Analysis of fractal dimension of mixed Riemann-Liouville integral

In this article, we provide a rigorous study on the fractal dimension of the graph of the mixed Riemann-Liouville fractional integral for various choices of continuous functions on a rectangular region. We estimate bounds for the box dimension and the Hausdorff dimension of the graph of the mixed Ri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 91; číslo 3; s. 1021 - 1046
Hlavní autoři: Chandra, Subhash, Abbas, Syed
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2022
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we provide a rigorous study on the fractal dimension of the graph of the mixed Riemann-Liouville fractional integral for various choices of continuous functions on a rectangular region. We estimate bounds for the box dimension and the Hausdorff dimension of the graph of the mixed Riemann-Liouville fractional integral of the functions which belong to the class of continuous functions and the class of Hölder continuous functions. We also show that the box dimension of the graph of the mixed Riemann-Liouville fractional integral of two-dimensional continuous functions is also two. Furthermore, we give the construction of unbounded variational continuous functions. Later, we prove that the box dimension and the Hausdorff dimension of the graph of the mixed Riemann-Liouville fractional integral of unbounded variational continuous functions are two. Moreover, we illustrate our results by using some examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-022-01290-2