A High-Performance and High-Robustness Triple-Node-Upset Tolerant Latch Based on Redundant-Node Hardening

In response to the issues of high cost, large overhead, and limited node fault tolerance in current latch hardening techniques, this article proposes a latch circuit resistant to triple-node-upset (TNU) based on redundant-node hardening technology. This latch comprises eight 1P2N modules interlocked...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems Jg. 33; H. 5; S. 1373 - 1383
Hauptverfasser: Zhao, Qiang, Liu, Qingyi, Zhang, Xinyi, Hao, Licai, Li, Xin, Zhang, Shengyue, Peng, Chunyu, Lin, Zhiting, Wu, Xiulong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1063-8210, 1557-9999
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In response to the issues of high cost, large overhead, and limited node fault tolerance in current latch hardening techniques, this article proposes a latch circuit resistant to triple-node-upset (TNU) based on redundant-node hardening technology. This latch comprises eight 1P2N modules interlocked, with its output isolated by two levels of C-elements (CEs), achieving tolerance to TNU. The performance of the redundant-node reinforcement TNU tolerant latch (RNRTTL) was simulated and verified using CMOS 65 nm technology. The simulation results indicate that the RNRTTL circuit has a D-Q delay of 14.14 ps, static power consumption of <inline-formula> <tex-math notation="LaTeX">4.03~\mu </tex-math></inline-formula>w, an area of <inline-formula> <tex-math notation="LaTeX">32.87~\mu </tex-math></inline-formula>m2, and an area-static power-D-Q delay-product (APDP) of 1873, respectively. Compared to the triple-node upset tolerant latches TTLL, TNU-latch, TNURL, and HLTNURL reported in the current literature, the proposed latch demonstrates an average reduction of 219.9%, 164.9%, 150.7%, and 2464.8% in D-Q delay, static power consumption, area, and APDP, respectively, indicating that the RNRTTL latch has superior comprehensive performance; furthermore, a series of 2000 Monte Carlo (MC) simulations on the node group <inline-formula> <tex-math notation="LaTeX">\langle </tex-math></inline-formula>Q, X0, X<inline-formula> <tex-math notation="LaTeX">8\rangle </tex-math></inline-formula> reveal that the proposed latch circuit possesses good stability, making it suitable for harsh radiation environments.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2025.3535926