Counting independent sets in tricyclic graphs
Let G be a graph of order n in the class of tricyclic graphs. In this paper, we propose an algorithm to compute the number of independent sets of G in O(n) time.
Gespeichert in:
| Veröffentlicht in: | Discrete Applied Mathematics Jg. 331; S. 138 - 146 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
31.05.2023
|
| Schlagworte: | |
| ISSN: | 0166-218X, 1872-6771 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Let G be a graph of order n in the class of tricyclic graphs. In this paper, we propose an algorithm to compute the number of independent sets of G in O(n) time. |
|---|---|
| AbstractList | Let G be a graph of order n in the class of tricyclic graphs. In this paper, we propose an algorithm to compute the number of independent sets of G in O(n) time. |
| Author | Poureidi, Abolfazl |
| Author_xml | – sequence: 1 givenname: Abolfazl orcidid: 0000-0002-2506-0590 surname: Poureidi fullname: Poureidi, Abolfazl email: a.poureidi@shahroodut.ac.ir organization: Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran |
| BookMark | eNp9j81KAzEQgINUsK0-gLd9gV1nkt0kxZMU_6DgRcFbyCbTmtJmS7IKfXtT6tnL_DHfMN-MTeIQibFbhAYB5d228XbfcOCiAWyA6ws2Ra14LZXCCZuWHVlz1J9XbJbzFgCwdFNWL4fvOIa4qUL0dKAS4lhlGnMZVGMK7uh2wVWbZA9f-Zpdru0u081fnrOPp8f35Uu9ent-XT6sasfbxVirznquEJx0pARKry0JZXulSKBve-87KRai60kjF8Lp9cKBkiCpVLq1Ys7wfNelIedEa3NIYW_T0SCYk6_ZmuJrTr4G0BTfwtyfGSqP_QRKJrtA0ZEPidxo_BD-oX8BF5Re-A |
| Cites_doi | 10.1007/s12190-015-0898-2 10.1016/j.jda.2006.07.006 10.1007/s12190-015-0882-x 10.1016/j.camwa.2011.01.021 10.1016/j.ipl.2018.12.005 10.1016/j.ipl.2006.12.002 10.1016/j.dam.2013.08.045 10.1007/s12190-015-0887-5 10.1016/j.dam.2009.09.001 10.1016/j.dam.2016.08.017 10.1016/j.aml.2011.11.038 10.1016/j.dam.2014.05.034 10.1016/j.dam.2008.10.012 10.1016/j.dam.2022.09.006 10.1016/j.dam.2005.04.002 10.1080/00150517.1982.12430021 10.1007/s10910-006-9180-z 10.1007/s10910-006-9088-7 10.1137/0212053 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.dam.2023.01.028 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1872-6771 |
| EndPage | 146 |
| ExternalDocumentID | 10_1016_j_dam_2023_01_028 S0166218X23000367 |
| GroupedDBID | -~X ADEZE AFTJW ALMA_UNASSIGNED_HOLDINGS FDB OAUVE AAYXX AI. CITATION FA8 VH1 WUQ |
| ID | FETCH-LOGICAL-c249t-75ad2710c6ce7316d8ae37ab77e31d4bdd563935be81233c8f9c07606e8f984a3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000963950400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-218X |
| IngestDate | Sat Nov 29 07:24:02 EST 2025 Sat Apr 29 22:44:47 EDT 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Independent set Tricyclic graph Counting Linear-time algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c249t-75ad2710c6ce7316d8ae37ab77e31d4bdd563935be81233c8f9c07606e8f984a3 |
| ORCID | 0000-0002-2506-0590 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_dam_2023_01_028 elsevier_sciencedirect_doi_10_1016_j_dam_2023_01_028 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-31 |
| PublicationDateYYYYMMDD | 2023-05-31 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Discrete Applied Mathematics |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Liu, Zhuang, Liang (b11) 2015; 73 Lin, Chen (b10) 2017; 218 Li, Zhu (b8) 2009; 157 Wang, Tan, Zhu (b19) 2016; 51 Zhu, Li, Tan (b21) 2010; 158 Ji, Qu, Li (b7) 2015; 268 Chen, Li, Liu (b2) 2014; 177 Merrifield, Simmons (b13) 1989 Okamoto, Uno, Uehara (b14) 2008; 6 Provan, Ball (b17) 1983; 12 Dolati (b5) 2011; 61 Lin (b9) 2007; 102 Zhu, Lu (b22) 2016; 51 Wan, Tu, Dehmer, Zhang, Emmert-Streib (b18) 2019; 363 Zhu, Yu (b24) 2012; 25 Das, Elumalai, Ghosh, Mansour (b3) 2022; 322 Deng, Chen, Zhang (b4) 2008; 43 Pedersen, Vestergaard (b15) 2005; 152 Prodinger, Tichy (b16) 1982; 20 Dyer, Müller (b6) 2019; 144 Ashrafi, Dehghan-Zadeh, Habibi, John (b1) 2016; 50 Lv, Yu (b12) 2006; 56 Yu, Lv (b20) 2007; 41 Zhu, Tan, Qiu (b23) 2014; 162 Pedersen (10.1016/j.dam.2023.01.028_b15) 2005; 152 Provan (10.1016/j.dam.2023.01.028_b17) 1983; 12 Zhu (10.1016/j.dam.2023.01.028_b23) 2014; 162 Dolati (10.1016/j.dam.2023.01.028_b5) 2011; 61 Zhu (10.1016/j.dam.2023.01.028_b21) 2010; 158 Yu (10.1016/j.dam.2023.01.028_b20) 2007; 41 Das (10.1016/j.dam.2023.01.028_b3) 2022; 322 Lin (10.1016/j.dam.2023.01.028_b10) 2017; 218 Okamoto (10.1016/j.dam.2023.01.028_b14) 2008; 6 Zhu (10.1016/j.dam.2023.01.028_b24) 2012; 25 Deng (10.1016/j.dam.2023.01.028_b4) 2008; 43 Wang (10.1016/j.dam.2023.01.028_b19) 2016; 51 Wan (10.1016/j.dam.2023.01.028_b18) 2019; 363 Ashrafi (10.1016/j.dam.2023.01.028_b1) 2016; 50 Merrifield (10.1016/j.dam.2023.01.028_b13) 1989 Prodinger (10.1016/j.dam.2023.01.028_b16) 1982; 20 Chen (10.1016/j.dam.2023.01.028_b2) 2014; 177 Liu (10.1016/j.dam.2023.01.028_b11) 2015; 73 Lin (10.1016/j.dam.2023.01.028_b9) 2007; 102 Li (10.1016/j.dam.2023.01.028_b8) 2009; 157 Lv (10.1016/j.dam.2023.01.028_b12) 2006; 56 Dyer (10.1016/j.dam.2023.01.028_b6) 2019; 144 Ji (10.1016/j.dam.2023.01.028_b7) 2015; 268 Zhu (10.1016/j.dam.2023.01.028_b22) 2016; 51 |
| References_xml | – volume: 268 start-page: 590 year: 2015 end-page: 595 ident: b7 article-title: The reformulated Zagreb indices of tricyclic graphs publication-title: Appl. Math. Comput. – volume: 102 start-page: 143 year: 2007 end-page: 146 ident: b9 article-title: Fast and simple algorithms to count the number of vertex covers in an interval graph publication-title: Inform. Process. Lett. – volume: 144 start-page: 31 year: 2019 end-page: 36 ident: b6 article-title: Counting independent sets in cocomparability graphs publication-title: Inform. Process. Lett. – volume: 218 start-page: 113 year: 2017 end-page: 122 ident: b10 article-title: Counting independent sets in tree convex bipartite graphs publication-title: Discrete Appl. Math. – volume: 43 start-page: 75 year: 2008 end-page: 91 ident: b4 article-title: The Merrifield–Simmons index in publication-title: J. Math. Chem. – volume: 51 start-page: 1 year: 2016 end-page: 11 ident: b19 article-title: On the lower and upper bounds for different indices of tricyclic graphs publication-title: J. Appl. Math. Comput. – volume: 157 start-page: 1387 year: 2009 end-page: 1395 ident: b8 article-title: The number of independent sets in unicyclic graphs with a given diameter publication-title: Discrete Appl. Math. – volume: 6 start-page: 229 year: 2008 end-page: 242 ident: b14 article-title: Counting the number of independent sets in chordal graphs publication-title: J. Discrete Algorithms – volume: 25 start-page: 1327 year: 2012 end-page: 1334 ident: b24 article-title: The number of independent sets of tricyclic graphs publication-title: Appl. Math. Lett. – volume: 12 start-page: 777 year: 1983 end-page: 788 ident: b17 article-title: The complexity of counting cuts and of computing the probability that a graph is connected publication-title: SIAM J. Comput. – volume: 61 start-page: 1542 year: 2011 end-page: 1546 ident: b5 article-title: On the number of independent sets in cycle-separated tricyclic graphs publication-title: Comput. Math. Appl. – volume: 56 start-page: 605 year: 2006 end-page: 616 ident: b12 article-title: The Merrifield–Simmons indices and hosoya indices of trees with a given maximum degree publication-title: MATCH Commun. Math. Comput. Chem. – volume: 50 start-page: 511 year: 2016 end-page: 527 ident: b1 article-title: Maximum values of atom–bond connectivity index in the class of tricyclic graphs publication-title: J. Appl. Math. Comput. – volume: 20 start-page: 16 year: 1982 end-page: 21 ident: b16 article-title: Fibonacci numbers of graphs publication-title: Fibonacci Quart. – volume: 41 start-page: 33 year: 2007 end-page: 43 ident: b20 article-title: The Merrifield–Simmons indices and hosoya indices of trees with publication-title: J. Math. Chem. – volume: 322 start-page: 342 year: 2022 end-page: 354 ident: b3 article-title: On the Merrifield–Simmons index of tricyclic graphs publication-title: Discrete Appl. Math. – volume: 152 start-page: 246 year: 2005 end-page: 256 ident: b15 article-title: The number of independent sets in unicyclic graphs publication-title: Discrete Appl. Math. – volume: 363 year: 2019 ident: b18 article-title: Graph entropy based on the number of spanning forests of c-cyclic graphs publication-title: Appl. Math. Comput. – volume: 177 start-page: 71 year: 2014 end-page: 79 ident: b2 article-title: Tricyclic graphs with maximal revised Szeged index publication-title: Discrete Appl. Math. – volume: 73 start-page: 195 year: 2015 end-page: 224 ident: b11 article-title: Largest Hosoya index and smallest Merrifield–Simmons index in tricyclic graphs publication-title: MATCH Commun. Math. Comput. Chem. – volume: 158 start-page: 204 year: 2010 end-page: 212 ident: b21 article-title: Tricyclic graphs with maximum Merrifield–Simmons index publication-title: Discrete Appl. Math. – volume: 162 start-page: 364 year: 2014 end-page: 372 ident: b23 article-title: Tricyclic graph with maximal Estrada index publication-title: Discrete Appl. Math. – volume: 51 start-page: 177 year: 2016 end-page: 188 ident: b22 article-title: On the general sum-connectivity index of tricyclic graphs publication-title: J. Appl. Math. Comput. – year: 1989 ident: b13 article-title: Topological Methods in Chemistry – volume: 51 start-page: 177 year: 2016 ident: 10.1016/j.dam.2023.01.028_b22 article-title: On the general sum-connectivity index of tricyclic graphs publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-015-0898-2 – volume: 6 start-page: 229 year: 2008 ident: 10.1016/j.dam.2023.01.028_b14 article-title: Counting the number of independent sets in chordal graphs publication-title: J. Discrete Algorithms doi: 10.1016/j.jda.2006.07.006 – volume: 50 start-page: 511 year: 2016 ident: 10.1016/j.dam.2023.01.028_b1 article-title: Maximum values of atom–bond connectivity index in the class of tricyclic graphs publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-015-0882-x – volume: 61 start-page: 1542 year: 2011 ident: 10.1016/j.dam.2023.01.028_b5 article-title: On the number of independent sets in cycle-separated tricyclic graphs publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.01.021 – volume: 144 start-page: 31 year: 2019 ident: 10.1016/j.dam.2023.01.028_b6 article-title: Counting independent sets in cocomparability graphs publication-title: Inform. Process. Lett. doi: 10.1016/j.ipl.2018.12.005 – year: 1989 ident: 10.1016/j.dam.2023.01.028_b13 – volume: 102 start-page: 143 issue: 4 year: 2007 ident: 10.1016/j.dam.2023.01.028_b9 article-title: Fast and simple algorithms to count the number of vertex covers in an interval graph publication-title: Inform. Process. Lett. doi: 10.1016/j.ipl.2006.12.002 – volume: 162 start-page: 364 year: 2014 ident: 10.1016/j.dam.2023.01.028_b23 article-title: Tricyclic graph with maximal Estrada index publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2013.08.045 – volume: 51 start-page: 1 year: 2016 ident: 10.1016/j.dam.2023.01.028_b19 article-title: On the lower and upper bounds for different indices of tricyclic graphs publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-015-0887-5 – volume: 158 start-page: 204 year: 2010 ident: 10.1016/j.dam.2023.01.028_b21 article-title: Tricyclic graphs with maximum Merrifield–Simmons index publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2009.09.001 – volume: 268 start-page: 590 year: 2015 ident: 10.1016/j.dam.2023.01.028_b7 article-title: The reformulated Zagreb indices of tricyclic graphs publication-title: Appl. Math. Comput. – volume: 218 start-page: 113 year: 2017 ident: 10.1016/j.dam.2023.01.028_b10 article-title: Counting independent sets in tree convex bipartite graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2016.08.017 – volume: 25 start-page: 1327 year: 2012 ident: 10.1016/j.dam.2023.01.028_b24 article-title: The number of independent sets of tricyclic graphs publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.11.038 – volume: 177 start-page: 71 year: 2014 ident: 10.1016/j.dam.2023.01.028_b2 article-title: Tricyclic graphs with maximal revised Szeged index publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2014.05.034 – volume: 157 start-page: 1387 year: 2009 ident: 10.1016/j.dam.2023.01.028_b8 article-title: The number of independent sets in unicyclic graphs with a given diameter publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2008.10.012 – volume: 73 start-page: 195 year: 2015 ident: 10.1016/j.dam.2023.01.028_b11 article-title: Largest Hosoya index and smallest Merrifield–Simmons index in tricyclic graphs publication-title: MATCH Commun. Math. Comput. Chem. – volume: 322 start-page: 342 year: 2022 ident: 10.1016/j.dam.2023.01.028_b3 article-title: On the Merrifield–Simmons index of tricyclic graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2022.09.006 – volume: 152 start-page: 246 year: 2005 ident: 10.1016/j.dam.2023.01.028_b15 article-title: The number of independent sets in unicyclic graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2005.04.002 – volume: 20 start-page: 16 year: 1982 ident: 10.1016/j.dam.2023.01.028_b16 article-title: Fibonacci numbers of graphs publication-title: Fibonacci Quart. doi: 10.1080/00150517.1982.12430021 – volume: 43 start-page: 75 issue: 1 year: 2008 ident: 10.1016/j.dam.2023.01.028_b4 article-title: The Merrifield–Simmons index in (n,n+1)-graphs publication-title: J. Math. Chem. doi: 10.1007/s10910-006-9180-z – volume: 41 start-page: 33 issue: 1 year: 2007 ident: 10.1016/j.dam.2023.01.028_b20 article-title: The Merrifield–Simmons indices and hosoya indices of trees with k pendent vertices publication-title: J. Math. Chem. doi: 10.1007/s10910-006-9088-7 – volume: 56 start-page: 605 issue: 3 year: 2006 ident: 10.1016/j.dam.2023.01.028_b12 article-title: The Merrifield–Simmons indices and hosoya indices of trees with a given maximum degree publication-title: MATCH Commun. Math. Comput. Chem. – volume: 12 start-page: 777 issue: 4 year: 1983 ident: 10.1016/j.dam.2023.01.028_b17 article-title: The complexity of counting cuts and of computing the probability that a graph is connected publication-title: SIAM J. Comput. doi: 10.1137/0212053 – volume: 363 year: 2019 ident: 10.1016/j.dam.2023.01.028_b18 article-title: Graph entropy based on the number of spanning forests of c-cyclic graphs publication-title: Appl. Math. Comput. |
| SSID | ssj0001218 ssj0000186 ssj0006644 |
| Score | 2.3533342 |
| Snippet | Let G be a graph of order n in the class of tricyclic graphs. In this paper, we propose an algorithm to compute the number of independent sets of G in O(n)... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 138 |
| SubjectTerms | Counting Independent set Linear-time algorithm Tricyclic graph |
| Title | Counting independent sets in tricyclic graphs |
| URI | https://dx.doi.org/10.1016/j.dam.2023.01.028 |
| Volume | 331 |
| WOSCitedRecordID | wos000963950400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-6771 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001218 issn: 0166-218X databaseCode: AIEXJ dateStart: 20211213 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-6771 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001218 issn: 0166-218X databaseCode: AIEXJ dateStart: 20220331 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA66-aAP4hXv9MEnJbA1aZI-Dp2o4BiosLfSXAobUsVVUX-9J03TFS-ggi-lZMs4zdedfDk5-Q5Ch6FQlBLZxVZcClMRS5wyIHJKSxarkGUZdcUm-GAgRqN4WJWsm5blBHiei5eX-OFfoYY2ANsenf0F3PWPQgPcA-hwBdjh-iPgT3z1h3Fd4bY4npqiTHy1evyvygpbl0rV0yY3PR2DCwEOXTPTq1rStSbeQ7DAjHWZAtCT93dZ-nbXDByExO95-2jWpxMtLsDIGIZpf-TmB-cUBQ8x465Uivea_qCV83tdJ9FSTaFVVPGTd3aBggmYZDUAQuIEU8VsKqoTBK-tHdYMWCFZyRw-j9ohj2LRQu3eRX902ZAIs_p3iz6oNttDAi5FK2V390R-T7vM7vtgwtespME0blbQcrVECHoO2lU0Z_I1tNQAYx1hD3LQADmwIENDUIMcOJA30O1Z_-bkHFeFL7CC1XCBeZTqEKifYsrYymJapIbwVHJuSFdTqXXE7JFqaYCeEaJEFiu7w8oM3Amakk3Uyu9zs4WCDqHwIVfwVejItCQ6ijLD4K-bSRPqbXTkHzx5cPomiU_8myQwSokdpaTTTWCUthH1Q5NUBM0RrwQQ_r7bzt-67aLF2Wu7h1rF45PZRwvquRhPHw-q9-AdQ2JaTg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counting+independent+sets+in+tricyclic+graphs&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Poureidi%2C+Abolfazl&rft.date=2023-05-31&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=331&rft.spage=138&rft.epage=146&rft_id=info:doi/10.1016%2Fj.dam.2023.01.028&rft.externalDocID=S0166218X23000367 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |