Analysis of fractal dimension of mixed Riemann-Liouville integral
In this article, we provide a rigorous study on the fractal dimension of the graph of the mixed Riemann-Liouville fractional integral for various choices of continuous functions on a rectangular region. We estimate bounds for the box dimension and the Hausdorff dimension of the graph of the mixed Ri...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 91; číslo 3; s. 1021 - 1046 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.11.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article, we provide a rigorous study on the fractal dimension of the graph of the mixed Riemann-Liouville fractional integral for various choices of continuous functions on a rectangular region. We estimate bounds for the box dimension and the Hausdorff dimension of the graph of the mixed Riemann-Liouville fractional integral of the functions which belong to the class of continuous functions and the class of Hölder continuous functions. We also show that the box dimension of the graph of the mixed Riemann-Liouville fractional integral of two-dimensional continuous functions is also two. Furthermore, we give the construction of unbounded variational continuous functions. Later, we prove that the box dimension and the Hausdorff dimension of the graph of the mixed Riemann-Liouville fractional integral of unbounded variational continuous functions are two. Moreover, we illustrate our results by using some examples. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-022-01290-2 |