml | – notice: 2023 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jnt.2023.02.010 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1096-1658 |
| EndPage | 118 |
| ExternalDocumentID | 10_1016_j_jnt_2023_02_010 S0022314X23000574 |
| GrantInformation_xml | – fundername: federal state of Vienna – fundername: BMK funderid: https://doi.org/10.13039/100018774 – fundername: BMDW funderid: https://doi.org/10.13039/501100012416 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HF~ HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ WH7 WUQ XJT XOL XPP YQT ZCG ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c249t-87e1cc987b23c3950b70bcb93018ce53f6eaaa6f3223c687e5f6aeaed4615d4f3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972367000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-314X |
| IngestDate | Sat Nov 29 07:26:58 EST 2025 Sat Apr 27 15:44:15 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 11Y05 11A51 Factorization Primality |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c249t-87e1cc987b23c3950b70bcb93018ce53f6eaaa6f3223c687e5f6aeaed4615d4f3 |
| ORCID | 0000-0002-3363-6270 |
| PageCount | 26 |
| ParticipantIDs | crossref_primary_10_1016_j_jnt_2023_02_010 elsevier_sciencedirect_doi_10_1016_j_jnt_2023_02_010 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of number theory |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Sedgewick, Wayne (br0260) 2011 Wu, Tso, Sun (br0340) 2012; vol. 7645 Hittmeir (br0110) 2018; 87 Axiotis, Backurs, Jin, Tzamos, Wu (br0020) 2019 Harvey, Hittmeir (br0100) 2022; 91 Riesel (br0230) 1994; vol. 126 Shparlinski (br0290) 2012; 7 Lehman (br0160) 1974; 28 Shor (br0270) 1997; 26 Harvey (br0090) 2021; 90 Kellerer, Pferschy, Pisinger (br0140) 2004 Shoup (br0280) 2007 Costa, Harvey (br0050) 2014; 83 Somsuk, Kasemvilas (br0310) 2014 Becker, Coron, Joux (br0030) 2011 Gu, Cui (br0080) 2015; 149 Hittmeir (br0120) 2021; 90 Wagstaff (br0330) 2013 Howgrave-Graham, Joux (br0130) 2010 Schnorr, Euchner (br0250) 1994; 66 Rosser, Schoenfeld (br0240) 1962; 6 (br0010) 1998 Lawrence (br0150) 1895; 24 Sin, Posypkin, Kolpakov (br0300) 2016; 1776 McKee (br0220) 1999; 68 McKee (10.1016/j.jnt.2023.02.010_br0220) 1999; 68 Rosser (10.1016/j.jnt.2023.02.010_br0240) 1962; 6 Wagstaff (10.1016/j.jnt.2023.02.010_br0330) 2013 Becker (10.1016/j.jnt.2023.02.010_br0030) 2011 Sin (10.1016/j.jnt.2023.02.010_br0300) 2016; 1776 Kellerer (10.1016/j.jnt.2023.02.010_br0140) 2004 Shor (10.1016/j.jnt.2023.02.010_br0270) 1997; 26 Howgrave-Graham (10.1016/j.jnt.2023.02.010_br0130) 2010 Harvey (10.1016/j.jnt.2023.02.010_br0100) 2022; 91 Lawrence (10.1016/j.jnt.2023.02.010_br0150) 1895; 24 Wu (10.1016/j.jnt.2023.02.010_br0340) 2012; vol. 7645 Costa (10.1016/j.jnt.2023.02.010_br0050) 2014; 83 Somsuk (10.1016/j.jnt.2023.02.010_br0310) 2014 Shoup (10.1016/j.jnt.2023.02.010_br0280) 2007 Lehman (10.1016/j.jnt.2023.02.010_br0160) 1974; 28 Harvey (10.1016/j.jnt.2023.02.010_br0090) 2021; 90 (10.1016/j.jnt.2023.02.010_br0010) 1998 Hittmeir (10.1016/j.jnt.2023.02.010_br0110) 2018; 87 Sedgewick (10.1016/j.jnt.2023.02.010_br0260) 2011 Shparlinski (10.1016/j.jnt.2023.02.010_br0290) 2012; 7 Hittmeir (10.1016/j.jnt.2023.02.010_br0120) 2021; 90 Axiotis (10.1016/j.jnt.2023.02.010_br0020) 2019 Gu (10.1016/j.jnt.2023.02.010_br0080) 2015; 149 Riesel (10.1016/j.jnt.2023.02.010_br0230) 1994; vol. 126 Schnorr (10.1016/j.jnt.2023.02.010_br0250) 1994; 66 |
| References_xml | – year: 2013 ident: br0330 article-title: The Joy of Factoring – start-page: 235 year: 2010 end-page: 256 ident: br0130 article-title: New generic algorithms for hard knapsacks publication-title: EUROCRYPT 2010 – volume: vol. 7645 start-page: 380 year: 2012 end-page: 391 ident: br0340 article-title: On the improvement of Fermat factorization publication-title: Network and System Security, 6th International Conference – year: 2007 ident: br0280 article-title: A Computational Introduction to Number Theory and Algebra – volume: 28 start-page: 637 year: 1974 end-page: 646 ident: br0160 article-title: Factoring large integers publication-title: Math. Comput. – volume: 91 start-page: 1367 year: 2022 end-page: 1379 ident: br0100 article-title: A log-log speedup for exponent one-fifth deterministic integer factorisation publication-title: Math. Comput. – volume: 87 start-page: 2915 year: 2018 end-page: 2935 ident: br0110 article-title: A babystep-giantstep method for faster deterministic integer factorization publication-title: Math. Comput. – volume: 68 start-page: 1729 year: 1999 end-page: 1737 ident: br0220 article-title: Speeding Fermat's factoring method publication-title: Math. Comput. – volume: 149 start-page: 13 year: 2015 end-page: 21 ident: br0080 article-title: An efficient algorithm for the subset sum problem based on finite-time convergent recurrent neural network publication-title: Neurocomputing – year: 2011 ident: br0260 article-title: Algorithms – volume: 83 start-page: 339 year: 2014 end-page: 345 ident: br0050 article-title: Faster deterministic integer factorization publication-title: Math. Comput. – start-page: 325 year: 2014 end-page: 334 ident: br0310 article-title: Possible prime modified Fermat factorization publication-title: Recent Advances in Information and Communication Technology, Advances in Intelligent Systems and Computing, vol. 265 – volume: 90 start-page: 2937 year: 2021 end-page: 2950 ident: br0090 article-title: An exponent one-fifth algorithm for deterministic integer factorization publication-title: Math. Comput. – volume: 1776 year: 2016 ident: br0300 article-title: The upper bound on the complexity of branch-and-bound with cardinality bound for subset sum problem publication-title: AIP Conf. Proc. – volume: 66 start-page: 181 year: 1994 end-page: 199 ident: br0250 article-title: Lattice basis reduction: improved practical algorithms and solving subset sum problems publication-title: Math. Program. – start-page: 58 year: 2019 end-page: 69 ident: br0020 article-title: Fast modular subset sum using linear sketching publication-title: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms – start-page: 364 year: 2011 end-page: 385 ident: br0030 article-title: Improved generic algorithms for hard knapsacks publication-title: EUROCRYPT 2011 – volume: 6 start-page: 64 year: 1962 end-page: 94 ident: br0240 article-title: Approximate formulas for some functions of prime numbers publication-title: Ill. J. Math. – volume: 26 start-page: 1484 year: 1997 end-page: 1509 ident: br0270 article-title: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer publication-title: SIAM J. Comput. – year: 2004 ident: br0140 article-title: Knapsack Problems – volume: 24 start-page: 100 year: 1895 end-page: 109 ident: br0150 article-title: Factorisation of numbers publication-title: Messenger Math. – volume: 90 start-page: 1999 year: 2021 end-page: 2010 ident: br0120 article-title: A time-space tradeoff for Lehman's deterministic integer factorization method publication-title: Math. Comput. – volume: 7 start-page: 235 year: 2012 end-page: 294 ident: br0290 article-title: Modular hyperbolas publication-title: Jpn. J. Math. – year: 1998 ident: br0010 article-title: Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industries (rDSA) – volume: vol. 126 year: 1994 ident: br0230 article-title: Prime Numbers and Computer Methods for Factorization publication-title: Progress in Mathematics – volume: 83 start-page: 339 year: 2014 ident: 10.1016/j.jnt.2023.02.010_br0050 article-title: Faster deterministic integer factorization publication-title: Math. Comput. doi: 10.1090/S0025-5718-2013-02707-X – volume: 91 start-page: 1367 issue: 335 year: 2022 ident: 10.1016/j.jnt.2023.02.010_br0100 article-title: A log-log speedup for exponent one-fifth deterministic integer factorisation publication-title: Math. Comput. – volume: 87 start-page: 2915 issue: 314 year: 2018 ident: 10.1016/j.jnt.2023.02.010_br0110 article-title: A babystep-giantstep method for faster deterministic integer factorization publication-title: Math. Comput. doi: 10.1090/mcom/3313 – volume: 7 start-page: 235 year: 2012 ident: 10.1016/j.jnt.2023.02.010_br0290 article-title: Modular hyperbolas publication-title: Jpn. J. Math. doi: 10.1007/s11537-012-1140-8 – volume: 68 start-page: 1729 issue: 228 year: 1999 ident: 10.1016/j.jnt.2023.02.010_br0220 article-title: Speeding Fermat's factoring method publication-title: Math. Comput. doi: 10.1090/S0025-5718-99-01133-3 – start-page: 325 year: 2014 ident: 10.1016/j.jnt.2023.02.010_br0310 article-title: Possible prime modified Fermat factorization – year: 1998 ident: 10.1016/j.jnt.2023.02.010_br0010 – volume: vol. 7645 start-page: 380 year: 2012 ident: 10.1016/j.jnt.2023.02.010_br0340 article-title: On the improvement of Fermat factorization – volume: 28 start-page: 637 issue: 126 year: 1974 ident: 10.1016/j.jnt.2023.02.010_br0160 article-title: Factoring large integers publication-title: Math. Comput. doi: 10.1090/S0025-5718-1974-0340163-2 – year: 2013 ident: 10.1016/j.jnt.2023.02.010_br0330 – year: 2011 ident: 10.1016/j.jnt.2023.02.010_br0260 – volume: 90 start-page: 1999 issue: 330 year: 2021 ident: 10.1016/j.jnt.2023.02.010_br0120 article-title: A time-space tradeoff for Lehman's deterministic integer factorization method publication-title: Math. Comput. doi: 10.1090/mcom/3623 – year: 2004 ident: 10.1016/j.jnt.2023.02.010_br0140 – volume: 24 start-page: 100 year: 1895 ident: 10.1016/j.jnt.2023.02.010_br0150 article-title: Factorisation of numbers publication-title: Messenger Math. – year: 2007 ident: 10.1016/j.jnt.2023.02.010_br0280 – start-page: 364 year: 2011 ident: 10.1016/j.jnt.2023.02.010_br0030 article-title: Improved generic algorithms for hard knapsacks – volume: 66 start-page: 181 year: 1994 ident: 10.1016/j.jnt.2023.02.010_br0250 article-title: Lattice basis reduction: improved practical algorithms and solving subset sum problems publication-title: Math. Program. doi: 10.1007/BF01581144 – start-page: 235 year: 2010 ident: 10.1016/j.jnt.2023.02.010_br0130 article-title: New generic algorithms for hard knapsacks – volume: 26 start-page: 1484 year: 1997 ident: 10.1016/j.jnt.2023.02.010_br0270 article-title: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer publication-title: SIAM J. Comput. doi: 10.1137/S0097539795293172 – volume: 90 start-page: 2937 issue: 332 year: 2021 ident: 10.1016/j.jnt.2023.02.010_br0090 article-title: An exponent one-fifth algorithm for deterministic integer factorization publication-title: Math. Comput. doi: 10.1090/mcom/3658 – volume: 1776 issue: 1 year: 2016 ident: 10.1016/j.jnt.2023.02.010_br0300 article-title: The upper bound on the complexity of branch-and-bound with cardinality bound for subset sum problem publication-title: AIP Conf. Proc. doi: 10.1063/1.4965330 – start-page: 58 year: 2019 ident: 10.1016/j.jnt.2023.02.010_br0020 article-title: Fast modular subset sum using linear sketching – volume: 149 start-page: 13 year: 2015 ident: 10.1016/j.jnt.2023.02.010_br0080 article-title: An efficient algorithm for the subset sum problem based on finite-time convergent recurrent neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.12.063 – volume: 6 start-page: 64 year: 1962 ident: 10.1016/j.jnt.2023.02.010_br0240 article-title: Approximate formulas for some functions of prime numbers publication-title: Ill. J. Math. – volume: vol. 126 year: 1994 ident: 10.1016/j.jnt.2023.02.010_br0230 article-title: Prime Numbers and Computer Methods for Factorization |
| SSID | ssj0011575 |
| Score | 2.3212404 |
| Snippet | This paper elaborates on a sieving technique that has first been applied in 2018 for improving bounds on deterministic integer factorization. We will... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 93 |
| SubjectTerms | Factorization Primality |
| Title | Integer factorization as subset-sum problem |
| URI | https://dx.doi.org/10.1016/j.jnt.2023.02.010 |
| Volume | 249 |
| WOSCitedRecordID | wos000972367000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-1658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011575 issn: 0022-314X databaseCode: AIEXJ dateStart: 20211211 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA-6edCD-Inzix48OTrWJE3b45DJFBweJuxWkjSFDaxjrbI_35cm7Zw6UMFLKaXpx_uVX19e3ns_hK5SnFJPdX1XiJS7NGTUjThjbsqFEJRjFsmkFJsIhsNwPI4erdpbXsoJBFkWLhbR7F-hhmMAti6d_QXc9UXhAOwD6LAF2GH7I-B1jE-X8holHVtmqeVkcuAIVbjwLG0rI7PGMzUqIabGsY64DyZF8awm86rAZzVggEmdrmajWFUly0qipcnq90y2ZEcZMoTpjesx01q9YktsOoxavjPqhvbP6Rkm_ULKJj4w7UwznbyKSdkk1Sazrva61kvHWD8FTIx0mSzdRE0c-FHYQM3eXX98Xy8QeX7g143gYUC1YF2m7n260fcuxwc3YrSHdq2VnZ7BbR9tqOwA7TzUzXPzQ9S2CDorCDo8d5YIOhbBI_R02x_dDFyraeFKsFwBPx_lSRmFgcBEksjviqArpIiAZ0OpfJIyxTlnKfAskQzO9lPGFVcJBdczoSk5Ro3sJVMnyElkArNxwIgHiiYqDAUhMH0OgKUT6XHRQtfVa8cz07okrnL6pjHYKNY2irs4Bhu1EK0ME1vfy_hUMaC4ftjp34adoe3ll3mOGsX8VV2gLflWTPL5pcX6HWUpUik |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integer+factorization+as+subset-sum+problem&rft.jtitle=Journal+of+number+theory&rft.au=Hittmeir%2C+Markus&rft.date=2023-08-01&rft.pub=Elsevier+Inc&rft.issn=0022-314X&rft.eissn=1096-1658&rft.volume=249&rft.spage=93&rft.epage=118&rft_id=info:doi/10.1016%2Fj.jnt.2023.02.010&rft.externalDocID=S0022314X23000574 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-314X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-314X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-314X&client=summon |