An efficient algorithm for solving nonlinear Volterra–Fredholm integral equations

In this work, we develop a new effective method for solving nonlinear Volterra–Fredholm integral equation. The existence of any ε-approximate solution is proved. At the same time, an effective method for obtaining the ε-approximate solution is established. The final numerical examples illustrate tha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 259; s. 614 - 619
Hlavní autoři: Chen, Zhong, Jiang, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.05.2015
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work, we develop a new effective method for solving nonlinear Volterra–Fredholm integral equation. The existence of any ε-approximate solution is proved. At the same time, an effective method for obtaining the ε-approximate solution is established. The final numerical examples illustrate that our approach is valid not only for weakly nonlinear problems but also for strongly nonlinear problems.
AbstractList In this work, we develop a new effective method for solving nonlinear Volterra–Fredholm integral equation. The existence of any ε-approximate solution is proved. At the same time, an effective method for obtaining the ε-approximate solution is established. The final numerical examples illustrate that our approach is valid not only for weakly nonlinear problems but also for strongly nonlinear problems.
Author Chen, Zhong
Jiang, Wei
Author_xml – sequence: 1
  givenname: Zhong
  surname: Chen
  fullname: Chen, Zhong
  email: cz0309@sina.com
– sequence: 2
  givenname: Wei
  surname: Jiang
  fullname: Jiang, Wei
BookMark eNp9kDtOAzEQhi0UJJLAAeh8gV3G633EoooiQpAiUfBoLcc7Thzt2mCbSHTcgRtyEjYKNdUUv76Zf74JGTnvkJBrBjkDVt_sc9XrvABW5VDk0IgzMmazhmdVXYoRGQOIOuMA_IJMYtwDQFOzckye5o6iMVZbdImqbuuDTbueGh9o9N3Bui0dTnXWoQr01XcJQ1A_X9_LgO3Odz21LuE2qI7i-4dK1rt4Sc6N6iJe_c0peVnePS9W2frx_mExX2e6KEXKahRg6nrWtEJw5FUJoDcMlTKoTbXRbcuN4IwVgKopWgXlkGreMFAbIyrgU8JOe3XwMQY08i3YXoVPyUAerci9HKzIoxUJhRysDMzticGh2MFikPH4usbWBtRJtt7-Q_8CmtBvXQ
Cites_doi 10.1016/S0096-3003(00)00165-X
10.1016/j.procs.2010.12.192
10.1016/j.aej.2013.02.004
10.1016/j.amc.2011.11.013
10.1016/j.cnsns.2011.04.023
10.1016/j.amc.2006.06.016
10.1016/S0096-3003(01)00020-0
10.1016/j.matcom.2005.02.035
10.1016/j.amc.2006.10.015
10.1016/j.amc.2005.12.034
10.1016/j.chaos.2005.12.058
10.1016/j.cnsns.2010.06.013
10.1007/978-3-642-21449-3_9
10.1016/j.camwa.2009.03.083
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2015.02.079
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 619
ExternalDocumentID 10_1016_j_amc_2015_02_079
S0096300315002799
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c249t-6e90f6687d993e35400cb1eaafecf5bcdd3f931120ea72da04b1ec3710abf9503
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353393700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Nov 29 02:52:12 EST 2025
Fri Feb 23 02:31:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear integral equation
ε-Approximate solution
Volterra-Fredholm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-6e90f6687d993e35400cb1eaafecf5bcdd3f931120ea72da04b1ec3710abf9503
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_amc_2015_02_079
elsevier_sciencedirect_doi_10_1016_j_amc_2015_02_079
PublicationCentury 2000
PublicationDate 2015-05-15
PublicationDateYYYYMMDD 2015-05-15
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Parand, Rad (b0050) 2012; 218
Maleknejad, Hashemizadeh, Basirat (b0055) 2012; 17
Zarebnia (b0065) 2013; 3
Wazwaz (b0070) 2011
Cui, Du (b0020) 2006; 182
Ordokhani (b0040) 2006; 180
Wazwaz (b0015) 2002; 127
Hashemizadeh, Maleknejad, Basirat (b0075) 2011; 3
Yalcinbas (b0005) 2002; 127
Bildik, Inc (b0010) 2007; 33
Marzban, Tabrizidooz, Razzaghi (b0035) 2011; 16
Ghasemi, Kajani, Babolian (b0030) 2007; 188
Yousefi, Lotfi, Dehghan (b0045) 2009; 58
Yousefi, Razzaghi (b0025) 2005; 70
Mirzaee, Hoseini (b0060) 2013; 52
Marzban (10.1016/j.amc.2015.02.079_b0035) 2011; 16
Parand (10.1016/j.amc.2015.02.079_b0050) 2012; 218
Maleknejad (10.1016/j.amc.2015.02.079_b0055) 2012; 17
Hashemizadeh (10.1016/j.amc.2015.02.079_b0075) 2011; 3
Zarebnia (10.1016/j.amc.2015.02.079_b0065) 2013; 3
Yousefi (10.1016/j.amc.2015.02.079_b0045) 2009; 58
Mirzaee (10.1016/j.amc.2015.02.079_b0060) 2013; 52
Bildik (10.1016/j.amc.2015.02.079_b0010) 2007; 33
Ghasemi (10.1016/j.amc.2015.02.079_b0030) 2007; 188
Ordokhani (10.1016/j.amc.2015.02.079_b0040) 2006; 180
Yalcinbas (10.1016/j.amc.2015.02.079_b0005) 2002; 127
Cui (10.1016/j.amc.2015.02.079_b0020) 2006; 182
Wazwaz (10.1016/j.amc.2015.02.079_b0070) 2011
Yousefi (10.1016/j.amc.2015.02.079_b0025) 2005; 70
Wazwaz (10.1016/j.amc.2015.02.079_b0015) 2002; 127
References_xml – volume: 127
  start-page: 405
  year: 2002
  end-page: 414
  ident: b0015
  article-title: A reliable treatment for mixed Volterra–Fredholm integral equations
  publication-title: Appl. Math. Comput.
– volume: 52
  start-page: 551
  year: 2013
  end-page: 555
  ident: b0060
  article-title: Numerical solution of nonlinear Volterra–Fredholm integral equations using hybrid of block-pulse functions and Taylor series
  publication-title: Alex. Eng. J.
– volume: 33
  start-page: 308
  year: 2007
  end-page: 313
  ident: b0010
  article-title: Modified decomposition method for nonlinear Volterra–Fredholm integral equations
  publication-title: Chaos Solution Fract.
– start-page: 285
  year: 2011
  end-page: 309
  ident: b0070
  article-title: Volterra–Fredholm integro-differential equations
  publication-title: Linear Nonlinear Integr. Equ.
– volume: 182
  start-page: 1795
  year: 2006
  end-page: 1802
  ident: b0020
  article-title: Representation of exact solution for the nonlinear Volterra–Fredholm integral equations
  publication-title: Appl. Math. Comput.
– volume: 70
  start-page: 1
  year: 2005
  end-page: 8
  ident: b0025
  article-title: Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations
  publication-title: Math. Comput. Simul.
– volume: 3
  start-page: 95
  year: 2013
  end-page: 104
  ident: b0065
  article-title: A numerical solutions of nonlinear Volterra–Fredholm integral equations
  publication-title: J. Appl. Anal. Comput.
– volume: 127
  start-page: 195
  year: 2002
  end-page: 206
  ident: b0005
  article-title: Taylor polynomial solution of nonlinear Volterra–Fredholm integral equations
  publication-title: Appl. Math. Comput.
– volume: 3
  start-page: 1189
  year: 2011
  end-page: 1194
  ident: b0075
  article-title: Hybrid functions approach for the nonlinear Volterra–Fredholm integral equations
  publication-title: Proc. Comput. Sci.
– volume: 58
  start-page: 2172
  year: 2009
  end-page: 2176
  ident: b0045
  article-title: He’s variational iteration method for solving nonlinear mixed Volterra–Fredholm integral equations
  publication-title: Comput. Math. Appl.
– volume: 218
  start-page: 5292
  year: 2012
  end-page: 5309
  ident: b0050
  article-title: Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions
  publication-title: Appl. Math. Comput.
– volume: 17
  start-page: 52
  year: 2012
  end-page: 61
  ident: b0055
  article-title: Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 188
  start-page: 446
  year: 2007
  end-page: 449
  ident: b0030
  article-title: Numerical solutions of the nonlinear Volterra–Fredholm integral equations by using homotopy perturbation method
  publication-title: Appl. Math. Comput.
– volume: 16
  start-page: 1186
  year: 2011
  end-page: 1194
  ident: b0035
  article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 180
  start-page: 436
  year: 2006
  end-page: 443
  ident: b0040
  article-title: Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via rationalized Haar functions
  publication-title: Appl. Math. Comput.
– volume: 127
  start-page: 195
  year: 2002
  ident: 10.1016/j.amc.2015.02.079_b0005
  article-title: Taylor polynomial solution of nonlinear Volterra–Fredholm integral equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(00)00165-X
– volume: 3
  start-page: 1189
  year: 2011
  ident: 10.1016/j.amc.2015.02.079_b0075
  article-title: Hybrid functions approach for the nonlinear Volterra–Fredholm integral equations
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2010.12.192
– volume: 52
  start-page: 551
  year: 2013
  ident: 10.1016/j.amc.2015.02.079_b0060
  article-title: Numerical solution of nonlinear Volterra–Fredholm integral equations using hybrid of block-pulse functions and Taylor series
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2013.02.004
– volume: 218
  start-page: 5292
  year: 2012
  ident: 10.1016/j.amc.2015.02.079_b0050
  article-title: Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2011.11.013
– volume: 17
  start-page: 52
  year: 2012
  ident: 10.1016/j.amc.2015.02.079_b0055
  article-title: Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.04.023
– volume: 3
  start-page: 95
  issue: 1
  year: 2013
  ident: 10.1016/j.amc.2015.02.079_b0065
  article-title: A numerical solutions of nonlinear Volterra–Fredholm integral equations
  publication-title: J. Appl. Anal. Comput.
– volume: 182
  start-page: 1795
  year: 2006
  ident: 10.1016/j.amc.2015.02.079_b0020
  article-title: Representation of exact solution for the nonlinear Volterra–Fredholm integral equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.06.016
– volume: 127
  start-page: 405
  year: 2002
  ident: 10.1016/j.amc.2015.02.079_b0015
  article-title: A reliable treatment for mixed Volterra–Fredholm integral equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(01)00020-0
– volume: 70
  start-page: 1
  year: 2005
  ident: 10.1016/j.amc.2015.02.079_b0025
  article-title: Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2005.02.035
– volume: 188
  start-page: 446
  year: 2007
  ident: 10.1016/j.amc.2015.02.079_b0030
  article-title: Numerical solutions of the nonlinear Volterra–Fredholm integral equations by using homotopy perturbation method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.10.015
– volume: 180
  start-page: 436
  year: 2006
  ident: 10.1016/j.amc.2015.02.079_b0040
  article-title: Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via rationalized Haar functions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.12.034
– volume: 33
  start-page: 308
  year: 2007
  ident: 10.1016/j.amc.2015.02.079_b0010
  article-title: Modified decomposition method for nonlinear Volterra–Fredholm integral equations
  publication-title: Chaos Solution Fract.
  doi: 10.1016/j.chaos.2005.12.058
– volume: 16
  start-page: 1186
  year: 2011
  ident: 10.1016/j.amc.2015.02.079_b0035
  article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.06.013
– start-page: 285
  year: 2011
  ident: 10.1016/j.amc.2015.02.079_b0070
  article-title: Volterra–Fredholm integro-differential equations
  publication-title: Linear Nonlinear Integr. Equ.
  doi: 10.1007/978-3-642-21449-3_9
– volume: 58
  start-page: 2172
  year: 2009
  ident: 10.1016/j.amc.2015.02.079_b0045
  article-title: He’s variational iteration method for solving nonlinear mixed Volterra–Fredholm integral equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.03.083
SSID ssj0007614
Score 2.1382785
Snippet In this work, we develop a new effective method for solving nonlinear Volterra–Fredholm integral equation. The existence of any ε-approximate solution is...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 614
SubjectTerms [formula omitted]-Approximate solution
Nonlinear integral equation
Volterra-Fredholm
Title An efficient algorithm for solving nonlinear Volterra–Fredholm integral equations
URI https://dx.doi.org/10.1016/j.amc.2015.02.079
Volume 259
WOSCitedRecordID wos000353393700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLZK2QM8IAZDXAbyw56oMrm52PFjVYEGEgiJW8VL5iQ2FLVpCS3icf9h_3C_ZMexHQpj0kDaS5SmSmP5fD35zvE5nxH6onwRKJoyj8qYehB_ZV5KhICPcK4innKqqs0m2PFx3Ovxk0bju-uFeRiwoogfH_n4v5oaroGxdevsG8xd_yhcgHMwOhzB7HD8J8N3Cl2k0a8aHVticD2C8P9mWJUTwoOr_EFh9DFE2boY6dXyUriah2C_lLlOlDodiUFL3k1nsnpOsNaS12Gt-nrvOuTG0-er-13b_3F1M7JvSV2w07d56kvZn008tCO9Zm5aL002zHXEPCvY1CGRFxBinJY0TjVmgRdRI03qvK5vhcCN36Smk9S-gqnxon94d5NouP0qhlp8sh1VaqtmL5oXotmnehx6GMB3IfDmfA7N-yzi4PfmOwd7vcP6bc2o0X9343Yr31UN4IsHvc5dZvjI2TJasoEE7hgAfEQNWaygxaMne6yi006BayjgGgoYoIAtFHANBeyg8OvHTwcC7ECAaxB8Quf7e2fdb57dRMPLILKewJ-OE0VpzHJgolJn-UiWtqUQSmYqSrM8DxQPgHUTKZifCxLCt1kAxFOkikckWENNGIpcRxi4LMnzSOitQUJfCZ6HCgiuYiHE_G1FN9Cum55kbLRSEldEeJvAXCZ6LhPiJzCXGyh0E5hYsmdIXALW_vttm--7bQstPEH4M2pOyqncRh-yh0n_vtyxmPgNgmR6bg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+algorithm+for+solving+nonlinear+Volterra%E2%80%93Fredholm+integral+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Chen%2C+Zhong&rft.au=Jiang%2C+Wei&rft.date=2015-05-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=259&rft.spage=614&rft.epage=619&rft_id=info:doi/10.1016%2Fj.amc.2015.02.079&rft.externalDocID=S0096300315002799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon