An outer-approximation algorithm for maximum-entropy sampling

We apply the well-known outer-approximation algorithm (OA) of convex mixed-integer nonlinear optimization to the maximum-entropy sampling problem (MESP), using convex relaxations for MESP from the literature. We discuss possible methodologies to accelerate the convergence of OA, by combining the use...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 347; s. 271 - 284
Hlavní autoři: Fampa, Marcia, Lee, Jon
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.04.2024
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We apply the well-known outer-approximation algorithm (OA) of convex mixed-integer nonlinear optimization to the maximum-entropy sampling problem (MESP), using convex relaxations for MESP from the literature. We discuss possible methodologies to accelerate the convergence of OA, by combining the use of the different relaxations and by selecting additional linearization points using a local-search procedure, disjunctive cuts, a regularization method, and a second-order approximation of the objective of the MESP. We discuss our findings through numerical experiments with a benchmark test problem.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2024.01.002