Vector multispaces and multispace codes

Basic algebraic and combinatorial properties of finite vector spaces in which individual vectors are allowed to have multiplicities larger than 1 are derived. An application in coding theory is illustrated by showing that multispace codes that are introduced here may be used in random linear network...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 486; s. 129041
Hlavní autor: Kovačević, Mladen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.02.2025
Témata:
ISSN:0096-3003
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Basic algebraic and combinatorial properties of finite vector spaces in which individual vectors are allowed to have multiplicities larger than 1 are derived. An application in coding theory is illustrated by showing that multispace codes that are introduced here may be used in random linear network coding scenarios, and that they generalize standard subspace codes (defined in the set of all subspaces of Fqn) and extend them to an infinitely larger set of parameters. In particular, in contrast to subspace codes, multispace codes of arbitrarily large cardinality and minimum distance exist for any fixed n and q.
ISSN:0096-3003
DOI:10.1016/j.amc.2024.129041