An efficient algorithm for solving nonlinear Volterra–Fredholm integral equations
In this work, we develop a new effective method for solving nonlinear Volterra–Fredholm integral equation. The existence of any ε-approximate solution is proved. At the same time, an effective method for obtaining the ε-approximate solution is established. The final numerical examples illustrate tha...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 259; s. 614 - 619 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.05.2015
|
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this work, we develop a new effective method for solving nonlinear Volterra–Fredholm integral equation. The existence of any ε-approximate solution is proved. At the same time, an effective method for obtaining the ε-approximate solution is established. The final numerical examples illustrate that our approach is valid not only for weakly nonlinear problems but also for strongly nonlinear problems. |
|---|---|
| AbstractList | In this work, we develop a new effective method for solving nonlinear Volterra–Fredholm integral equation. The existence of any ε-approximate solution is proved. At the same time, an effective method for obtaining the ε-approximate solution is established. The final numerical examples illustrate that our approach is valid not only for weakly nonlinear problems but also for strongly nonlinear problems. |
| Author | Chen, Zhong Jiang, Wei |
| Author_xml | – sequence: 1 givenname: Zhong surname: Chen fullname: Chen, Zhong email: cz0309@sina.com – sequence: 2 givenname: Wei surname: Jiang fullname: Jiang, Wei |
| BookMark | eNp9kDtOAzEQhi0UJJLAAeh8gV3G633EoooiQpAiUfBoLcc7Thzt2mCbSHTcgRtyEjYKNdUUv76Zf74JGTnvkJBrBjkDVt_sc9XrvABW5VDk0IgzMmazhmdVXYoRGQOIOuMA_IJMYtwDQFOzckye5o6iMVZbdImqbuuDTbueGh9o9N3Bui0dTnXWoQr01XcJQ1A_X9_LgO3Odz21LuE2qI7i-4dK1rt4Sc6N6iJe_c0peVnePS9W2frx_mExX2e6KEXKahRg6nrWtEJw5FUJoDcMlTKoTbXRbcuN4IwVgKopWgXlkGreMFAbIyrgU8JOe3XwMQY08i3YXoVPyUAerci9HKzIoxUJhRysDMzticGh2MFikPH4usbWBtRJtt7-Q_8CmtBvXQ |
| Cites_doi | 10.1016/S0096-3003(00)00165-X 10.1016/j.procs.2010.12.192 10.1016/j.aej.2013.02.004 10.1016/j.amc.2011.11.013 10.1016/j.cnsns.2011.04.023 10.1016/j.amc.2006.06.016 10.1016/S0096-3003(01)00020-0 10.1016/j.matcom.2005.02.035 10.1016/j.amc.2006.10.015 10.1016/j.amc.2005.12.034 10.1016/j.chaos.2005.12.058 10.1016/j.cnsns.2010.06.013 10.1007/978-3-642-21449-3_9 10.1016/j.camwa.2009.03.083 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Inc. |
| Copyright_xml | – notice: 2015 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.amc.2015.02.079 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1873-5649 |
| EndPage | 619 |
| ExternalDocumentID | 10_1016_j_amc_2015_02_079 S0096300315002799 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW TAE VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c249t-6e90f6687d993e35400cb1eaafecf5bcdd3f931120ea72da04b1ec3710abf9503 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353393700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Sat Nov 29 02:52:12 EST 2025 Fri Feb 23 02:31:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Nonlinear integral equation ε-Approximate solution Volterra-Fredholm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c249t-6e90f6687d993e35400cb1eaafecf5bcdd3f931120ea72da04b1ec3710abf9503 |
| PageCount | 6 |
| ParticipantIDs | crossref_primary_10_1016_j_amc_2015_02_079 elsevier_sciencedirect_doi_10_1016_j_amc_2015_02_079 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05-15 |
| PublicationDateYYYYMMDD | 2015-05-15 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2015 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Parand, Rad (b0050) 2012; 218 Maleknejad, Hashemizadeh, Basirat (b0055) 2012; 17 Zarebnia (b0065) 2013; 3 Wazwaz (b0070) 2011 Cui, Du (b0020) 2006; 182 Ordokhani (b0040) 2006; 180 Wazwaz (b0015) 2002; 127 Hashemizadeh, Maleknejad, Basirat (b0075) 2011; 3 Yalcinbas (b0005) 2002; 127 Bildik, Inc (b0010) 2007; 33 Marzban, Tabrizidooz, Razzaghi (b0035) 2011; 16 Ghasemi, Kajani, Babolian (b0030) 2007; 188 Yousefi, Lotfi, Dehghan (b0045) 2009; 58 Yousefi, Razzaghi (b0025) 2005; 70 Mirzaee, Hoseini (b0060) 2013; 52 Marzban (10.1016/j.amc.2015.02.079_b0035) 2011; 16 Parand (10.1016/j.amc.2015.02.079_b0050) 2012; 218 Maleknejad (10.1016/j.amc.2015.02.079_b0055) 2012; 17 Hashemizadeh (10.1016/j.amc.2015.02.079_b0075) 2011; 3 Zarebnia (10.1016/j.amc.2015.02.079_b0065) 2013; 3 Yousefi (10.1016/j.amc.2015.02.079_b0045) 2009; 58 Mirzaee (10.1016/j.amc.2015.02.079_b0060) 2013; 52 Bildik (10.1016/j.amc.2015.02.079_b0010) 2007; 33 Ghasemi (10.1016/j.amc.2015.02.079_b0030) 2007; 188 Ordokhani (10.1016/j.amc.2015.02.079_b0040) 2006; 180 Yalcinbas (10.1016/j.amc.2015.02.079_b0005) 2002; 127 Cui (10.1016/j.amc.2015.02.079_b0020) 2006; 182 Wazwaz (10.1016/j.amc.2015.02.079_b0070) 2011 Yousefi (10.1016/j.amc.2015.02.079_b0025) 2005; 70 Wazwaz (10.1016/j.amc.2015.02.079_b0015) 2002; 127 |
| References_xml | – volume: 127 start-page: 405 year: 2002 end-page: 414 ident: b0015 article-title: A reliable treatment for mixed Volterra–Fredholm integral equations publication-title: Appl. Math. Comput. – volume: 52 start-page: 551 year: 2013 end-page: 555 ident: b0060 article-title: Numerical solution of nonlinear Volterra–Fredholm integral equations using hybrid of block-pulse functions and Taylor series publication-title: Alex. Eng. J. – volume: 33 start-page: 308 year: 2007 end-page: 313 ident: b0010 article-title: Modified decomposition method for nonlinear Volterra–Fredholm integral equations publication-title: Chaos Solution Fract. – start-page: 285 year: 2011 end-page: 309 ident: b0070 article-title: Volterra–Fredholm integro-differential equations publication-title: Linear Nonlinear Integr. Equ. – volume: 182 start-page: 1795 year: 2006 end-page: 1802 ident: b0020 article-title: Representation of exact solution for the nonlinear Volterra–Fredholm integral equations publication-title: Appl. Math. Comput. – volume: 70 start-page: 1 year: 2005 end-page: 8 ident: b0025 article-title: Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations publication-title: Math. Comput. Simul. – volume: 3 start-page: 95 year: 2013 end-page: 104 ident: b0065 article-title: A numerical solutions of nonlinear Volterra–Fredholm integral equations publication-title: J. Appl. Anal. Comput. – volume: 127 start-page: 195 year: 2002 end-page: 206 ident: b0005 article-title: Taylor polynomial solution of nonlinear Volterra–Fredholm integral equations publication-title: Appl. Math. Comput. – volume: 3 start-page: 1189 year: 2011 end-page: 1194 ident: b0075 article-title: Hybrid functions approach for the nonlinear Volterra–Fredholm integral equations publication-title: Proc. Comput. Sci. – volume: 58 start-page: 2172 year: 2009 end-page: 2176 ident: b0045 article-title: He’s variational iteration method for solving nonlinear mixed Volterra–Fredholm integral equations publication-title: Comput. Math. Appl. – volume: 218 start-page: 5292 year: 2012 end-page: 5309 ident: b0050 article-title: Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions publication-title: Appl. Math. Comput. – volume: 17 start-page: 52 year: 2012 end-page: 61 ident: b0055 article-title: Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 188 start-page: 446 year: 2007 end-page: 449 ident: b0030 article-title: Numerical solutions of the nonlinear Volterra–Fredholm integral equations by using homotopy perturbation method publication-title: Appl. Math. Comput. – volume: 16 start-page: 1186 year: 2011 end-page: 1194 ident: b0035 article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 180 start-page: 436 year: 2006 end-page: 443 ident: b0040 article-title: Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via rationalized Haar functions publication-title: Appl. Math. Comput. – volume: 127 start-page: 195 year: 2002 ident: 10.1016/j.amc.2015.02.079_b0005 article-title: Taylor polynomial solution of nonlinear Volterra–Fredholm integral equations publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(00)00165-X – volume: 3 start-page: 1189 year: 2011 ident: 10.1016/j.amc.2015.02.079_b0075 article-title: Hybrid functions approach for the nonlinear Volterra–Fredholm integral equations publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2010.12.192 – volume: 52 start-page: 551 year: 2013 ident: 10.1016/j.amc.2015.02.079_b0060 article-title: Numerical solution of nonlinear Volterra–Fredholm integral equations using hybrid of block-pulse functions and Taylor series publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2013.02.004 – volume: 218 start-page: 5292 year: 2012 ident: 10.1016/j.amc.2015.02.079_b0050 article-title: Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2011.11.013 – volume: 17 start-page: 52 year: 2012 ident: 10.1016/j.amc.2015.02.079_b0055 article-title: Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.04.023 – volume: 3 start-page: 95 issue: 1 year: 2013 ident: 10.1016/j.amc.2015.02.079_b0065 article-title: A numerical solutions of nonlinear Volterra–Fredholm integral equations publication-title: J. Appl. Anal. Comput. – volume: 182 start-page: 1795 year: 2006 ident: 10.1016/j.amc.2015.02.079_b0020 article-title: Representation of exact solution for the nonlinear Volterra–Fredholm integral equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.06.016 – volume: 127 start-page: 405 year: 2002 ident: 10.1016/j.amc.2015.02.079_b0015 article-title: A reliable treatment for mixed Volterra–Fredholm integral equations publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(01)00020-0 – volume: 70 start-page: 1 year: 2005 ident: 10.1016/j.amc.2015.02.079_b0025 article-title: Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2005.02.035 – volume: 188 start-page: 446 year: 2007 ident: 10.1016/j.amc.2015.02.079_b0030 article-title: Numerical solutions of the nonlinear Volterra–Fredholm integral equations by using homotopy perturbation method publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.10.015 – volume: 180 start-page: 436 year: 2006 ident: 10.1016/j.amc.2015.02.079_b0040 article-title: Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via rationalized Haar functions publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.12.034 – volume: 33 start-page: 308 year: 2007 ident: 10.1016/j.amc.2015.02.079_b0010 article-title: Modified decomposition method for nonlinear Volterra–Fredholm integral equations publication-title: Chaos Solution Fract. doi: 10.1016/j.chaos.2005.12.058 – volume: 16 start-page: 1186 year: 2011 ident: 10.1016/j.amc.2015.02.079_b0035 article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.06.013 – start-page: 285 year: 2011 ident: 10.1016/j.amc.2015.02.079_b0070 article-title: Volterra–Fredholm integro-differential equations publication-title: Linear Nonlinear Integr. Equ. doi: 10.1007/978-3-642-21449-3_9 – volume: 58 start-page: 2172 year: 2009 ident: 10.1016/j.amc.2015.02.079_b0045 article-title: He’s variational iteration method for solving nonlinear mixed Volterra–Fredholm integral equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.03.083 |
| SSID | ssj0007614 |
| Score | 2.1382785 |
| Snippet | In this work, we develop a new effective method for solving nonlinear Volterra–Fredholm integral equation. The existence of any ε-approximate solution is... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 614 |
| SubjectTerms | [formula omitted]-Approximate solution Nonlinear integral equation Volterra-Fredholm |
| Title | An efficient algorithm for solving nonlinear Volterra–Fredholm integral equations |
| URI | https://dx.doi.org/10.1016/j.amc.2015.02.079 |
| Volume | 259 |
| WOSCitedRecordID | wos000353393700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLZK2QM8IAZDXAbyw56oMrm52PFjVYEGEgiJW8VL5iQ2FLVpCS3icf9h_3C_ZMexHQpj0kDaS5SmSmP5fD35zvE5nxH6onwRKJoyj8qYehB_ZV5KhICPcK4innKqqs0m2PFx3Ovxk0bju-uFeRiwoogfH_n4v5oaroGxdevsG8xd_yhcgHMwOhzB7HD8J8N3Cl2k0a8aHVticD2C8P9mWJUTwoOr_EFh9DFE2boY6dXyUriah2C_lLlOlDodiUFL3k1nsnpOsNaS12Gt-nrvOuTG0-er-13b_3F1M7JvSV2w07d56kvZn008tCO9Zm5aL002zHXEPCvY1CGRFxBinJY0TjVmgRdRI03qvK5vhcCN36Smk9S-gqnxon94d5NouP0qhlp8sh1VaqtmL5oXotmnehx6GMB3IfDmfA7N-yzi4PfmOwd7vcP6bc2o0X9343Yr31UN4IsHvc5dZvjI2TJasoEE7hgAfEQNWaygxaMne6yi006BayjgGgoYoIAtFHANBeyg8OvHTwcC7ECAaxB8Quf7e2fdb57dRMPLILKewJ-OE0VpzHJgolJn-UiWtqUQSmYqSrM8DxQPgHUTKZifCxLCt1kAxFOkikckWENNGIpcRxi4LMnzSOitQUJfCZ6HCgiuYiHE_G1FN9Cum55kbLRSEldEeJvAXCZ6LhPiJzCXGyh0E5hYsmdIXALW_vttm--7bQstPEH4M2pOyqncRh-yh0n_vtyxmPgNgmR6bg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+algorithm+for+solving+nonlinear+Volterra%E2%80%93Fredholm+integral+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Chen%2C+Zhong&rft.au=Jiang%2C+Wei&rft.date=2015-05-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=259&rft.spage=614&rft.epage=619&rft_id=info:doi/10.1016%2Fj.amc.2015.02.079&rft.externalDocID=S0096300315002799 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |