New constructions of abelian non-cyclic orbit codes based on parabolic subgroups and tensor products

Orbit codes, as special constant dimension subspace codes, have attracted much attention due to their applications for error correction in random network coding. They arise as orbits of a subspace of Fqn under the action of some subgroup of the finite general linear group GLn(q). The main contributi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Finite fields and their applications Ročník 103; s. 102587
Hlavní autoři: Askary, Soleyman, Biranvand, Nader, Shirjian, Farrokh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.03.2025
Témata:
ISSN:1071-5797
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Orbit codes, as special constant dimension subspace codes, have attracted much attention due to their applications for error correction in random network coding. They arise as orbits of a subspace of Fqn under the action of some subgroup of the finite general linear group GLn(q). The main contribution of this paper is to propose new methods for constructing large non-cyclic orbit codes. First, using the subgroup structure of maximal subgroups of GLn(q), we propose a new construction of an abelian non-cyclic orbit codes of size qk with k≤n/2. The proposed code is shown to be a partial spread which in many cases is close to the known maximum-size codes. Next, considering a larger framework, we introduce the notion of tensor product operation for subspace codes and explicitly determine the parameters of such product codes. The parameters of the constructions presented in this paper improve the constructions already obtained in [6] and [7].
AbstractList Orbit codes, as special constant dimension subspace codes, have attracted much attention due to their applications for error correction in random network coding. They arise as orbits of a subspace of Fqn under the action of some subgroup of the finite general linear group GLn(q). The main contribution of this paper is to propose new methods for constructing large non-cyclic orbit codes. First, using the subgroup structure of maximal subgroups of GLn(q), we propose a new construction of an abelian non-cyclic orbit codes of size qk with k≤n/2. The proposed code is shown to be a partial spread which in many cases is close to the known maximum-size codes. Next, considering a larger framework, we introduce the notion of tensor product operation for subspace codes and explicitly determine the parameters of such product codes. The parameters of the constructions presented in this paper improve the constructions already obtained in [6] and [7].
ArticleNumber 102587
Author Biranvand, Nader
Askary, Soleyman
Shirjian, Farrokh
Author_xml – sequence: 1
  givenname: Soleyman
  surname: Askary
  fullname: Askary, Soleyman
  email: s.asgary95@gmail.com
– sequence: 2
  givenname: Nader
  surname: Biranvand
  fullname: Biranvand, Nader
  email: nabiranvand@gmail.com
– sequence: 3
  givenname: Farrokh
  orcidid: 0000-0002-0459-3160
  surname: Shirjian
  fullname: Shirjian, Farrokh
  email: fashirjian@gmail.com
BookMark eNp9kMtOwzAQRb0oEm3hA9j5B1LsJH5ErFDFS6pgA2vLHtvIVbEjOwH173FV1qxmRjP36s5ZoUVM0SF0Q8mGEspv9xvv9aYlLatzy6RYoCUlgjZMDOISrUrZE0Ip6-QS2Vf3gyHFMuUZplAbnDzWxh2CjrgaN3CEQwCcsglTvbSuYKOLszhFPOqsTTqty2w-c5rHgnW0eHKxpIzHnGx1LVfowutDcdd_dY0-Hh_et8_N7u3pZXu_a6Dth6kRmrGBmJ6DZEx6zaEzPeEGBi-73mlOuLOegxAdIyClYMy0gxb1w37wXHZrRM--kFMp2Xk15vCl81FRok5o1F5VNOqERp3RVM3dWeNqsO_gsioQXARnQ3YwKZvCP-pfgfpxDg
Cites_doi 10.1007/s40314-023-02353-3
10.1007/s10623-012-9691-5
10.1016/j.disc.2020.112273
10.1016/j.ffa.2013.11.007
10.1109/TIT.2008.926449
10.1007/s12095-018-0306-5
10.1007/s10255-020-0974-8
10.1007/s10623-020-00823-x
10.3934/amc.2015.9.177
10.1109/18.850663
10.1080/00927872.2010.515521
10.3934/amc.2020035
10.1016/j.ffa.2022.102153
10.3934/amc.2021007
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ffa.2025.102587
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_ffa_2025_102587
S1071579725000176
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEKER
AENEX
AEXQZ
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c249t-7a5590b46c8558fa6c3b406bc9f834ea606edf6c77350c88755b29a758749f683
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001423167300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1071-5797
IngestDate Sat Nov 29 08:16:22 EST 2025
Sat Mar 08 15:49:44 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Algebraic coding theory
Abelian orbit code
Subspace code
Linear groups
Random linear network coding
primary
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-7a5590b46c8558fa6c3b406bc9f834ea606edf6c77350c88755b29a758749f683
ORCID 0000-0002-0459-3160
ParticipantIDs crossref_primary_10_1016_j_ffa_2025_102587
elsevier_sciencedirect_doi_10_1016_j_ffa_2025_102587
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Finite fields and their applications
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lübeck (br0160)
Schneider (br0220)
Cossidente, Kurz, Marino, Pavese (br0050) 2023; 17
Bastos, Junior, Guerreiro (br0030) 2020; 14
Heinlein, Kiermaier, Kurz, Wassermann (br0140) 2016
Manganiello, Gorla, Rosenthal (br0170) 2008
Schröder (br0210) July 2015
Gluesing-Luerssen, Lehmann (br0120) 2021; 89
Kotter, Kschischang (br0150) 2008; 54
Gorla, Ravagnani (br0110) 2014; 26
Zhang, Tang, Hu (br0250) 2023; 42
Rosenthal, Trautmann (br0200) 2013; 66
Rogers (br0190) 2017
br0180
Askary, Biranvand, Shirjian (br0020) 2023
Chen, Liang (br0060) 2020; 36
Climent, Requena, Soler-Escriva (br0070) 2019; 11
Coutts, Quick, Roney-Dougal (br0090) 2011; 39
Trautmann, Manganiello, Rosenthal (br0230) 2010
Bray, Holt, Roney-Dougal (br0040) 2013
Zullo (br0260) 2023; 87
Gluesing-Luerssen, Morrison, Troha (br0130) 2015; 9
Ahlswede, Cai, Li, Yeung (br0010) 2000; 46
Conway, Curtis, Norton, Parker, Wilson (br0080) 1985
Feng, Wang (br0100) 2021; 344
Wilson (br0240) 2009; vol. 251
Climent (10.1016/j.ffa.2025.102587_br0070) 2019; 11
Bastos (10.1016/j.ffa.2025.102587_br0030) 2020; 14
Zhang (10.1016/j.ffa.2025.102587_br0250) 2023; 42
Chen (10.1016/j.ffa.2025.102587_br0060) 2020; 36
Feng (10.1016/j.ffa.2025.102587_br0100) 2021; 344
Gluesing-Luerssen (10.1016/j.ffa.2025.102587_br0120) 2021; 89
Gluesing-Luerssen (10.1016/j.ffa.2025.102587_br0130) 2015; 9
Cossidente (10.1016/j.ffa.2025.102587_br0050) 2023; 17
Askary (10.1016/j.ffa.2025.102587_br0020) 2023
Zullo (10.1016/j.ffa.2025.102587_br0260) 2023; 87
Lübeck (10.1016/j.ffa.2025.102587_br0160)
Wilson (10.1016/j.ffa.2025.102587_br0240) 2009; vol. 251
Coutts (10.1016/j.ffa.2025.102587_br0090) 2011; 39
Kotter (10.1016/j.ffa.2025.102587_br0150) 2008; 54
Conway (10.1016/j.ffa.2025.102587_br0080) 1985
Rogers (10.1016/j.ffa.2025.102587_br0190) 2017
Schröder (10.1016/j.ffa.2025.102587_br0210) 2015
Trautmann (10.1016/j.ffa.2025.102587_br0230) 2010
Heinlein (10.1016/j.ffa.2025.102587_br0140)
Schneider (10.1016/j.ffa.2025.102587_br0220)
Rosenthal (10.1016/j.ffa.2025.102587_br0200) 2013; 66
Ahlswede (10.1016/j.ffa.2025.102587_br0010) 2000; 46
Manganiello (10.1016/j.ffa.2025.102587_br0170) 2008
Bray (10.1016/j.ffa.2025.102587_br0040) 2013
Gorla (10.1016/j.ffa.2025.102587_br0110) 2014; 26
References_xml – volume: 39
  start-page: 3526
  year: 2011
  end-page: 3546
  ident: br0090
  article-title: The primitive permutation groups of degree less than 4096
  publication-title: Commun. Algebra
– volume: vol. 251
  year: 2009
  ident: br0240
  article-title: The Finite Simple Groups
  publication-title: Graduate Text in Mathematics
– volume: 87
  year: 2023
  ident: br0260
  article-title: Multi-orbit cyclic subspace codes and linear sets
  publication-title: Finite Fields Appl.
– volume: 344
  year: 2021
  ident: br0100
  article-title: New constructions of large cyclic subspace codes and Sidon spaces
  publication-title: Discrete Math.
– volume: 46
  start-page: 1204
  year: 2000
  end-page: 1216
  ident: br0010
  article-title: Network information flow
  publication-title: IEEE Trans. Inf. Theory
– volume: 11
  start-page: 839
  year: 2019
  end-page: 852
  ident: br0070
  article-title: A construction of abelian non-cyclic orbit codes
  publication-title: Cryptogr. Commun.
– ident: br0220
  article-title: Hopfalgebren und Quantengruppen
– ident: br0180
  article-title: OEIS: number of primitive permutation groups of degree
– volume: 9
  start-page: 177
  year: 2015
  end-page: 197
  ident: br0130
  article-title: Cyclic orbit codes and stabilizer subfields
  publication-title: Adv. Math. Commun.
– volume: 36
  start-page: 803
  year: 2020
  end-page: 815
  ident: br0060
  article-title: New constructions of orbit codes based on the operations of orbit codes
  publication-title: Acta Math. Appl. Sin. Engl. Ser.
– volume: 17
  start-page: 536
  year: 2023
  end-page: 550
  ident: br0050
  article-title: Combining subspace codes
  publication-title: Adv. Math. Commun.
– year: 2023
  ident: br0020
  article-title: New constructions of orbit codes based on imprimitive wreath products and wreathed tensor products
  publication-title: Rend. Circ. Mat. Palermo
– volume: 54
  start-page: 3579
  year: 2008
  end-page: 3591
  ident: br0150
  article-title: Coding for errors and erasures in random network coding
  publication-title: IEEE Trans. Inf. Theory
– volume: 14
  start-page: 631
  year: 2020
  end-page: 650
  ident: br0030
  article-title: Abelian noncyclic orbit codes and multishot subspace codes
  publication-title: Adv. Math. Commun.
– volume: 89
  start-page: 447
  year: 2021
  end-page: 470
  ident: br0120
  article-title: Distance distributions of cyclic orbit codes
  publication-title: Des. Codes Cryptogr.
– year: 1985
  ident: br0080
  article-title: ATLAS of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups
– volume: 66
  start-page: 275
  year: 2013
  end-page: 289
  ident: br0200
  article-title: A complete characterization of irreducible cyclic orbit codes and their Plucker embedding
  publication-title: Des. Codes Cryptogr.
– volume: 26
  start-page: 104
  year: 2014
  end-page: 115
  ident: br0110
  article-title: Partial spreads in random network coding
  publication-title: Finite Fields Appl.
– volume: 42
  year: 2023
  ident: br0250
  article-title: New constructions of Sidon spaces and large cyclic constant dimension codes
  publication-title: Comput. Appl. Math.
– ident: br0160
  article-title: Conway polynomials for finite fields (on-line verified data)
– year: 2013
  ident: br0040
  article-title: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups
– start-page: 881
  year: 2008
  end-page: 885
  ident: br0170
  article-title: Spread codes and spread decoding in network coding
  publication-title: Proceedings of the 2008 IEEE International Symposium on Information Theory (ISIT 2008)
– year: 2010
  ident: br0230
  article-title: Orbit codes – a new concept in the area of network coding
  publication-title: Proceedings of the 2010 IEEE Information Theory Workshop (ITW 2010)
– year: 2017
  ident: br0190
  article-title: Maximal subgroups of classical groups in dimensions 16 and 17
– year: 2016
  ident: br0140
  article-title: Tables of subspace codes
– year: July 2015
  ident: br0210
  article-title: The maximal subgroups of the classical groups in dimension 13, 14 and 15
– volume: vol. 251
  year: 2009
  ident: 10.1016/j.ffa.2025.102587_br0240
  article-title: The Finite Simple Groups
– volume: 42
  issue: 5
  year: 2023
  ident: 10.1016/j.ffa.2025.102587_br0250
  article-title: New constructions of Sidon spaces and large cyclic constant dimension codes
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-023-02353-3
– ident: 10.1016/j.ffa.2025.102587_br0140
– year: 2023
  ident: 10.1016/j.ffa.2025.102587_br0020
  article-title: New constructions of orbit codes based on imprimitive wreath products and wreathed tensor products
  publication-title: Rend. Circ. Mat. Palermo
– volume: 66
  start-page: 275
  year: 2013
  ident: 10.1016/j.ffa.2025.102587_br0200
  article-title: A complete characterization of irreducible cyclic orbit codes and their Plucker embedding
  publication-title: Des. Codes Cryptogr.
  doi: 10.1007/s10623-012-9691-5
– year: 2017
  ident: 10.1016/j.ffa.2025.102587_br0190
– year: 2013
  ident: 10.1016/j.ffa.2025.102587_br0040
– volume: 344
  issue: 4
  year: 2021
  ident: 10.1016/j.ffa.2025.102587_br0100
  article-title: New constructions of large cyclic subspace codes and Sidon spaces
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2020.112273
– volume: 26
  start-page: 104
  year: 2014
  ident: 10.1016/j.ffa.2025.102587_br0110
  article-title: Partial spreads in random network coding
  publication-title: Finite Fields Appl.
  doi: 10.1016/j.ffa.2013.11.007
– volume: 54
  start-page: 3579
  issue: 8
  year: 2008
  ident: 10.1016/j.ffa.2025.102587_br0150
  article-title: Coding for errors and erasures in random network coding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2008.926449
– start-page: 881
  year: 2008
  ident: 10.1016/j.ffa.2025.102587_br0170
  article-title: Spread codes and spread decoding in network coding
– volume: 11
  start-page: 839
  year: 2019
  ident: 10.1016/j.ffa.2025.102587_br0070
  article-title: A construction of abelian non-cyclic orbit codes
  publication-title: Cryptogr. Commun.
  doi: 10.1007/s12095-018-0306-5
– year: 2010
  ident: 10.1016/j.ffa.2025.102587_br0230
  article-title: Orbit codes – a new concept in the area of network coding
– volume: 36
  start-page: 803
  year: 2020
  ident: 10.1016/j.ffa.2025.102587_br0060
  article-title: New constructions of orbit codes based on the operations of orbit codes
  publication-title: Acta Math. Appl. Sin. Engl. Ser.
  doi: 10.1007/s10255-020-0974-8
– ident: 10.1016/j.ffa.2025.102587_br0160
– year: 2015
  ident: 10.1016/j.ffa.2025.102587_br0210
– volume: 89
  start-page: 447
  issue: 3
  year: 2021
  ident: 10.1016/j.ffa.2025.102587_br0120
  article-title: Distance distributions of cyclic orbit codes
  publication-title: Des. Codes Cryptogr.
  doi: 10.1007/s10623-020-00823-x
– ident: 10.1016/j.ffa.2025.102587_br0220
– year: 1985
  ident: 10.1016/j.ffa.2025.102587_br0080
– volume: 9
  start-page: 177
  issue: 2
  year: 2015
  ident: 10.1016/j.ffa.2025.102587_br0130
  article-title: Cyclic orbit codes and stabilizer subfields
  publication-title: Adv. Math. Commun.
  doi: 10.3934/amc.2015.9.177
– volume: 46
  start-page: 1204
  issue: 4
  year: 2000
  ident: 10.1016/j.ffa.2025.102587_br0010
  article-title: Network information flow
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.850663
– volume: 39
  start-page: 3526
  issue: 10
  year: 2011
  ident: 10.1016/j.ffa.2025.102587_br0090
  article-title: The primitive permutation groups of degree less than 4096
  publication-title: Commun. Algebra
  doi: 10.1080/00927872.2010.515521
– volume: 14
  start-page: 631
  year: 2020
  ident: 10.1016/j.ffa.2025.102587_br0030
  article-title: Abelian noncyclic orbit codes and multishot subspace codes
  publication-title: Adv. Math. Commun.
  doi: 10.3934/amc.2020035
– volume: 87
  year: 2023
  ident: 10.1016/j.ffa.2025.102587_br0260
  article-title: Multi-orbit cyclic subspace codes and linear sets
  publication-title: Finite Fields Appl.
  doi: 10.1016/j.ffa.2022.102153
– volume: 17
  start-page: 536
  issue: 3
  year: 2023
  ident: 10.1016/j.ffa.2025.102587_br0050
  article-title: Combining subspace codes
  publication-title: Adv. Math. Commun.
  doi: 10.3934/amc.2021007
SSID ssj0011538
Score 2.3561752
Snippet Orbit codes, as special constant dimension subspace codes, have attracted much attention due to their applications for error correction in random network...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102587
SubjectTerms Abelian orbit code
Algebraic coding theory
Linear groups
Random linear network coding
Subspace code
Title New constructions of abelian non-cyclic orbit codes based on parabolic subgroups and tensor products
URI https://dx.doi.org/10.1016/j.ffa.2025.102587
Volume 103
WOSCitedRecordID wos001423167300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1071-5797
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0011538
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGlgUsEE9RHpUXrIhSmSROnGVBrSgSIySKNLsodmw10zKpkmFUFv333msnTlqoRBdsolGUeKzck_vy8Qkh77hJhWSqClONrRumeAhhmIUiNUpBwCq1ZPZjE9l8LhaL_NtsdjnshdmcZauVuLjIz_-rqeEcGBu3zt7B3H5QOAG_wehwBLPD8Z8Mj4xF1YzCsJarUUpt-xlQ7Ifqt0Jl66aV9TrALe1dgLGswnUDVAKXKBUcdL-k3fHhNJyR5960yOZCfdhumtIe1pi2BpYK1w2EzLoNpkvjHlbdaenW7b834I1-jtD8WEPQ3PQsyznSq33v56Rul7Xr01rJyNOTaasi4iNXq_eukM-EPHOEXO9-WTxxoJDvcBeB__Dtrs2w3DMG9aIivjdee11H-0Z886zDgdC2LGCIAoco3BD3yHaU8Ryc4vb-0cHii1-GwnDgSKtu3sOyuCUI3pjH3xObSbJy_Jg86qsMuu_Q8YTM9OopefjVS_R2z0gFOKHXcEIbQ3uc0BEn1OKEWpxQixParKjHCfU4oWA86nBCB5w8Jz8OD44_fQ77T26ECurwdZiVUGEymaRKcC5MmapYQsonVW5EnOgSyl1dmVRlWcyZggDFuYzyEorOLMnhtY9fkC2YoX5JqOZwE5PwypsPiVSVFCw2hueRjITWPN8h74fnVZw7ZZXiVgvtkGR4okWfGrqUrwB03H7bq7v8x2vyYATtG7IFj1-_JffVZl137W4PjStjbIhY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+constructions+of+abelian+non-cyclic+orbit+codes+based+on+parabolic+subgroups+and+tensor+products&rft.jtitle=Finite+fields+and+their+applications&rft.au=Askary%2C+Soleyman&rft.au=Biranvand%2C+Nader&rft.au=Shirjian%2C+Farrokh&rft.date=2025-03-01&rft.issn=1071-5797&rft.volume=103&rft.spage=102587&rft_id=info:doi/10.1016%2Fj.ffa.2025.102587&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ffa_2025_102587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-5797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-5797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-5797&client=summon