Integer factorization as subset-sum problem

This paper elaborates on a sieving technique that has first been applied in 2018 for improving bounds on deterministic integer factorization. We will generalize the sieve in order to obtain a polynomial-time reduction from integer factorization to a specific instance of the multiple choice subset-su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory Jg. 249; S. 93 - 118
1. Verfasser: Hittmeir, Markus
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.08.2023
Schlagworte:
ISSN:0022-314X, 1096-1658
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper elaborates on a sieving technique that has first been applied in 2018 for improving bounds on deterministic integer factorization. We will generalize the sieve in order to obtain a polynomial-time reduction from integer factorization to a specific instance of the multiple choice subset-sum problem. As an application, we will improve upon special purpose factorization algorithms for integers composed of divisors with small difference. In particular, we will refine the runtime complexity of Fermat's factorization algorithm by a large subexponential factor. Our first procedure is deterministic, rigorous, easy to implement and has negligible space complexity. Our second procedure is heuristically faster than the first, but has non-negligible space complexity.
AbstractList This paper elaborates on a sieving technique that has first been applied in 2018 for improving bounds on deterministic integer factorization. We will generalize the sieve in order to obtain a polynomial-time reduction from integer factorization to a specific instance of the multiple choice subset-sum problem. As an application, we will improve upon special purpose factorization algorithms for integers composed of divisors with small difference. In particular, we will refine the runtime complexity of Fermat's factorization algorithm by a large subexponential factor. Our first procedure is deterministic, rigorous, easy to implement and has negligible space complexity. Our second procedure is heuristically faster than the first, but has non-negligible space complexity.
Author Hittmeir, Markus
Author_xml – sequence: 1
  givenname: Markus
  orcidid: 0000-0002-3363-6270
  surname: Hittmeir
  fullname: Hittmeir, Markus
  email: mhittmeir@sba-research.org
  organization: SBA Research, Floragasse 7, 1040 Vienna, Austria
BookMark eNp9j8FLwzAUxoNMcJv-Ad56l9b3kiZt8SRD52DgRcFbSNMXSdnakWSC_vV2zLOnd_je7-P7LdhsGAdi7BahQEB13xf9kAoOXBTAC0C4YHOERuWoZD1jcwDOc4HlxxVbxNgDIMpKztndZkj0SSFzxqYx-B-T_DhkJmbx2EZKeTzus0MY2x3tr9mlM7tIN393yd6fn95WL_n2db1ZPW5zy8sm5XVFaG1TVy0XVjQS2gpa2zYCsLYkhVNkjFFO8ClX07d0ypChrlQou9KJJcNzrw1jjIGcPgS_N-FbI-iTre71ZKtPthq4nmwn5uHM0DTsy1PQ0XoaLHU-kE26G_0_9C-uqF8q
Cites_doi 10.1090/S0025-5718-2013-02707-X
10.1090/mcom/3313
10.1007/s11537-012-1140-8
10.1090/S0025-5718-99-01133-3
10.1090/S0025-5718-1974-0340163-2
10.1090/mcom/3623
10.1007/BF01581144
10.1137/S0097539795293172
10.1090/mcom/3658
10.1063/1.4965330
10.1016/j.neucom.2013.12.063
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jnt.2023.02.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-1658
EndPage 118
ExternalDocumentID 10_1016_j_jnt_2023_02_010
S0022314X23000574
GrantInformation_xml – fundername: federal state of Vienna
– fundername: BMK
  funderid: https://doi.org/10.13039/100018774
– fundername: BMDW
  funderid: https://doi.org/10.13039/501100012416
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HF~
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
WUQ
XJT
XOL
XPP
YQT
ZCG
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c249t-87e1cc987b23c3950b70bcb93018ce53f6eaaa6f3223c687e5f6aeaed4615d4f3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972367000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-314X
IngestDate Sat Nov 29 07:26:58 EST 2025
Sat Apr 27 15:44:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords 11Y05
11A51
Factorization
Primality
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-87e1cc987b23c3950b70bcb93018ce53f6eaaa6f3223c687e5f6aeaed4615d4f3
ORCID 0000-0002-3363-6270
PageCount 26
ParticipantIDs crossref_primary_10_1016_j_jnt_2023_02_010
elsevier_sciencedirect_doi_10_1016_j_jnt_2023_02_010
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Journal of number theory
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sedgewick, Wayne (br0260) 2011
Wu, Tso, Sun (br0340) 2012; vol. 7645
Hittmeir (br0110) 2018; 87
Axiotis, Backurs, Jin, Tzamos, Wu (br0020) 2019
Harvey, Hittmeir (br0100) 2022; 91
Riesel (br0230) 1994; vol. 126
Shparlinski (br0290) 2012; 7
Lehman (br0160) 1974; 28
Shor (br0270) 1997; 26
Harvey (br0090) 2021; 90
Kellerer, Pferschy, Pisinger (br0140) 2004
Shoup (br0280) 2007
Costa, Harvey (br0050) 2014; 83
Somsuk, Kasemvilas (br0310) 2014
Becker, Coron, Joux (br0030) 2011
Gu, Cui (br0080) 2015; 149
Hittmeir (br0120) 2021; 90
Wagstaff (br0330) 2013
Howgrave-Graham, Joux (br0130) 2010
Schnorr, Euchner (br0250) 1994; 66
Rosser, Schoenfeld (br0240) 1962; 6
(br0010) 1998
Lawrence (br0150) 1895; 24
Sin, Posypkin, Kolpakov (br0300) 2016; 1776
McKee (br0220) 1999; 68
McKee (10.1016/j.jnt.2023.02.010_br0220) 1999; 68
Rosser (10.1016/j.jnt.2023.02.010_br0240) 1962; 6
Wagstaff (10.1016/j.jnt.2023.02.010_br0330) 2013
Becker (10.1016/j.jnt.2023.02.010_br0030) 2011
Sin (10.1016/j.jnt.2023.02.010_br0300) 2016; 1776
Kellerer (10.1016/j.jnt.2023.02.010_br0140) 2004
Shor (10.1016/j.jnt.2023.02.010_br0270) 1997; 26
Howgrave-Graham (10.1016/j.jnt.2023.02.010_br0130) 2010
Harvey (10.1016/j.jnt.2023.02.010_br0100) 2022; 91
Lawrence (10.1016/j.jnt.2023.02.010_br0150) 1895; 24
Wu (10.1016/j.jnt.2023.02.010_br0340) 2012; vol. 7645
Costa (10.1016/j.jnt.2023.02.010_br0050) 2014; 83
Somsuk (10.1016/j.jnt.2023.02.010_br0310) 2014
Shoup (10.1016/j.jnt.2023.02.010_br0280) 2007
Lehman (10.1016/j.jnt.2023.02.010_br0160) 1974; 28
Harvey (10.1016/j.jnt.2023.02.010_br0090) 2021; 90
(10.1016/j.jnt.2023.02.010_br0010) 1998
Hittmeir (10.1016/j.jnt.2023.02.010_br0110) 2018; 87
Sedgewick (10.1016/j.jnt.2023.02.010_br0260) 2011
Shparlinski (10.1016/j.jnt.2023.02.010_br0290) 2012; 7
Hittmeir (10.1016/j.jnt.2023.02.010_br0120) 2021; 90
Axiotis (10.1016/j.jnt.2023.02.010_br0020) 2019
Gu (10.1016/j.jnt.2023.02.010_br0080) 2015; 149
Riesel (10.1016/j.jnt.2023.02.010_br0230) 1994; vol. 126
Schnorr (10.1016/j.jnt.2023.02.010_br0250) 1994; 66
References_xml – year: 2013
  ident: br0330
  article-title: The Joy of Factoring
– start-page: 235
  year: 2010
  end-page: 256
  ident: br0130
  article-title: New generic algorithms for hard knapsacks
  publication-title: EUROCRYPT 2010
– volume: vol. 7645
  start-page: 380
  year: 2012
  end-page: 391
  ident: br0340
  article-title: On the improvement of Fermat factorization
  publication-title: Network and System Security, 6th International Conference
– year: 2007
  ident: br0280
  article-title: A Computational Introduction to Number Theory and Algebra
– volume: 28
  start-page: 637
  year: 1974
  end-page: 646
  ident: br0160
  article-title: Factoring large integers
  publication-title: Math. Comput.
– volume: 91
  start-page: 1367
  year: 2022
  end-page: 1379
  ident: br0100
  article-title: A log-log speedup for exponent one-fifth deterministic integer factorisation
  publication-title: Math. Comput.
– volume: 87
  start-page: 2915
  year: 2018
  end-page: 2935
  ident: br0110
  article-title: A babystep-giantstep method for faster deterministic integer factorization
  publication-title: Math. Comput.
– volume: 68
  start-page: 1729
  year: 1999
  end-page: 1737
  ident: br0220
  article-title: Speeding Fermat's factoring method
  publication-title: Math. Comput.
– volume: 149
  start-page: 13
  year: 2015
  end-page: 21
  ident: br0080
  article-title: An efficient algorithm for the subset sum problem based on finite-time convergent recurrent neural network
  publication-title: Neurocomputing
– year: 2011
  ident: br0260
  article-title: Algorithms
– volume: 83
  start-page: 339
  year: 2014
  end-page: 345
  ident: br0050
  article-title: Faster deterministic integer factorization
  publication-title: Math. Comput.
– start-page: 325
  year: 2014
  end-page: 334
  ident: br0310
  article-title: Possible prime modified Fermat factorization
  publication-title: Recent Advances in Information and Communication Technology, Advances in Intelligent Systems and Computing, vol. 265
– volume: 90
  start-page: 2937
  year: 2021
  end-page: 2950
  ident: br0090
  article-title: An exponent one-fifth algorithm for deterministic integer factorization
  publication-title: Math. Comput.
– volume: 1776
  year: 2016
  ident: br0300
  article-title: The upper bound on the complexity of branch-and-bound with cardinality bound for subset sum problem
  publication-title: AIP Conf. Proc.
– volume: 66
  start-page: 181
  year: 1994
  end-page: 199
  ident: br0250
  article-title: Lattice basis reduction: improved practical algorithms and solving subset sum problems
  publication-title: Math. Program.
– start-page: 58
  year: 2019
  end-page: 69
  ident: br0020
  article-title: Fast modular subset sum using linear sketching
  publication-title: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms
– start-page: 364
  year: 2011
  end-page: 385
  ident: br0030
  article-title: Improved generic algorithms for hard knapsacks
  publication-title: EUROCRYPT 2011
– volume: 6
  start-page: 64
  year: 1962
  end-page: 94
  ident: br0240
  article-title: Approximate formulas for some functions of prime numbers
  publication-title: Ill. J. Math.
– volume: 26
  start-page: 1484
  year: 1997
  end-page: 1509
  ident: br0270
  article-title: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer
  publication-title: SIAM J. Comput.
– year: 2004
  ident: br0140
  article-title: Knapsack Problems
– volume: 24
  start-page: 100
  year: 1895
  end-page: 109
  ident: br0150
  article-title: Factorisation of numbers
  publication-title: Messenger Math.
– volume: 90
  start-page: 1999
  year: 2021
  end-page: 2010
  ident: br0120
  article-title: A time-space tradeoff for Lehman's deterministic integer factorization method
  publication-title: Math. Comput.
– volume: 7
  start-page: 235
  year: 2012
  end-page: 294
  ident: br0290
  article-title: Modular hyperbolas
  publication-title: Jpn. J. Math.
– year: 1998
  ident: br0010
  article-title: Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industries (rDSA)
– volume: vol. 126
  year: 1994
  ident: br0230
  article-title: Prime Numbers and Computer Methods for Factorization
  publication-title: Progress in Mathematics
– volume: 83
  start-page: 339
  year: 2014
  ident: 10.1016/j.jnt.2023.02.010_br0050
  article-title: Faster deterministic integer factorization
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2013-02707-X
– volume: 91
  start-page: 1367
  issue: 335
  year: 2022
  ident: 10.1016/j.jnt.2023.02.010_br0100
  article-title: A log-log speedup for exponent one-fifth deterministic integer factorisation
  publication-title: Math. Comput.
– volume: 87
  start-page: 2915
  issue: 314
  year: 2018
  ident: 10.1016/j.jnt.2023.02.010_br0110
  article-title: A babystep-giantstep method for faster deterministic integer factorization
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3313
– volume: 7
  start-page: 235
  year: 2012
  ident: 10.1016/j.jnt.2023.02.010_br0290
  article-title: Modular hyperbolas
  publication-title: Jpn. J. Math.
  doi: 10.1007/s11537-012-1140-8
– volume: 68
  start-page: 1729
  issue: 228
  year: 1999
  ident: 10.1016/j.jnt.2023.02.010_br0220
  article-title: Speeding Fermat's factoring method
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-99-01133-3
– start-page: 325
  year: 2014
  ident: 10.1016/j.jnt.2023.02.010_br0310
  article-title: Possible prime modified Fermat factorization
– year: 1998
  ident: 10.1016/j.jnt.2023.02.010_br0010
– volume: vol. 7645
  start-page: 380
  year: 2012
  ident: 10.1016/j.jnt.2023.02.010_br0340
  article-title: On the improvement of Fermat factorization
– volume: 28
  start-page: 637
  issue: 126
  year: 1974
  ident: 10.1016/j.jnt.2023.02.010_br0160
  article-title: Factoring large integers
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1974-0340163-2
– year: 2013
  ident: 10.1016/j.jnt.2023.02.010_br0330
– year: 2011
  ident: 10.1016/j.jnt.2023.02.010_br0260
– volume: 90
  start-page: 1999
  issue: 330
  year: 2021
  ident: 10.1016/j.jnt.2023.02.010_br0120
  article-title: A time-space tradeoff for Lehman's deterministic integer factorization method
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3623
– year: 2004
  ident: 10.1016/j.jnt.2023.02.010_br0140
– volume: 24
  start-page: 100
  year: 1895
  ident: 10.1016/j.jnt.2023.02.010_br0150
  article-title: Factorisation of numbers
  publication-title: Messenger Math.
– year: 2007
  ident: 10.1016/j.jnt.2023.02.010_br0280
– start-page: 364
  year: 2011
  ident: 10.1016/j.jnt.2023.02.010_br0030
  article-title: Improved generic algorithms for hard knapsacks
– volume: 66
  start-page: 181
  year: 1994
  ident: 10.1016/j.jnt.2023.02.010_br0250
  article-title: Lattice basis reduction: improved practical algorithms and solving subset sum problems
  publication-title: Math. Program.
  doi: 10.1007/BF01581144
– start-page: 235
  year: 2010
  ident: 10.1016/j.jnt.2023.02.010_br0130
  article-title: New generic algorithms for hard knapsacks
– volume: 26
  start-page: 1484
  year: 1997
  ident: 10.1016/j.jnt.2023.02.010_br0270
  article-title: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539795293172
– volume: 90
  start-page: 2937
  issue: 332
  year: 2021
  ident: 10.1016/j.jnt.2023.02.010_br0090
  article-title: An exponent one-fifth algorithm for deterministic integer factorization
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3658
– volume: 1776
  issue: 1
  year: 2016
  ident: 10.1016/j.jnt.2023.02.010_br0300
  article-title: The upper bound on the complexity of branch-and-bound with cardinality bound for subset sum problem
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4965330
– start-page: 58
  year: 2019
  ident: 10.1016/j.jnt.2023.02.010_br0020
  article-title: Fast modular subset sum using linear sketching
– volume: 149
  start-page: 13
  year: 2015
  ident: 10.1016/j.jnt.2023.02.010_br0080
  article-title: An efficient algorithm for the subset sum problem based on finite-time convergent recurrent neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.12.063
– volume: 6
  start-page: 64
  year: 1962
  ident: 10.1016/j.jnt.2023.02.010_br0240
  article-title: Approximate formulas for some functions of prime numbers
  publication-title: Ill. J. Math.
– volume: vol. 126
  year: 1994
  ident: 10.1016/j.jnt.2023.02.010_br0230
  article-title: Prime Numbers and Computer Methods for Factorization
SSID ssj0011575
Score 2.3212404
Snippet This paper elaborates on a sieving technique that has first been applied in 2018 for improving bounds on deterministic integer factorization. We will...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 93
SubjectTerms Factorization
Primality
Title Integer factorization as subset-sum problem
URI https://dx.doi.org/10.1016/j.jnt.2023.02.010
Volume 249
WOSCitedRecordID wos000972367000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-1658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011575
  issn: 0022-314X
  databaseCode: AIEXJ
  dateStart: 20211211
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA-6edCD-Inzix48OTrWJE3b45DJFBweJuxWkjSFDaxjrbI_35cm7Zw6UMFLKaXpx_uVX19e3ns_hK5SnFJPdX1XiJS7NGTUjThjbsqFEJRjFsmkFJsIhsNwPI4erdpbXsoJBFkWLhbR7F-hhmMAti6d_QXc9UXhAOwD6LAF2GH7I-B1jE-X8holHVtmqeVkcuAIVbjwLG0rI7PGMzUqIabGsY64DyZF8awm86rAZzVggEmdrmajWFUly0qipcnq90y2ZEcZMoTpjesx01q9YktsOoxavjPqhvbP6Rkm_ULKJj4w7UwznbyKSdkk1Sazrva61kvHWD8FTIx0mSzdRE0c-FHYQM3eXX98Xy8QeX7g143gYUC1YF2m7n260fcuxwc3YrSHdq2VnZ7BbR9tqOwA7TzUzXPzQ9S2CDorCDo8d5YIOhbBI_R02x_dDFyraeFKsFwBPx_lSRmFgcBEksjviqArpIiAZ0OpfJIyxTlnKfAskQzO9lPGFVcJBdczoSk5Ro3sJVMnyElkArNxwIgHiiYqDAUhMH0OgKUT6XHRQtfVa8cz07okrnL6pjHYKNY2irs4Bhu1EK0ME1vfy_hUMaC4ftjp34adoe3ll3mOGsX8VV2gLflWTPL5pcX6HWUpUik
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integer+factorization+as+subset-sum+problem&rft.jtitle=Journal+of+number+theory&rft.au=Hittmeir%2C+Markus&rft.date=2023-08-01&rft.pub=Elsevier+Inc&rft.issn=0022-314X&rft.eissn=1096-1658&rft.volume=249&rft.spage=93&rft.epage=118&rft_id=info:doi/10.1016%2Fj.jnt.2023.02.010&rft.externalDocID=S0022314X23000574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-314X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-314X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-314X&client=summon