Certified Hermite matrices from approximate roots

Let I=〈f1,…,fm〉⊂Q[x1,…,xn] be a zero dimensional radical ideal defined by polynomials given with exact rational coefficients. Assume that we are given approximations {z1,…,zk}⊂Cn for the common roots {ξ1,…,ξk}=V(I)⊆Cn. In this paper we show how to construct and certify the rational entries of Hermit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of symbolic computation Ročník 117; s. 101 - 118
Hlavní autori: Ayyildiz Akoglu, Tulay, Szanto, Agnes
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2023
Predmet:
ISSN:0747-7171, 1095-855X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let I=〈f1,…,fm〉⊂Q[x1,…,xn] be a zero dimensional radical ideal defined by polynomials given with exact rational coefficients. Assume that we are given approximations {z1,…,zk}⊂Cn for the common roots {ξ1,…,ξk}=V(I)⊆Cn. In this paper we show how to construct and certify the rational entries of Hermite matrices for I from the approximate roots {z1,…,zk}. When I is non-radical, we give methods to construct and certify Hermite matrices for I from the approximate roots. Furthermore, we use signatures of these Hermite matrices to give rational certificates of non-negativity of a given polynomial over a (possibly positive dimensional) real variety, as well as certificates that there is a real root within an ε distance from a given point z∈Qn.
ISSN:0747-7171
1095-855X
DOI:10.1016/j.jsc.2022.12.001