Counting independent sets in tricyclic graphs

Let G be a graph of order n in the class of tricyclic graphs. In this paper, we propose an algorithm to compute the number of independent sets of G in O(n) time.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics Jg. 331; S. 138 - 146
1. Verfasser: Poureidi, Abolfazl
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 31.05.2023
Schlagworte:
ISSN:0166-218X, 1872-6771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Let G be a graph of order n in the class of tricyclic graphs. In this paper, we propose an algorithm to compute the number of independent sets of G in O(n) time.
AbstractList Let G be a graph of order n in the class of tricyclic graphs. In this paper, we propose an algorithm to compute the number of independent sets of G in O(n) time.
Author Poureidi, Abolfazl
Author_xml – sequence: 1
  givenname: Abolfazl
  orcidid: 0000-0002-2506-0590
  surname: Poureidi
  fullname: Poureidi, Abolfazl
  email: a.poureidi@shahroodut.ac.ir
  organization: Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran
BookMark eNp9j81KAzEQgINUsK0-gLd9gV1nkt0kxZMU_6DgRcFbyCbTmtJmS7IKfXtT6tnL_DHfMN-MTeIQibFbhAYB5d228XbfcOCiAWyA6ws2Ra14LZXCCZuWHVlz1J9XbJbzFgCwdFNWL4fvOIa4qUL0dKAS4lhlGnMZVGMK7uh2wVWbZA9f-Zpdru0u081fnrOPp8f35Uu9ent-XT6sasfbxVirznquEJx0pARKry0JZXulSKBve-87KRai60kjF8Lp9cKBkiCpVLq1Ys7wfNelIedEa3NIYW_T0SCYk6_ZmuJrTr4G0BTfwtyfGSqP_QRKJrtA0ZEPidxo_BD-oX8BF5Re-A
Cites_doi 10.1007/s12190-015-0898-2
10.1016/j.jda.2006.07.006
10.1007/s12190-015-0882-x
10.1016/j.camwa.2011.01.021
10.1016/j.ipl.2018.12.005
10.1016/j.ipl.2006.12.002
10.1016/j.dam.2013.08.045
10.1007/s12190-015-0887-5
10.1016/j.dam.2009.09.001
10.1016/j.dam.2016.08.017
10.1016/j.aml.2011.11.038
10.1016/j.dam.2014.05.034
10.1016/j.dam.2008.10.012
10.1016/j.dam.2022.09.006
10.1016/j.dam.2005.04.002
10.1080/00150517.1982.12430021
10.1007/s10910-006-9180-z
10.1007/s10910-006-9088-7
10.1137/0212053
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.dam.2023.01.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 146
ExternalDocumentID 10_1016_j_dam_2023_01_028
S0166218X23000367
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
ID FETCH-LOGICAL-c249t-75ad2710c6ce7316d8ae37ab77e31d4bdd563935be81233c8f9c07606e8f984a3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000963950400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Sat Nov 29 07:24:02 EST 2025
Sat Apr 29 22:44:47 EDT 2023
IsPeerReviewed true
IsScholarly true
Keywords Independent set
Tricyclic graph
Counting
Linear-time algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-75ad2710c6ce7316d8ae37ab77e31d4bdd563935be81233c8f9c07606e8f984a3
ORCID 0000-0002-2506-0590
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_dam_2023_01_028
elsevier_sciencedirect_doi_10_1016_j_dam_2023_01_028
PublicationCentury 2000
PublicationDate 2023-05-31
PublicationDateYYYYMMDD 2023-05-31
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-31
  day: 31
PublicationDecade 2020
PublicationTitle Discrete Applied Mathematics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Zhuang, Liang (b11) 2015; 73
Lin, Chen (b10) 2017; 218
Li, Zhu (b8) 2009; 157
Wang, Tan, Zhu (b19) 2016; 51
Zhu, Li, Tan (b21) 2010; 158
Ji, Qu, Li (b7) 2015; 268
Chen, Li, Liu (b2) 2014; 177
Merrifield, Simmons (b13) 1989
Okamoto, Uno, Uehara (b14) 2008; 6
Provan, Ball (b17) 1983; 12
Dolati (b5) 2011; 61
Lin (b9) 2007; 102
Zhu, Lu (b22) 2016; 51
Wan, Tu, Dehmer, Zhang, Emmert-Streib (b18) 2019; 363
Zhu, Yu (b24) 2012; 25
Das, Elumalai, Ghosh, Mansour (b3) 2022; 322
Deng, Chen, Zhang (b4) 2008; 43
Pedersen, Vestergaard (b15) 2005; 152
Prodinger, Tichy (b16) 1982; 20
Dyer, Müller (b6) 2019; 144
Ashrafi, Dehghan-Zadeh, Habibi, John (b1) 2016; 50
Lv, Yu (b12) 2006; 56
Yu, Lv (b20) 2007; 41
Zhu, Tan, Qiu (b23) 2014; 162
Pedersen (10.1016/j.dam.2023.01.028_b15) 2005; 152
Provan (10.1016/j.dam.2023.01.028_b17) 1983; 12
Zhu (10.1016/j.dam.2023.01.028_b23) 2014; 162
Dolati (10.1016/j.dam.2023.01.028_b5) 2011; 61
Zhu (10.1016/j.dam.2023.01.028_b21) 2010; 158
Yu (10.1016/j.dam.2023.01.028_b20) 2007; 41
Das (10.1016/j.dam.2023.01.028_b3) 2022; 322
Lin (10.1016/j.dam.2023.01.028_b10) 2017; 218
Okamoto (10.1016/j.dam.2023.01.028_b14) 2008; 6
Zhu (10.1016/j.dam.2023.01.028_b24) 2012; 25
Deng (10.1016/j.dam.2023.01.028_b4) 2008; 43
Wang (10.1016/j.dam.2023.01.028_b19) 2016; 51
Wan (10.1016/j.dam.2023.01.028_b18) 2019; 363
Ashrafi (10.1016/j.dam.2023.01.028_b1) 2016; 50
Merrifield (10.1016/j.dam.2023.01.028_b13) 1989
Prodinger (10.1016/j.dam.2023.01.028_b16) 1982; 20
Chen (10.1016/j.dam.2023.01.028_b2) 2014; 177
Liu (10.1016/j.dam.2023.01.028_b11) 2015; 73
Lin (10.1016/j.dam.2023.01.028_b9) 2007; 102
Li (10.1016/j.dam.2023.01.028_b8) 2009; 157
Lv (10.1016/j.dam.2023.01.028_b12) 2006; 56
Dyer (10.1016/j.dam.2023.01.028_b6) 2019; 144
Ji (10.1016/j.dam.2023.01.028_b7) 2015; 268
Zhu (10.1016/j.dam.2023.01.028_b22) 2016; 51
References_xml – volume: 268
  start-page: 590
  year: 2015
  end-page: 595
  ident: b7
  article-title: The reformulated Zagreb indices of tricyclic graphs
  publication-title: Appl. Math. Comput.
– volume: 102
  start-page: 143
  year: 2007
  end-page: 146
  ident: b9
  article-title: Fast and simple algorithms to count the number of vertex covers in an interval graph
  publication-title: Inform. Process. Lett.
– volume: 144
  start-page: 31
  year: 2019
  end-page: 36
  ident: b6
  article-title: Counting independent sets in cocomparability graphs
  publication-title: Inform. Process. Lett.
– volume: 218
  start-page: 113
  year: 2017
  end-page: 122
  ident: b10
  article-title: Counting independent sets in tree convex bipartite graphs
  publication-title: Discrete Appl. Math.
– volume: 43
  start-page: 75
  year: 2008
  end-page: 91
  ident: b4
  article-title: The Merrifield–Simmons index in
  publication-title: J. Math. Chem.
– volume: 51
  start-page: 1
  year: 2016
  end-page: 11
  ident: b19
  article-title: On the lower and upper bounds for different indices of tricyclic graphs
  publication-title: J. Appl. Math. Comput.
– volume: 157
  start-page: 1387
  year: 2009
  end-page: 1395
  ident: b8
  article-title: The number of independent sets in unicyclic graphs with a given diameter
  publication-title: Discrete Appl. Math.
– volume: 6
  start-page: 229
  year: 2008
  end-page: 242
  ident: b14
  article-title: Counting the number of independent sets in chordal graphs
  publication-title: J. Discrete Algorithms
– volume: 25
  start-page: 1327
  year: 2012
  end-page: 1334
  ident: b24
  article-title: The number of independent sets of tricyclic graphs
  publication-title: Appl. Math. Lett.
– volume: 12
  start-page: 777
  year: 1983
  end-page: 788
  ident: b17
  article-title: The complexity of counting cuts and of computing the probability that a graph is connected
  publication-title: SIAM J. Comput.
– volume: 61
  start-page: 1542
  year: 2011
  end-page: 1546
  ident: b5
  article-title: On the number of independent sets in cycle-separated tricyclic graphs
  publication-title: Comput. Math. Appl.
– volume: 56
  start-page: 605
  year: 2006
  end-page: 616
  ident: b12
  article-title: The Merrifield–Simmons indices and hosoya indices of trees with a given maximum degree
  publication-title: MATCH Commun. Math. Comput. Chem.
– volume: 50
  start-page: 511
  year: 2016
  end-page: 527
  ident: b1
  article-title: Maximum values of atom–bond connectivity index in the class of tricyclic graphs
  publication-title: J. Appl. Math. Comput.
– volume: 20
  start-page: 16
  year: 1982
  end-page: 21
  ident: b16
  article-title: Fibonacci numbers of graphs
  publication-title: Fibonacci Quart.
– volume: 41
  start-page: 33
  year: 2007
  end-page: 43
  ident: b20
  article-title: The Merrifield–Simmons indices and hosoya indices of trees with
  publication-title: J. Math. Chem.
– volume: 322
  start-page: 342
  year: 2022
  end-page: 354
  ident: b3
  article-title: On the Merrifield–Simmons index of tricyclic graphs
  publication-title: Discrete Appl. Math.
– volume: 152
  start-page: 246
  year: 2005
  end-page: 256
  ident: b15
  article-title: The number of independent sets in unicyclic graphs
  publication-title: Discrete Appl. Math.
– volume: 363
  year: 2019
  ident: b18
  article-title: Graph entropy based on the number of spanning forests of c-cyclic graphs
  publication-title: Appl. Math. Comput.
– volume: 177
  start-page: 71
  year: 2014
  end-page: 79
  ident: b2
  article-title: Tricyclic graphs with maximal revised Szeged index
  publication-title: Discrete Appl. Math.
– volume: 73
  start-page: 195
  year: 2015
  end-page: 224
  ident: b11
  article-title: Largest Hosoya index and smallest Merrifield–Simmons index in tricyclic graphs
  publication-title: MATCH Commun. Math. Comput. Chem.
– volume: 158
  start-page: 204
  year: 2010
  end-page: 212
  ident: b21
  article-title: Tricyclic graphs with maximum Merrifield–Simmons index
  publication-title: Discrete Appl. Math.
– volume: 162
  start-page: 364
  year: 2014
  end-page: 372
  ident: b23
  article-title: Tricyclic graph with maximal Estrada index
  publication-title: Discrete Appl. Math.
– volume: 51
  start-page: 177
  year: 2016
  end-page: 188
  ident: b22
  article-title: On the general sum-connectivity index of tricyclic graphs
  publication-title: J. Appl. Math. Comput.
– year: 1989
  ident: b13
  article-title: Topological Methods in Chemistry
– volume: 51
  start-page: 177
  year: 2016
  ident: 10.1016/j.dam.2023.01.028_b22
  article-title: On the general sum-connectivity index of tricyclic graphs
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-015-0898-2
– volume: 6
  start-page: 229
  year: 2008
  ident: 10.1016/j.dam.2023.01.028_b14
  article-title: Counting the number of independent sets in chordal graphs
  publication-title: J. Discrete Algorithms
  doi: 10.1016/j.jda.2006.07.006
– volume: 50
  start-page: 511
  year: 2016
  ident: 10.1016/j.dam.2023.01.028_b1
  article-title: Maximum values of atom–bond connectivity index in the class of tricyclic graphs
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-015-0882-x
– volume: 61
  start-page: 1542
  year: 2011
  ident: 10.1016/j.dam.2023.01.028_b5
  article-title: On the number of independent sets in cycle-separated tricyclic graphs
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.01.021
– volume: 144
  start-page: 31
  year: 2019
  ident: 10.1016/j.dam.2023.01.028_b6
  article-title: Counting independent sets in cocomparability graphs
  publication-title: Inform. Process. Lett.
  doi: 10.1016/j.ipl.2018.12.005
– year: 1989
  ident: 10.1016/j.dam.2023.01.028_b13
– volume: 102
  start-page: 143
  issue: 4
  year: 2007
  ident: 10.1016/j.dam.2023.01.028_b9
  article-title: Fast and simple algorithms to count the number of vertex covers in an interval graph
  publication-title: Inform. Process. Lett.
  doi: 10.1016/j.ipl.2006.12.002
– volume: 162
  start-page: 364
  year: 2014
  ident: 10.1016/j.dam.2023.01.028_b23
  article-title: Tricyclic graph with maximal Estrada index
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2013.08.045
– volume: 51
  start-page: 1
  year: 2016
  ident: 10.1016/j.dam.2023.01.028_b19
  article-title: On the lower and upper bounds for different indices of tricyclic graphs
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-015-0887-5
– volume: 158
  start-page: 204
  year: 2010
  ident: 10.1016/j.dam.2023.01.028_b21
  article-title: Tricyclic graphs with maximum Merrifield–Simmons index
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2009.09.001
– volume: 268
  start-page: 590
  year: 2015
  ident: 10.1016/j.dam.2023.01.028_b7
  article-title: The reformulated Zagreb indices of tricyclic graphs
  publication-title: Appl. Math. Comput.
– volume: 218
  start-page: 113
  year: 2017
  ident: 10.1016/j.dam.2023.01.028_b10
  article-title: Counting independent sets in tree convex bipartite graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2016.08.017
– volume: 25
  start-page: 1327
  year: 2012
  ident: 10.1016/j.dam.2023.01.028_b24
  article-title: The number of independent sets of tricyclic graphs
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.11.038
– volume: 177
  start-page: 71
  year: 2014
  ident: 10.1016/j.dam.2023.01.028_b2
  article-title: Tricyclic graphs with maximal revised Szeged index
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2014.05.034
– volume: 157
  start-page: 1387
  year: 2009
  ident: 10.1016/j.dam.2023.01.028_b8
  article-title: The number of independent sets in unicyclic graphs with a given diameter
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2008.10.012
– volume: 73
  start-page: 195
  year: 2015
  ident: 10.1016/j.dam.2023.01.028_b11
  article-title: Largest Hosoya index and smallest Merrifield–Simmons index in tricyclic graphs
  publication-title: MATCH Commun. Math. Comput. Chem.
– volume: 322
  start-page: 342
  year: 2022
  ident: 10.1016/j.dam.2023.01.028_b3
  article-title: On the Merrifield–Simmons index of tricyclic graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2022.09.006
– volume: 152
  start-page: 246
  year: 2005
  ident: 10.1016/j.dam.2023.01.028_b15
  article-title: The number of independent sets in unicyclic graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2005.04.002
– volume: 20
  start-page: 16
  year: 1982
  ident: 10.1016/j.dam.2023.01.028_b16
  article-title: Fibonacci numbers of graphs
  publication-title: Fibonacci Quart.
  doi: 10.1080/00150517.1982.12430021
– volume: 43
  start-page: 75
  issue: 1
  year: 2008
  ident: 10.1016/j.dam.2023.01.028_b4
  article-title: The Merrifield–Simmons index in (n,n+1)-graphs
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-006-9180-z
– volume: 41
  start-page: 33
  issue: 1
  year: 2007
  ident: 10.1016/j.dam.2023.01.028_b20
  article-title: The Merrifield–Simmons indices and hosoya indices of trees with k pendent vertices
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-006-9088-7
– volume: 56
  start-page: 605
  issue: 3
  year: 2006
  ident: 10.1016/j.dam.2023.01.028_b12
  article-title: The Merrifield–Simmons indices and hosoya indices of trees with a given maximum degree
  publication-title: MATCH Commun. Math. Comput. Chem.
– volume: 12
  start-page: 777
  issue: 4
  year: 1983
  ident: 10.1016/j.dam.2023.01.028_b17
  article-title: The complexity of counting cuts and of computing the probability that a graph is connected
  publication-title: SIAM J. Comput.
  doi: 10.1137/0212053
– volume: 363
  year: 2019
  ident: 10.1016/j.dam.2023.01.028_b18
  article-title: Graph entropy based on the number of spanning forests of c-cyclic graphs
  publication-title: Appl. Math. Comput.
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.3533342
Snippet Let G be a graph of order n in the class of tricyclic graphs. In this paper, we propose an algorithm to compute the number of independent sets of G in O(n)...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 138
SubjectTerms Counting
Independent set
Linear-time algorithm
Tricyclic graph
Title Counting independent sets in tricyclic graphs
URI https://dx.doi.org/10.1016/j.dam.2023.01.028
Volume 331
WOSCitedRecordID wos000963950400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20211213
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20220331
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA66-aAP4hXv9MEnJbA1aZI-Dp2o4BiosLfSXAobUsVVUX-9J03TFS-ggi-lZMs4zdedfDk5-Q5Ch6FQlBLZxVZcClMRS5wyIHJKSxarkGUZdcUm-GAgRqN4WJWsm5blBHiei5eX-OFfoYY2ANsenf0F3PWPQgPcA-hwBdjh-iPgT3z1h3Fd4bY4npqiTHy1evyvygpbl0rV0yY3PR2DCwEOXTPTq1rStSbeQ7DAjHWZAtCT93dZ-nbXDByExO95-2jWpxMtLsDIGIZpf-TmB-cUBQ8x465Uivea_qCV83tdJ9FSTaFVVPGTd3aBggmYZDUAQuIEU8VsKqoTBK-tHdYMWCFZyRw-j9ohj2LRQu3eRX902ZAIs_p3iz6oNttDAi5FK2V390R-T7vM7vtgwtespME0blbQcrVECHoO2lU0Z_I1tNQAYx1hD3LQADmwIENDUIMcOJA30O1Z_-bkHFeFL7CC1XCBeZTqEKifYsrYymJapIbwVHJuSFdTqXXE7JFqaYCeEaJEFiu7w8oM3Amakk3Uyu9zs4WCDqHwIVfwVejItCQ6ijLD4K-bSRPqbXTkHzx5cPomiU_8myQwSokdpaTTTWCUthH1Q5NUBM0RrwQQ_r7bzt-67aLF2Wu7h1rF45PZRwvquRhPHw-q9-AdQ2JaTg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counting+independent+sets+in+tricyclic+graphs&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Poureidi%2C+Abolfazl&rft.date=2023-05-31&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=331&rft.spage=138&rft.epage=146&rft_id=info:doi/10.1016%2Fj.dam.2023.01.028&rft.externalDocID=S0166218X23000367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon