Stability of synchronized dynamics and pattern formation in coupled systems: Review of some recent results

In arbitrarily coupled dynamical systems (maps or ordinary differential equations), the stability of synchronized states (including equilibrium point, periodic orbit or chaotic attractor) and the formation of patterns from loss of stability of the synchronized states are two problems of current rese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation Jg. 11; H. 8; S. 934 - 960
Hauptverfasser: Chen, Yonghong, Rangarajan, Govindan, Ding, Mingzhou
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2006
Schlagworte:
ISSN:1007-5704, 1878-7274
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In arbitrarily coupled dynamical systems (maps or ordinary differential equations), the stability of synchronized states (including equilibrium point, periodic orbit or chaotic attractor) and the formation of patterns from loss of stability of the synchronized states are two problems of current research interest. These two problems are often treated separately in the literature. Here, we present a unified framework in which we show that the eigenvalues of the coupling matrix determine the stability of the synchronized state, while the eigenvectors correspond to patterns emerging from desynchronization. Based on this simple framework three results are derived: First, general approaches are developed that yield constraints directly on the coupling strengths which ensure the stability of synchronized dynamics. Second, when the synchronized state becomes unstable spatial patterns can be selectively realized by varying the coupling strengths. Distinct temporal evolution of the spatial pattern can be obtained depending on the bifurcating synchronized state. Third, given a desired spatiotemporal pattern, one is able to design coupling schemes which give rise to that pattern as the coupled system evolves. Systems with specific coupling schemes are used as examples to illustrate the general methods.
AbstractList In arbitrarily coupled dynamical systems (maps or ordinary differential equations), the stability of synchronized states (including equilibrium point, periodic orbit or chaotic attractor) and the formation of patterns from loss of stability of the synchronized states are two problems of current research interest. These two problems are often treated separately in the literature. Here, we present a unified framework in which we show that the eigenvalues of the coupling matrix determine the stability of the synchronized state, while the eigenvectors correspond to patterns emerging from desynchronization. Based on this simple framework three results are derived: First, general approaches are developed that yield constraints directly on the coupling strengths which ensure the stability of synchronized dynamics. Second, when the synchronized state becomes unstable spatial patterns can be selectively realized by varying the coupling strengths. Distinct temporal evolution of the spatial pattern can be obtained depending on the bifurcating synchronized state. Third, given a desired spatiotemporal pattern, one is able to design coupling schemes which give rise to that pattern as the coupled system evolves. Systems with specific coupling schemes are used as examples to illustrate the general methods.
Author Rangarajan, Govindan
Ding, Mingzhou
Chen, Yonghong
Author_xml – sequence: 1
  givenname: Yonghong
  surname: Chen
  fullname: Chen, Yonghong
  email: ychen@bme.ufl.edu
  organization: Department of Biomedical Engineering, University of Florida, 120 BME Building/P.O. Box 116131, Gainesville, FL 32611, USA
– sequence: 2
  givenname: Govindan
  surname: Rangarajan
  fullname: Rangarajan, Govindan
  email: rangaraj@math.iisc.ernet.in
  organization: Department of Mathematics and Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India
– sequence: 3
  givenname: Mingzhou
  surname: Ding
  fullname: Ding, Mingzhou
  email: ding@bme.ufl.edu
  organization: Department of Biomedical Engineering, University of Florida, 120 BME Building/P.O. Box 116131, Gainesville, FL 32611, USA
BookMark eNqFkE1r3DAQhkVIIMkmvyAXnXrzVpK1q3WhhxKaNhAo5OMs5PGYarGlrUZucX59tLs99ZDCwMzhfYaZ55KdhhiQsRspllLI9cftEgIFWiohVkshS8kTdiE3ZlMZZfRpmYUw1coIfc4uibaiUM1KX7DtU3atH3yeeew5zQF-phj8K3a8m4MbPRB3oeM7lzOmwPuYRpd9DNwHDnHaDSVJM2Uc6RN_xN8e_xw2xRF5QsCQS6NpyHTFzno3EF7_7Qv2cvf1-fZ79fDj2_3tl4cKlG5yZTbYbERd7lUoag1u1TltnHYGQQHIWrV9Bw1II1VrGt2vWwPQaugb03bK1Qv24bh3l-KvCSnb0RPgMLiAcSKrmrUyQooSbI5BSJEoYW_B58NzOTk_WCns3q7d2oNdu7drhSwlC1v_w-6SH12a_0N9PlJY_i-qkiXwGAA7X1xl20X_Lv8G0r6aaQ
CitedBy_id crossref_primary_10_1038_s41598_017_09440_6
crossref_primary_10_1088_0253_6102_58_5_11
crossref_primary_10_1016_j_chaos_2021_111375
crossref_primary_10_1016_j_cnsns_2008_07_002
crossref_primary_10_1209_0295_5075_81_20006
crossref_primary_10_1007_s11071_018_4169_2
crossref_primary_10_1016_j_nonrwa_2010_11_013
crossref_primary_10_1155_2014_341635
crossref_primary_10_1016_j_physleta_2010_06_065
Cites_doi 10.1103/PhysRevLett.76.1816
10.1103/PhysRevLett.80.2109
10.1016/S0375-9601(03)00447-X
10.1142/S0218127497001898
10.1103/PhysRevE.63.067201
10.1103/PhysRevLett.84.3049
10.1016/S0375-9601(02)00051-8
10.1103/PhysRevA.36.5820
10.1103/PhysRevLett.72.2009
10.1016/0375-9601(94)90114-7
10.1103/PhysRevE.61.5080
10.1103/PhysRevE.58.347
10.1016/S0893-6080(03)00136-9
10.1103/PhysRevE.62.6332
10.1143/PTP.69.32
10.1142/S0218127494000691
10.1103/PhysRevE.50.1874
10.1103/PhysRevA.49.1301
10.1098/rstb.1952.0012
10.1016/0167-2789(90)90089-8
10.1103/PhysRevLett.77.1751
10.1103/PhysRevE.56.4009
10.1016/0167-2789(86)90149-1
10.1007/BF00200803
10.1103/PhysRevE.65.016201
10.1142/S0218127497000431
10.1162/08997660152469350
10.1016/0375-9601(84)90388-8
10.1109/81.404047
10.1142/S0129065796000385
10.1016/0030-4018(93)90078-J
10.1103/PhysRevLett.65.1575
10.1103/PhysRevE.67.026209
10.1103/PhysRevLett.68.718
10.1103/PhysRevLett.78.4189
10.1103/PhysRevE.58.4440
10.1103/PhysRevE.60.2160
10.1103/PhysRevLett.77.5361
10.1016/S0006-3495(72)86068-5
10.1162/08997660152469332
10.1103/PhysRevE.62.2963
10.1103/PhysRevLett.74.4185
10.1016/0893-6080(89)90018-X
10.1016/S0167-2789(98)00300-5
10.1016/0375-9601(94)90947-4
10.1103/PhysRevE.63.036216
10.1088/0951-7715/1/4/001
10.1103/PhysRevE.54.2489
10.1016/S0375-9601(99)00417-X
10.1143/PTP.74.918
10.1103/PhysRevLett.70.279
10.1063/1.1412576
ContentType Journal Article
Copyright 2005 Elsevier B.V.
Copyright_xml – notice: 2005 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cnsns.2005.01.011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
EndPage 960
ExternalDocumentID 10_1016_j_cnsns_2005_01_011
S1007570405000353
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c249t-78e98030072e034ca5da47a4a7ec2cc132bfdc9c1712b794f6b7ccb4cf97bd2a3
ISSN 1007-5704
IngestDate Sat Sep 27 20:59:51 EDT 2025
Sat Nov 29 03:22:33 EST 2025
Tue Nov 18 21:18:56 EST 2025
Fri Feb 23 02:30:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Coupled dynamical systems
Chaotic synchronization
Generalized Turing patterns
07.05.Mh
05.45.Xt
89.75.Kd
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-78e98030072e034ca5da47a4a7ec2cc132bfdc9c1712b794f6b7ccb4cf97bd2a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29627010
PQPubID 23500
PageCount 27
ParticipantIDs proquest_miscellaneous_29627010
crossref_citationtrail_10_1016_j_cnsns_2005_01_011
crossref_primary_10_1016_j_cnsns_2005_01_011
elsevier_sciencedirect_doi_10_1016_j_cnsns_2005_01_011
PublicationCentury 2000
PublicationDate 20061201
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 20061201
  day: 01
PublicationDecade 2000
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2006
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Golub, Van Loan (bib18) 1996
Heagy, Pecora, Carroll (bib21) 1994; 50
Zhu, Chen (bib56) 2001; 63
Baird (bib1) 1990; 42
Gantmacher (bib15) 1964
Jost, Joy (bib27) 2002; 65
Fink, Johnson, Carroll, Mar, Pecora (bib11) 2000; 61
Brown, Rulkov (bib5) 1997; 78
Kocarev, Parlitz (bib29) 1996; 76
Ding, Yang (bib8) 1996; 54
Pasemann (bib38) 1999; 128
Rangarajan, Chen, Ding (bib43) 2003; 310
Hansel (bib20) 1996; 7
Rulkov, Sushchik (bib46) 1997; 7
Bresloff (bib4) 1999; 60
Roy, Thornburg (bib45) 1994; 72
Fujisaka, Yamada (bib13) 1983; 69
Hirsch, Smale (bib23) 1974
Li, Hopfield (bib30) 1989; 61
Wersing, Beyn, Ritter (bib50) 2001; 13
Turing (bib48) 1952; 237
Venkataramani (bib59) 1996; 77
Fujisaka, Yamada (bib14) 1985; 74
Murray (bib35) 1993
Glendinning (bib17) 1999; 259
Wu, Chua (bib53) 1994; 4
Hirsch (bib24) 1989; 2
Venkataramani (bib60) 1996; 54
Rangarajan, Ding (bib42) 2002; 296
Freeman (bib12) 1975
Filatrella, Straughn, Barbara (bib10) 2001; 90
Li, Erneux (bib31) 1993; 99
Munuzuri, Chua (bib34) 1997; 7
Rojas (bib44) 1996
Ashwin, Buescu, Stewart (bib58) 1994; 193
Gauthier, Bienfang (bib16) 1996; 77
Ding, Yang (bib9) 1997; 56
Truccolo, Rangarjan, Chen, Ding (bib47) 2004; 16
Zhan, Hu, Yang (bib55) 2000; 62
Winful, Rahman (bib52) 1990; 65
Otsuka, Kawai, Hwong, Ko, Chern (bib37) 2000; 84
Bunimovich, Sinai (bib6) 1988; 1
Horn, Johnson (bib25) 1985
Wilson, Cowan (bib51) 1972; 12
Belykh, Belykh, Hasler (bib2) 2000; 62
Li (bib33) 2001; 13
Waller, Kapral (bib49) 1984; 105
Kaneko (bib28) 1986; 23
Pecora, Carroll (bib40) 1998; 80
Belykh, Belykh, Mosekilde (bib3) 2001; 63
Platt, Spiegel, Tresser (bib41) 1993; 70
Li, Erneux (bib32) 1994; 49
Wu, Chua (bib54) 1995; 42
Ott, Sommerer (bib57) 1994; 188
Hu, Yang, Liu (bib26) 1998; 58
Hansel, Sompolinsky (bib19) 1992; 68
Chen, Rangarajan, Ding (bib7) 2003; 67
Heagy, Pecora, Carroll (bib22) 1995; 74
Oppo, Kapral (bib36) 1987; 36
Pecora (bib39) 1998; 58
Brown (10.1016/j.cnsns.2005.01.011_bib5) 1997; 78
Baird (10.1016/j.cnsns.2005.01.011_bib1) 1990; 42
Kaneko (10.1016/j.cnsns.2005.01.011_bib28) 1986; 23
Wilson (10.1016/j.cnsns.2005.01.011_bib51) 1972; 12
Li (10.1016/j.cnsns.2005.01.011_bib31) 1993; 99
Venkataramani (10.1016/j.cnsns.2005.01.011_bib59) 1996; 77
Heagy (10.1016/j.cnsns.2005.01.011_bib21) 1994; 50
Belykh (10.1016/j.cnsns.2005.01.011_bib2) 2000; 62
Roy (10.1016/j.cnsns.2005.01.011_bib45) 1994; 72
Golub (10.1016/j.cnsns.2005.01.011_bib18) 1996
Hansel (10.1016/j.cnsns.2005.01.011_bib20) 1996; 7
Pecora (10.1016/j.cnsns.2005.01.011_bib39) 1998; 58
Wersing (10.1016/j.cnsns.2005.01.011_bib50) 2001; 13
Gauthier (10.1016/j.cnsns.2005.01.011_bib16) 1996; 77
Jost (10.1016/j.cnsns.2005.01.011_bib27) 2002; 65
Ding (10.1016/j.cnsns.2005.01.011_bib9) 1997; 56
Hu (10.1016/j.cnsns.2005.01.011_bib26) 1998; 58
Li (10.1016/j.cnsns.2005.01.011_bib33) 2001; 13
Kocarev (10.1016/j.cnsns.2005.01.011_bib29) 1996; 76
Rangarajan (10.1016/j.cnsns.2005.01.011_bib43) 2003; 310
Fujisaka (10.1016/j.cnsns.2005.01.011_bib13) 1983; 69
Turing (10.1016/j.cnsns.2005.01.011_bib48) 1952; 237
Zhu (10.1016/j.cnsns.2005.01.011_bib56) 2001; 63
Venkataramani (10.1016/j.cnsns.2005.01.011_bib60) 1996; 54
Ott (10.1016/j.cnsns.2005.01.011_bib57) 1994; 188
Glendinning (10.1016/j.cnsns.2005.01.011_bib17) 1999; 259
Zhan (10.1016/j.cnsns.2005.01.011_bib55) 2000; 62
Platt (10.1016/j.cnsns.2005.01.011_bib41) 1993; 70
Ashwin (10.1016/j.cnsns.2005.01.011_bib58) 1994; 193
Horn (10.1016/j.cnsns.2005.01.011_bib25) 1985
Heagy (10.1016/j.cnsns.2005.01.011_bib22) 1995; 74
Li (10.1016/j.cnsns.2005.01.011_bib30) 1989; 61
Fujisaka (10.1016/j.cnsns.2005.01.011_bib14) 1985; 74
Ding (10.1016/j.cnsns.2005.01.011_bib8) 1996; 54
Bunimovich (10.1016/j.cnsns.2005.01.011_bib6) 1988; 1
Hirsch (10.1016/j.cnsns.2005.01.011_bib23) 1974
Li (10.1016/j.cnsns.2005.01.011_bib32) 1994; 49
Murray (10.1016/j.cnsns.2005.01.011_bib35) 1993
Otsuka (10.1016/j.cnsns.2005.01.011_bib37) 2000; 84
Hansel (10.1016/j.cnsns.2005.01.011_bib19) 1992; 68
Belykh (10.1016/j.cnsns.2005.01.011_bib3) 2001; 63
Wu (10.1016/j.cnsns.2005.01.011_bib53) 1994; 4
Chen (10.1016/j.cnsns.2005.01.011_bib7) 2003; 67
Filatrella (10.1016/j.cnsns.2005.01.011_bib10) 2001; 90
Munuzuri (10.1016/j.cnsns.2005.01.011_bib34) 1997; 7
Freeman (10.1016/j.cnsns.2005.01.011_bib12) 1975
Hirsch (10.1016/j.cnsns.2005.01.011_bib24) 1989; 2
Winful (10.1016/j.cnsns.2005.01.011_bib52) 1990; 65
Waller (10.1016/j.cnsns.2005.01.011_bib49) 1984; 105
Wu (10.1016/j.cnsns.2005.01.011_bib54) 1995; 42
Bresloff (10.1016/j.cnsns.2005.01.011_bib4) 1999; 60
Fink (10.1016/j.cnsns.2005.01.011_bib11) 2000; 61
Rojas (10.1016/j.cnsns.2005.01.011_bib44) 1996
Pasemann (10.1016/j.cnsns.2005.01.011_bib38) 1999; 128
Truccolo (10.1016/j.cnsns.2005.01.011_bib47) 2004; 16
Rangarajan (10.1016/j.cnsns.2005.01.011_bib42) 2002; 296
Rulkov (10.1016/j.cnsns.2005.01.011_bib46) 1997; 7
Oppo (10.1016/j.cnsns.2005.01.011_bib36) 1987; 36
Gantmacher (10.1016/j.cnsns.2005.01.011_bib15) 1964
Pecora (10.1016/j.cnsns.2005.01.011_bib40) 1998; 80
References_xml – volume: 42
  start-page: 430
  year: 1995
  end-page: 447
  ident: bib54
  article-title: Synchronization in an array of linearly coupled dynamical systems
  publication-title: IEEE Trans Circuits Syst I
– volume: 90
  start-page: 5675
  year: 2001
  end-page: 5679
  ident: bib10
  article-title: Emission of radiation from square arrays of stacked Josephson junctions
  publication-title: J Appl Phys
– volume: 60
  start-page: 2160
  year: 1999
  end-page: 2170
  ident: bib4
  article-title: Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses
  publication-title: Phys Rev E
– volume: 128
  start-page: 236
  year: 1999
  end-page: 249
  ident: bib38
  article-title: Synchronized chaos and other coherent states for two coupled neurons
  publication-title: Physica D
– volume: 65
  start-page: 016201
  year: 2002
  ident: bib27
  article-title: Spectral properties and synchronization in coupled map lattices
  publication-title: Phys Rev E
– volume: 296
  start-page: 204
  year: 2002
  end-page: 209
  ident: bib42
  article-title: Stability of synchronized chaos in coupled dynamical systems
  publication-title: Phys Lett A
– volume: 58
  start-page: 4440
  year: 1998
  end-page: 4453
  ident: bib26
  article-title: Instability and controllability of linearly coupled oscillators: eigenvalue analysis
  publication-title: Phys Rev E
– volume: 61
  start-page: 379
  year: 1989
  end-page: 392
  ident: bib30
  article-title: Modeling the olfactory bulb and its neural oscillatory processings
  publication-title: Biol Cybernet
– volume: 23
  start-page: 436
  year: 1986
  end-page: 447
  ident: bib28
  article-title: Lyapunov analysis and information flow in coupled map lattices
  publication-title: Physica D
– year: 1975
  ident: bib12
  article-title: Mass action in the nervous system
– volume: 72
  start-page: 2009
  year: 1994
  end-page: 2012
  ident: bib45
  article-title: Experimental synchronization of chaotic lasers
  publication-title: Phys Rev Lett
– volume: 50
  start-page: 1874
  year: 1994
  end-page: 1885
  ident: bib21
  article-title: Synchronous chaos in coupled oscillator systems
  publication-title: Phys Rev E
– volume: 193
  start-page: 126
  year: 1994
  end-page: 139
  ident: bib58
  article-title: Bubbling of attractors and synchronisation of chaotic oscillators
  publication-title: Phys Lett A
– volume: 1
  start-page: 491
  year: 1988
  end-page: 516
  ident: bib6
  article-title: Spacetime chaos in coupled map lattices
  publication-title: Nonlinearity
– volume: 78
  start-page: 4189
  year: 1997
  end-page: 4192
  ident: bib5
  article-title: Designing a coupling that guarantees synchronization between identical chaotic systems
  publication-title: Phys Rev Lett
– year: 1974
  ident: bib23
  article-title: Differential equations, dynamical systems, and linear algebra
– volume: 63
  start-page: 036216
  year: 2001
  ident: bib3
  article-title: Cluster synchronization modes in an ensemble of coupled chaotic oscillators
  publication-title: Phys Rev E
– volume: 2
  start-page: 331
  year: 1989
  end-page: 349
  ident: bib24
  article-title: Convergent activation dynamics in continuous time networks
  publication-title: Neural Networks
– volume: 62
  start-page: 6332
  year: 2000
  end-page: 6345
  ident: bib2
  article-title: Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems
  publication-title: Phys Rev E
– volume: 7
  start-page: 2807
  year: 1997
  end-page: 2825
  ident: bib34
  article-title: Stationary structures in a discrete bistable reaction–diffusion system
  publication-title: Int J Bifurc Chaos
– volume: 70
  start-page: 279
  year: 1993
  end-page: 282
  ident: bib41
  article-title: On–off intermittency: a mechanism for bursting
  publication-title: Phys Rev Lett
– volume: 105
  start-page: 163
  year: 1984
  end-page: 168
  ident: bib49
  article-title: Synchronization and chaos in coupled nonlinear oscillators
  publication-title: Phys Lett A
– volume: 13
  start-page: 1811
  year: 2001
  end-page: 1825
  ident: bib50
  article-title: Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions
  publication-title: Neural Comput
– volume: 80
  start-page: 2109
  year: 1998
  end-page: 2112
  ident: bib40
  article-title: Master stability functions for synchronized coupled systems
  publication-title: Phys Rev Lett
– volume: 62
  start-page: 2963
  year: 2000
  end-page: 2966
  ident: bib55
  article-title: Synchronization of chaos in coupled systems
  publication-title: Phys Rev E
– volume: 56
  start-page: 4009
  year: 1997
  end-page: 4016
  ident: bib9
  article-title: Stability of synchronous chaos and on–off intermittency in coupled map lattices
  publication-title: Phys Rev E
– volume: 76
  start-page: 1816
  year: 1996
  end-page: 1819
  ident: bib29
  article-title: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems
  publication-title: Phys Rev Lett
– volume: 74
  start-page: 918
  year: 1985
  end-page: 921
  ident: bib14
  article-title: A new intermittency in coupled dynamical systems
  publication-title: Prog Theor Phys
– volume: 84
  start-page: 3049
  year: 2000
  end-page: 3052
  ident: bib37
  article-title: Synchronization of mutually coupled self-mixing modulated lasers
  publication-title: Phys Rev Lett
– volume: 77
  start-page: 1751
  year: 1996
  end-page: 1754
  ident: bib16
  article-title: Intermittent loss of synchronization in coupled chaotic oscillators: toward a new criterion for high-quality synchronization
  publication-title: Phys Rev Lett
– year: 1996
  ident: bib44
  article-title: Neural networks—a systematic introduction
– year: 1985
  ident: bib25
  article-title: Matrix analysis
– volume: 77
  start-page: 5361
  year: 1996
  end-page: 5364
  ident: bib59
  article-title: Transitions to bubbling of chaotic systems
  publication-title: Phys Rev Lett
– volume: 7
  start-page: 625
  year: 1997
  end-page: 643
  ident: bib46
  article-title: Robustness of synchronized chaotic oscillations
  publication-title: Int J Bifurc Chaos
– volume: 99
  start-page: 196
  year: 1993
  end-page: 200
  ident: bib31
  article-title: Stability conditions for coupled lasers—series coupling versus parallel coupling
  publication-title: Opt Commun
– volume: 42
  start-page: 365
  year: 1990
  end-page: 384
  ident: bib1
  article-title: Bifurcation and category learning in network models of oscillating cortex
  publication-title: Physica D
– volume: 188
  start-page: 39
  year: 1994
  end-page: 47
  ident: bib57
  article-title: Blowout bifurcations: the occurrence of riddled basins and on–off intermittency
  publication-title: Phys Lett A
– volume: 63
  start-page: 067201
  year: 2001
  ident: bib56
  article-title: Controlling spatiotemporal chaos in coupled map lattices
  publication-title: Phys Rev E
– volume: 67
  start-page: 026209
  year: 2003
  ident: bib7
  article-title: General stability analysis of synchronized dynamics in coupled systems
  publication-title: Phys Rev E
– volume: 13
  start-page: 1749
  year: 2001
  end-page: 1780
  ident: bib33
  article-title: Computational design and nonlinear dynamics of a recurrent network model of the primary visual cortex
  publication-title: Neural Comput
– volume: 310
  start-page: 415
  year: 2003
  end-page: 422
  ident: bib43
  article-title: Generalized Turing patterns and their selective realization in spatiotemporal systems
  publication-title: Phys Lett A
– volume: 54
  start-page: 2489
  year: 1996
  end-page: 2494
  ident: bib8
  article-title: Observation of intermingled basins in coupled oscillators exhibiting synchronized chaos
  publication-title: Phys Rev E
– volume: 68
  start-page: 718
  year: 1992
  end-page: 721
  ident: bib19
  article-title: Synchronization and computation in a chaotic neural network
  publication-title: Phys Rev Lett
– volume: 58
  start-page: 347
  year: 1998
  end-page: 360
  ident: bib39
  article-title: Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems
  publication-title: Phys Rev E
– volume: 49
  start-page: 1301
  year: 1994
  end-page: 1312
  ident: bib32
  article-title: Bifurcation to standing and traveling waves in large arrays of coupled lasers
  publication-title: Phys Rev A
– year: 1993
  ident: bib35
  article-title: Mathematical biology
– volume: 4
  start-page: 979
  year: 1994
  end-page: 998
  ident: bib53
  article-title: A unified framework for synchronization and control of dynamical systems
  publication-title: Int J Bifurc Chaos
– volume: 54
  start-page: 1346
  year: 1996
  end-page: 1349
  ident: bib60
  article-title: Classical diffusion on Eden trees
  publication-title: Phys Rev Lett
– year: 1964
  ident: bib15
  article-title: Theory of matrices
– volume: 7
  start-page: 403
  year: 1996
  end-page: 415
  ident: bib20
  article-title: Synchronized chaos in local cortical circuits
  publication-title: Int J Neural Syst
– volume: 65
  start-page: 1575
  year: 1990
  end-page: 1578
  ident: bib52
  article-title: Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers
  publication-title: Phys Rev Lett
– volume: 74
  start-page: 2188
  year: 1995
  end-page: 4185
  ident: bib22
  article-title: Short wavelength bifurcations and size instabilities in coupled oscillator systems
  publication-title: Phys Rev Lett
– volume: 259
  start-page: 129
  year: 1999
  end-page: 134
  ident: bib17
  article-title: The stability boundary of synchronized states in globally coupled dynamical systems
  publication-title: Phys Lett A
– year: 1996
  ident: bib18
  article-title: Matrix computations
– volume: 36
  start-page: 5820
  year: 1987
  end-page: 5831
  ident: bib36
  article-title: Domain growth and nucleation in a discrete bistable system
  publication-title: Phys Rev A
– volume: 16
  start-page: 1453
  year: 2004
  end-page: 1460
  ident: bib47
  article-title: Analyzing stability of equilibrium points in neural networks: a general approach
  publication-title: Neural Networks
– volume: 61
  start-page: 5080
  year: 2000
  end-page: 5090
  ident: bib11
  article-title: Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays
  publication-title: Phys Rev E
– volume: 237
  start-page: 37
  year: 1952
  end-page: 72
  ident: bib48
  article-title: The chemical basis of morphogenesis
  publication-title: Phil Trans Roy Soc B
– volume: 12
  start-page: 1
  year: 1972
  end-page: 24
  ident: bib51
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophys J
– volume: 69
  start-page: 32
  year: 1983
  end-page: 47
  ident: bib13
  article-title: Stability theory of synchronized motion in coupled oscillator systems
  publication-title: Prog Theor Phys
– volume: 76
  start-page: 1816
  issue: 11
  year: 1996
  ident: 10.1016/j.cnsns.2005.01.011_bib29
  article-title: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.76.1816
– volume: 80
  start-page: 2109
  issue: 10
  year: 1998
  ident: 10.1016/j.cnsns.2005.01.011_bib40
  article-title: Master stability functions for synchronized coupled systems
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.80.2109
– volume: 54
  start-page: 1346
  year: 1996
  ident: 10.1016/j.cnsns.2005.01.011_bib60
  article-title: Classical diffusion on Eden trees
  publication-title: Phys Rev Lett
– volume: 310
  start-page: 415
  year: 2003
  ident: 10.1016/j.cnsns.2005.01.011_bib43
  article-title: Generalized Turing patterns and their selective realization in spatiotemporal systems
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(03)00447-X
– volume: 7
  start-page: 2807
  issue: 12
  year: 1997
  ident: 10.1016/j.cnsns.2005.01.011_bib34
  article-title: Stationary structures in a discrete bistable reaction–diffusion system
  publication-title: Int J Bifurc Chaos
  doi: 10.1142/S0218127497001898
– volume: 63
  start-page: 067201
  year: 2001
  ident: 10.1016/j.cnsns.2005.01.011_bib56
  article-title: Controlling spatiotemporal chaos in coupled map lattices
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.63.067201
– volume: 84
  start-page: 3049
  issue: 14
  year: 2000
  ident: 10.1016/j.cnsns.2005.01.011_bib37
  article-title: Synchronization of mutually coupled self-mixing modulated lasers
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.84.3049
– volume: 296
  start-page: 204
  issue: 4–5
  year: 2002
  ident: 10.1016/j.cnsns.2005.01.011_bib42
  article-title: Stability of synchronized chaos in coupled dynamical systems
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(02)00051-8
– year: 1996
  ident: 10.1016/j.cnsns.2005.01.011_bib44
– volume: 36
  start-page: 5820
  issue: 12
  year: 1987
  ident: 10.1016/j.cnsns.2005.01.011_bib36
  article-title: Domain growth and nucleation in a discrete bistable system
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.36.5820
– year: 1974
  ident: 10.1016/j.cnsns.2005.01.011_bib23
– volume: 72
  start-page: 2009
  issue: 13
  year: 1994
  ident: 10.1016/j.cnsns.2005.01.011_bib45
  article-title: Experimental synchronization of chaotic lasers
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.72.2009
– volume: 188
  start-page: 39
  year: 1994
  ident: 10.1016/j.cnsns.2005.01.011_bib57
  article-title: Blowout bifurcations: the occurrence of riddled basins and on–off intermittency
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(94)90114-7
– year: 1996
  ident: 10.1016/j.cnsns.2005.01.011_bib18
– volume: 61
  start-page: 5080
  issue: 5
  year: 2000
  ident: 10.1016/j.cnsns.2005.01.011_bib11
  article-title: Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.61.5080
– volume: 58
  start-page: 347
  issue: 1
  year: 1998
  ident: 10.1016/j.cnsns.2005.01.011_bib39
  article-title: Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.58.347
– volume: 16
  start-page: 1453
  year: 2004
  ident: 10.1016/j.cnsns.2005.01.011_bib47
  article-title: Analyzing stability of equilibrium points in neural networks: a general approach
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(03)00136-9
– volume: 62
  start-page: 6332
  issue: 5
  year: 2000
  ident: 10.1016/j.cnsns.2005.01.011_bib2
  article-title: Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.62.6332
– volume: 69
  start-page: 32
  issue: 1
  year: 1983
  ident: 10.1016/j.cnsns.2005.01.011_bib13
  article-title: Stability theory of synchronized motion in coupled oscillator systems
  publication-title: Prog Theor Phys
  doi: 10.1143/PTP.69.32
– year: 1985
  ident: 10.1016/j.cnsns.2005.01.011_bib25
– volume: 4
  start-page: 979
  issue: 4
  year: 1994
  ident: 10.1016/j.cnsns.2005.01.011_bib53
  article-title: A unified framework for synchronization and control of dynamical systems
  publication-title: Int J Bifurc Chaos
  doi: 10.1142/S0218127494000691
– volume: 50
  start-page: 1874
  issue: 3
  year: 1994
  ident: 10.1016/j.cnsns.2005.01.011_bib21
  article-title: Synchronous chaos in coupled oscillator systems
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.50.1874
– volume: 49
  start-page: 1301
  issue: 2
  year: 1994
  ident: 10.1016/j.cnsns.2005.01.011_bib32
  article-title: Bifurcation to standing and traveling waves in large arrays of coupled lasers
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.49.1301
– volume: 237
  start-page: 37
  issue: 64
  year: 1952
  ident: 10.1016/j.cnsns.2005.01.011_bib48
  article-title: The chemical basis of morphogenesis
  publication-title: Phil Trans Roy Soc B
  doi: 10.1098/rstb.1952.0012
– volume: 42
  start-page: 365
  issue: 1–3
  year: 1990
  ident: 10.1016/j.cnsns.2005.01.011_bib1
  article-title: Bifurcation and category learning in network models of oscillating cortex
  publication-title: Physica D
  doi: 10.1016/0167-2789(90)90089-8
– volume: 77
  start-page: 1751
  issue: 9
  year: 1996
  ident: 10.1016/j.cnsns.2005.01.011_bib16
  article-title: Intermittent loss of synchronization in coupled chaotic oscillators: toward a new criterion for high-quality synchronization
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.77.1751
– volume: 56
  start-page: 4009
  issue: 4
  year: 1997
  ident: 10.1016/j.cnsns.2005.01.011_bib9
  article-title: Stability of synchronous chaos and on–off intermittency in coupled map lattices
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.56.4009
– volume: 23
  start-page: 436
  issue: 1–3
  year: 1986
  ident: 10.1016/j.cnsns.2005.01.011_bib28
  article-title: Lyapunov analysis and information flow in coupled map lattices
  publication-title: Physica D
  doi: 10.1016/0167-2789(86)90149-1
– volume: 61
  start-page: 379
  issue: 5
  year: 1989
  ident: 10.1016/j.cnsns.2005.01.011_bib30
  article-title: Modeling the olfactory bulb and its neural oscillatory processings
  publication-title: Biol Cybernet
  doi: 10.1007/BF00200803
– volume: 65
  start-page: 016201
  year: 2002
  ident: 10.1016/j.cnsns.2005.01.011_bib27
  article-title: Spectral properties and synchronization in coupled map lattices
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.65.016201
– volume: 7
  start-page: 625
  issue: 3
  year: 1997
  ident: 10.1016/j.cnsns.2005.01.011_bib46
  article-title: Robustness of synchronized chaotic oscillations
  publication-title: Int J Bifurc Chaos
  doi: 10.1142/S0218127497000431
– volume: 13
  start-page: 1811
  issue: 8
  year: 2001
  ident: 10.1016/j.cnsns.2005.01.011_bib50
  article-title: Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions
  publication-title: Neural Comput
  doi: 10.1162/08997660152469350
– volume: 105
  start-page: 163
  issue: 4–5
  year: 1984
  ident: 10.1016/j.cnsns.2005.01.011_bib49
  article-title: Synchronization and chaos in coupled nonlinear oscillators
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(84)90388-8
– volume: 42
  start-page: 430
  issue: 8
  year: 1995
  ident: 10.1016/j.cnsns.2005.01.011_bib54
  article-title: Synchronization in an array of linearly coupled dynamical systems
  publication-title: IEEE Trans Circuits Syst I
  doi: 10.1109/81.404047
– volume: 7
  start-page: 403
  issue: 4
  year: 1996
  ident: 10.1016/j.cnsns.2005.01.011_bib20
  article-title: Synchronized chaos in local cortical circuits
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065796000385
– year: 1993
  ident: 10.1016/j.cnsns.2005.01.011_bib35
– volume: 99
  start-page: 196
  issue: 3–4
  year: 1993
  ident: 10.1016/j.cnsns.2005.01.011_bib31
  article-title: Stability conditions for coupled lasers—series coupling versus parallel coupling
  publication-title: Opt Commun
  doi: 10.1016/0030-4018(93)90078-J
– volume: 65
  start-page: 1575
  issue: 13
  year: 1990
  ident: 10.1016/j.cnsns.2005.01.011_bib52
  article-title: Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.65.1575
– volume: 67
  start-page: 026209
  year: 2003
  ident: 10.1016/j.cnsns.2005.01.011_bib7
  article-title: General stability analysis of synchronized dynamics in coupled systems
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.67.026209
– volume: 68
  start-page: 718
  issue: 5
  year: 1992
  ident: 10.1016/j.cnsns.2005.01.011_bib19
  article-title: Synchronization and computation in a chaotic neural network
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.68.718
– volume: 78
  start-page: 4189
  issue: 22
  year: 1997
  ident: 10.1016/j.cnsns.2005.01.011_bib5
  article-title: Designing a coupling that guarantees synchronization between identical chaotic systems
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.78.4189
– volume: 58
  start-page: 4440
  issue: 4
  year: 1998
  ident: 10.1016/j.cnsns.2005.01.011_bib26
  article-title: Instability and controllability of linearly coupled oscillators: eigenvalue analysis
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.58.4440
– volume: 60
  start-page: 2160
  issue: 2
  year: 1999
  ident: 10.1016/j.cnsns.2005.01.011_bib4
  article-title: Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.60.2160
– volume: 77
  start-page: 5361
  year: 1996
  ident: 10.1016/j.cnsns.2005.01.011_bib59
  article-title: Transitions to bubbling of chaotic systems
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.77.5361
– year: 1975
  ident: 10.1016/j.cnsns.2005.01.011_bib12
– volume: 12
  start-page: 1
  issue: 1
  year: 1972
  ident: 10.1016/j.cnsns.2005.01.011_bib51
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(72)86068-5
– volume: 13
  start-page: 1749
  issue: 8
  year: 2001
  ident: 10.1016/j.cnsns.2005.01.011_bib33
  article-title: Computational design and nonlinear dynamics of a recurrent network model of the primary visual cortex
  publication-title: Neural Comput
  doi: 10.1162/08997660152469332
– volume: 62
  start-page: 2963
  issue: 2
  year: 2000
  ident: 10.1016/j.cnsns.2005.01.011_bib55
  article-title: Synchronization of chaos in coupled systems
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.62.2963
– volume: 74
  start-page: 2188
  issue: 21
  year: 1995
  ident: 10.1016/j.cnsns.2005.01.011_bib22
  article-title: Short wavelength bifurcations and size instabilities in coupled oscillator systems
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.74.4185
– volume: 2
  start-page: 331
  issue: 5
  year: 1989
  ident: 10.1016/j.cnsns.2005.01.011_bib24
  article-title: Convergent activation dynamics in continuous time networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90018-X
– volume: 128
  start-page: 236
  issue: 2–4
  year: 1999
  ident: 10.1016/j.cnsns.2005.01.011_bib38
  article-title: Synchronized chaos and other coherent states for two coupled neurons
  publication-title: Physica D
  doi: 10.1016/S0167-2789(98)00300-5
– year: 1964
  ident: 10.1016/j.cnsns.2005.01.011_bib15
– volume: 193
  start-page: 126
  year: 1994
  ident: 10.1016/j.cnsns.2005.01.011_bib58
  article-title: Bubbling of attractors and synchronisation of chaotic oscillators
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(94)90947-4
– volume: 63
  start-page: 036216
  year: 2001
  ident: 10.1016/j.cnsns.2005.01.011_bib3
  article-title: Cluster synchronization modes in an ensemble of coupled chaotic oscillators
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.63.036216
– volume: 1
  start-page: 491
  issue: 4
  year: 1988
  ident: 10.1016/j.cnsns.2005.01.011_bib6
  article-title: Spacetime chaos in coupled map lattices
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/1/4/001
– volume: 54
  start-page: 2489
  issue: 3
  year: 1996
  ident: 10.1016/j.cnsns.2005.01.011_bib8
  article-title: Observation of intermingled basins in coupled oscillators exhibiting synchronized chaos
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.54.2489
– volume: 259
  start-page: 129
  issue: 2
  year: 1999
  ident: 10.1016/j.cnsns.2005.01.011_bib17
  article-title: The stability boundary of synchronized states in globally coupled dynamical systems
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(99)00417-X
– volume: 74
  start-page: 918
  issue: 4
  year: 1985
  ident: 10.1016/j.cnsns.2005.01.011_bib14
  article-title: A new intermittency in coupled dynamical systems
  publication-title: Prog Theor Phys
  doi: 10.1143/PTP.74.918
– volume: 70
  start-page: 279
  issue: 3
  year: 1993
  ident: 10.1016/j.cnsns.2005.01.011_bib41
  article-title: On–off intermittency: a mechanism for bursting
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.70.279
– volume: 90
  start-page: 5675
  issue: 11
  year: 2001
  ident: 10.1016/j.cnsns.2005.01.011_bib10
  article-title: Emission of radiation from square arrays of stacked Josephson junctions
  publication-title: J Appl Phys
  doi: 10.1063/1.1412576
SSID ssj0016954
Score 1.8431613
Snippet In arbitrarily coupled dynamical systems (maps or ordinary differential equations), the stability of synchronized states (including equilibrium point, periodic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 934
SubjectTerms Chaotic synchronization
Coupled dynamical systems
Generalized Turing patterns
Title Stability of synchronized dynamics and pattern formation in coupled systems: Review of some recent results
URI https://dx.doi.org/10.1016/j.cnsns.2005.01.011
https://www.proquest.com/docview/29627010
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaWlgdeuFHL6QfellRxLse8VVAuiQqJIi1PkY-k3VXqrDabqvTH8dsYH8luu6ICJKTIWVmOk818mRmP50DoZZbz2CQpCViqRJDIUAWMQkMEQBokQiVVbotN0MPDfDJhX0ajn30szFlNtc7Pz9n8v5Ia-oDYJnT2L8g9TAod8BuIDi2QHdo_Ijyoj9bh1W6dtz-0tOlvL0CxVK76vMvKPLeJNfUqenFsPdK7eQ0jXX5n7y3Xx7a0zampsWLcOeHUdrVLAjXkOVgPNbFettql4eCLcR88ZHCmO7dJVI_b6akvHrZyMnBc8Hujj08aL1TtLpQ-5gs-c9ba98YKolawfuvrsnyG88VJ012xZFz2CtkMsbEc2dhSU-pqFO-Vri-HpS8oXsklNk7W4Jqv8WTmraVOvDNXvmBDcjgjxmxP6la33tZG4CArQTm4L341D2WeKUztVmx8A21HNGUgGLb3Px5MPg37WBmzdfiGP9HnvbIehhu3-p1udEVLsKrP0V10269Z8L7D2j00KvV9dMevX7CXDu0DNBugh5sKr0MP99DDAD3soYcH6OGpxh562EPvNXbAszMB8LADHvbAe4i-vTs4evMh8LU8AgkL_GVA85LlIFBCGpVhnEieKp5QnnBaykhKEkeiUpJJQkkkQEZUmaBSikRWjAoV8fgR2gLUljsIEyKqmDMZqTxMaFyCylkpIWLgRVXGs3QXRf1bLKRPdG_qrdRF79E4K-yrNyVY0yIkcJBd9Gq4aO7yvFw_POvJU_hPyKmgBeDp-gtf9MQsgJGb3Tmuy6aDQaYMVkjCx_869RN0a_VVPUVby0VXPkM35dly2i6ee2T-Ai5UzIY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+synchronized+dynamics+and+pattern+formation+in+coupled+systems%3A+Review+of+some+recent+results&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Chen%2C+Yonghong&rft.au=Rangarajan%2C+Govindan&rft.au=Ding%2C+Mingzhou&rft.date=2006-12-01&rft.pub=Elsevier+B.V&rft.issn=1007-5704&rft.eissn=1878-7274&rft.volume=11&rft.issue=8&rft.spage=934&rft.epage=960&rft_id=info:doi/10.1016%2Fj.cnsns.2005.01.011&rft.externalDocID=S1007570405000353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon