A unified approach to the Galois closure problem

In this paper we give a unified approach in categorical setting to the problem of finding the Galois closure of a finite cover, which includes as special cases the familiar finite separable field extensions, finite unramified covers of a connected undirected graph, finite covering spaces of a locall...

Full description

Saved in:
Bibliographic Details
Published in:Journal of number theory Vol. 180; pp. 251 - 279
Main Authors: Huang, Hau-Wen, Li, Wen-Ching Winnie
Format: Journal Article
Language:English
Published: Elsevier Inc 01.11.2017
Subjects:
ISSN:0022-314X, 1096-1658
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we give a unified approach in categorical setting to the problem of finding the Galois closure of a finite cover, which includes as special cases the familiar finite separable field extensions, finite unramified covers of a connected undirected graph, finite covering spaces of a locally connected topological space, finite étale covers of a smooth projective irreducible algebraic variety, and finite covers of normal varieties. We present two algorithms whose outputs are shown to be desired Galois closures. An upper bound of the degree of the Galois closure under each algorithm is also obtained.
AbstractList In this paper we give a unified approach in categorical setting to the problem of finding the Galois closure of a finite cover, which includes as special cases the familiar finite separable field extensions, finite unramified covers of a connected undirected graph, finite covering spaces of a locally connected topological space, finite étale covers of a smooth projective irreducible algebraic variety, and finite covers of normal varieties. We present two algorithms whose outputs are shown to be desired Galois closures. An upper bound of the degree of the Galois closure under each algorithm is also obtained.
Author Li, Wen-Ching Winnie
Huang, Hau-Wen
Author_xml – sequence: 1
  givenname: Hau-Wen
  orcidid: 0000-0002-6512-4309
  surname: Huang
  fullname: Huang, Hau-Wen
  email: hauwenh@math.ncu.edu.tw
  organization: Department of Mathematics, National Central University, Chung-Li 32001 Taiwan
– sequence: 2
  givenname: Wen-Ching Winnie
  orcidid: 0000-0002-1894-7943
  surname: Li
  fullname: Li, Wen-Ching Winnie
  email: wli@math.psu.edu
  organization: Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
BookMark eNp9j9FKwzAUhoNMcJs-gHd5gdaTNElbvBpDN2HgjYJ3IT1NWUrXlKQTfHsz5rVXB_7zf4fzrchi9KMl5JFBzoCppz7vxznnwMocRA6M3ZAlg1plTMlqQZYAnGcFE193ZBVjD6khS7kksKHn0XXOttRMU_AGj3T2dD5aujODd5Hi4OM5WJqWzWBP9-S2M0O0D39zTT5fXz62--zwvnvbbg4ZclHPWVUoUG1TNVy2ojHKIK-x4IhNiWUrKzTCyI4pAVamyDQpUwJlCRV2klfFmrDrXQw-xmA7PQV3MuFHM9AXZd3rpKwvyhqETkKJeb4yNj327WzQEZ0d0bYuWJx1690_9C89pmBW
Cites_doi 10.1007/BF01180640
10.1007/BF01459271
10.2307/2946573
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jnt.2017.04.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-1658
EndPage 279
ExternalDocumentID 10_1016_j_jnt_2017_04_011
S0022314X1730197X
GrantInformation_xml – fundername: National Center for Theoretical Sciences of Taiwan
  funderid: http://dx.doi.org/10.13039/100009125
– fundername: Council for Higher Education of Israel
  funderid: http://dx.doi.org/10.13039/501100005385
– fundername: NSF
  grantid: DMS-1101368
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Ministry of Science and Technology of Taiwan
  grantid: MOST 105-2115-M-008-013
  funderid: http://dx.doi.org/10.13039/501100004663
– fundername: Simons Foundation
  grantid: 355798
  funderid: http://dx.doi.org/10.13039/100000893
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
186
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HF~
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
WUQ
XJT
XOL
XPP
YQT
ZCG
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c249t-83606db8b25d4ba6ac29c32ccb7c7d58ca4a5f1640e5b7cabd5864c5708cf5283
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407667800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-314X
IngestDate Sat Nov 29 07:28:36 EST 2025
Fri Feb 23 02:33:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 68W05
Iterative algorithms
Divide-and-conquer algorithms
11R32
Galois closures
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-83606db8b25d4ba6ac29c32ccb7c7d58ca4a5f1640e5b7cabd5864c5708cf5283
ORCID 0000-0002-1894-7943
0000-0002-6512-4309
PageCount 29
ParticipantIDs crossref_primary_10_1016_j_jnt_2017_04_011
elsevier_sciencedirect_doi_10_1016_j_jnt_2017_04_011
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationTitle Journal of number theory
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bailey, Fried (br0010) 2002; vol. 70
Cohen (br0030) 1996; vol. 138
Fried, Völklein (br0060) 1991; 290
Mac Lane (br0090) 1998; vol. 5
Fried, Ihara (br0040) 2002; vol. 70
Cormen, Leiserson, Rivest, Stein (br0020) 2009
Fröhlich, Shepherson (br0050) 1955; 62
Fried, Völklein (br0070) 1992; 135
von zur Gathen, Gerhard (br0110) 2013
Terras (br0100) 2010; vol. 128
Hell (br0080) 1972
Fröhlich (10.1016/j.jnt.2017.04.011_br0050) 1955; 62
Bailey (10.1016/j.jnt.2017.04.011_br0010) 2002; vol. 70
von zur Gathen (10.1016/j.jnt.2017.04.011_br0110) 2013
Fried (10.1016/j.jnt.2017.04.011_br0040) 2002; vol. 70
Hell (10.1016/j.jnt.2017.04.011_br0080) 1972
Cormen (10.1016/j.jnt.2017.04.011_br0020) 2009
Fried (10.1016/j.jnt.2017.04.011_br0060) 1991; 290
Cohen (10.1016/j.jnt.2017.04.011_br0030) 1996; vol. 138
Fried (10.1016/j.jnt.2017.04.011_br0070) 1992; 135
Mac Lane (10.1016/j.jnt.2017.04.011_br0090) 1998; vol. 5
Terras (10.1016/j.jnt.2017.04.011_br0100) 2010; vol. 128
References_xml – volume: vol. 70
  start-page: 79
  year: 2002
  end-page: 220
  ident: br0010
  article-title: Hurwitz monodromy, spin separation and higher levels of a modular tower
  publication-title: Arithmetic Fundamental Groups and Noncommutative Algebra
– volume: vol. 5
  year: 1998
  ident: br0090
  article-title: Categories for the Working Mathematician
  publication-title: Grad. Texts in Math.
– year: 2009
  ident: br0020
  article-title: Introduction to Algorithms
– year: 1972
  ident: br0080
  article-title: Retractions de graphes
– volume: 62
  start-page: 331
  year: 1955
  end-page: 334
  ident: br0050
  article-title: On the factorisation of polynomials in a finite number of steps
  publication-title: Math. Z.
– volume: vol. 138
  year: 1996
  ident: br0030
  article-title: A Course in Computational Algebraic Number Theory
  publication-title: Grad. Texts in Math.
– year: 2013
  ident: br0110
  article-title: Modern Computer Algebra
– volume: vol. 70
  year: 2002
  ident: br0040
  article-title: Arithmetic Fundamental Groups and Noncommutative Algebra
  publication-title: Proc. Sympos. Pure Math.
– volume: 290
  start-page: 771
  year: 1991
  end-page: 800
  ident: br0060
  article-title: The inverse Galois problem and rational points on moduli spaces
  publication-title: Math. Ann.
– volume: 135
  start-page: 469
  year: 1992
  end-page: 481
  ident: br0070
  article-title: The embedding problem over a Hilbertian PAC-field
  publication-title: Ann. of Math.
– volume: vol. 128
  year: 2010
  ident: br0100
  article-title: Zeta Functions of Graphs: A Stroll Through the Garden
  publication-title: Cambridge Stud. Adv. Math.
– volume: vol. 128
  year: 2010
  ident: 10.1016/j.jnt.2017.04.011_br0100
  article-title: Zeta Functions of Graphs: A Stroll Through the Garden
– year: 2009
  ident: 10.1016/j.jnt.2017.04.011_br0020
– year: 2013
  ident: 10.1016/j.jnt.2017.04.011_br0110
– volume: vol. 5
  year: 1998
  ident: 10.1016/j.jnt.2017.04.011_br0090
  article-title: Categories for the Working Mathematician
– volume: vol. 138
  year: 1996
  ident: 10.1016/j.jnt.2017.04.011_br0030
  article-title: A Course in Computational Algebraic Number Theory
– volume: 62
  start-page: 331
  year: 1955
  ident: 10.1016/j.jnt.2017.04.011_br0050
  article-title: On the factorisation of polynomials in a finite number of steps
  publication-title: Math. Z.
  doi: 10.1007/BF01180640
– volume: vol. 70
  start-page: 79
  year: 2002
  ident: 10.1016/j.jnt.2017.04.011_br0010
  article-title: Hurwitz monodromy, spin separation and higher levels of a modular tower
– volume: vol. 70
  year: 2002
  ident: 10.1016/j.jnt.2017.04.011_br0040
  article-title: Arithmetic Fundamental Groups and Noncommutative Algebra
– volume: 290
  start-page: 771
  year: 1991
  ident: 10.1016/j.jnt.2017.04.011_br0060
  article-title: The inverse Galois problem and rational points on moduli spaces
  publication-title: Math. Ann.
  doi: 10.1007/BF01459271
– volume: 135
  start-page: 469
  year: 1992
  ident: 10.1016/j.jnt.2017.04.011_br0070
  article-title: The embedding problem over a Hilbertian PAC-field
  publication-title: Ann. of Math.
  doi: 10.2307/2946573
– year: 1972
  ident: 10.1016/j.jnt.2017.04.011_br0080
SSID ssj0011575
Score 2.1025538
Snippet In this paper we give a unified approach in categorical setting to the problem of finding the Galois closure of a finite cover, which includes as special cases...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 251
SubjectTerms Divide-and-conquer algorithms
Galois closures
Iterative algorithms
Title A unified approach to the Galois closure problem
URI https://dx.doi.org/10.1016/j.jnt.2017.04.011
Volume 180
WOSCitedRecordID wos000407667800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-1658
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011575
  issn: 0022-314X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA-yedCD-Inf5ODJEelH0rTHMdQpOjwo7laStIUOycRtov-9r03azenAHbyU8kjTJr_y8svL-0DojKYilDyShGaSEZpkHpFMRsQNEuVkvp95Buk73uuF_X70YCvTjcpyAlzr8OMjev1XqEEGYBehs0vAXXcKArgH0OEKsMP1T8C3WxOdZwWzrPKFV_zyWrwM81FLvQwLs2DL1pJZQE9NqRAT6Pg5Bd-al7tiQp6nUWR3pU8ACEintGg951rn6axFAVYpt7YozHj4u8ZzcqolnVk9Z7PEmiXTM_VgfmhjYxgYXAx04bXq8jKprNWt3zJfz61ItZ9g5YI2iKGLuOgidmjsFLHcTY-zKGygZvvmsn9bHxy5jLM6QTwMoTrILl365r7jdyoyQy8eN9GGnXjcNnhuoZVUb6P1-zqp7mgHOW1skcUVsng8xNACG2SxRRZbZHfR09XlY6dLbMELomAXPCZFQE2QyFB6LKFSBEJ5kfI9pSRXPGGhElSwDDa4TspAJCTIAqoYd0KVFVl69lBDD3W6jzDPUmjoRwkHhauSRADT9qniQFkC5TveATqvxh6_mrwm8cLZPkC0mp3YEjNDuGJAevFjh8u84witTf_FY9QYv03SE7Sq3sf56O3UwvwFZXxWaQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+approach+to+the+Galois+closure+problem&rft.jtitle=Journal+of+number+theory&rft.au=Huang%2C+Hau-Wen&rft.au=Li%2C+Wen-Ching+Winnie&rft.date=2017-11-01&rft.issn=0022-314X&rft.volume=180&rft.spage=251&rft.epage=279&rft_id=info:doi/10.1016%2Fj.jnt.2017.04.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jnt_2017_04_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-314X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-314X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-314X&client=summon