Feature selection using binary monarch butterfly optimization

Swarm intelligence algorithms have superior performance in searching for the optimal feature subset, where Monarch Butterfly Optimization (MBO) can solve the continuous optimization problem. However, there exist some defects for MBO such as the limited searchable positions, falling into local optimu...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 53; no. 1; pp. 706 - 727
Main Authors: Sun, Lin, Si, Shanshan, Zhao, Jing, Xu, Jiucheng, Lin, Yaojin, Lv, Zhiying
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2023
Springer Nature B.V
Subjects:
ISSN:0924-669X, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Swarm intelligence algorithms have superior performance in searching for the optimal feature subset, where Monarch Butterfly Optimization (MBO) can solve the continuous optimization problem. However, there exist some defects for MBO such as the limited searchable positions, falling into local optimum easily and unsolved binary variables. To address these drawbacks, this paper develops two mechanisms to propose several revisions of binary MBO (BMBO) for metaheuristic feature selection. First, to make MBO suitable to solve the feature selection optimization problems, the S-shaped and V-shaped transfer functions are introduced to convert continuous space into binary, and then force the butterfly to move in the binary search space. Two updated positions of the monarch butterfly population are designed based on these above transfer functions respectively to construct two BMBO models, namely BMBO-S and BMBO-V, as the first mechanism of BMBO. Second, the new step length parameter is proposed to update the position of monarch butterfly individuals. To prevent MBO from falling into the local optimum, the local disturbance and group division strategies are added into MBO to construct new BMBO method. It follows that a mutation rate is employed to enhance the detection stage of BMBO, and the mutation operator-based BMBO (BMBO-M) is designed to avoid the premature convergence of MBO. Third, this fitness function is integrated with the KNN classifier and the weight of the feature subset length to rank the selected feature subset, and a metaheuristic feature selection algorithm with BMBO-M is developed. Experiments applied to nineteen low dimensional UCI datasets and seven high dimensional datasets demonstrate our designed algorithm has great classification efficiency when compared with the other related technologies.
AbstractList Swarm intelligence algorithms have superior performance in searching for the optimal feature subset, where Monarch Butterfly Optimization (MBO) can solve the continuous optimization problem. However, there exist some defects for MBO such as the limited searchable positions, falling into local optimum easily and unsolved binary variables. To address these drawbacks, this paper develops two mechanisms to propose several revisions of binary MBO (BMBO) for metaheuristic feature selection. First, to make MBO suitable to solve the feature selection optimization problems, the S-shaped and V-shaped transfer functions are introduced to convert continuous space into binary, and then force the butterfly to move in the binary search space. Two updated positions of the monarch butterfly population are designed based on these above transfer functions respectively to construct two BMBO models, namely BMBO-S and BMBO-V, as the first mechanism of BMBO. Second, the new step length parameter is proposed to update the position of monarch butterfly individuals. To prevent MBO from falling into the local optimum, the local disturbance and group division strategies are added into MBO to construct new BMBO method. It follows that a mutation rate is employed to enhance the detection stage of BMBO, and the mutation operator-based BMBO (BMBO-M) is designed to avoid the premature convergence of MBO. Third, this fitness function is integrated with the KNN classifier and the weight of the feature subset length to rank the selected feature subset, and a metaheuristic feature selection algorithm with BMBO-M is developed. Experiments applied to nineteen low dimensional UCI datasets and seven high dimensional datasets demonstrate our designed algorithm has great classification efficiency when compared with the other related technologies.
Author Xu, Jiucheng
Si, Shanshan
Sun, Lin
Lin, Yaojin
Lv, Zhiying
Zhao, Jing
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0003-4917-7651
  surname: Sun
  fullname: Sun, Lin
  email: sunlin@htu.edu.cn
  organization: College of Computer and Information Engineering, Henan Normal University, Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Engineering Lab of Intelligence Business and Internet of Things of Henan Province
– sequence: 2
  givenname: Shanshan
  surname: Si
  fullname: Si, Shanshan
  organization: College of Computer and Information Engineering, Henan Normal University
– sequence: 3
  givenname: Jing
  surname: Zhao
  fullname: Zhao, Jing
  email: zzzzjjja@163.com
  organization: College of Computer and Information Engineering, Henan Normal University
– sequence: 4
  givenname: Jiucheng
  surname: Xu
  fullname: Xu, Jiucheng
  organization: College of Computer and Information Engineering, Henan Normal University
– sequence: 5
  givenname: Yaojin
  surname: Lin
  fullname: Lin, Yaojin
  email: zzlinyaojin@163.com
  organization: Key Laboratory of Data Science and Intelligence Application, Minnan Normal University
– sequence: 6
  givenname: Zhiying
  surname: Lv
  fullname: Lv, Zhiying
  organization: School of Management, Chengdu University of Information Technology
BookMark eNp9kD1PwzAURS1UJNrCH2CKxGx4_krsgQFVFJAqsYDEZjmJXVylSbGdofx60gYJiaHTXe557-rM0KTtWovQNYFbAlDcRQJcKgyUYmBCcKzO0JSIguGCq2KCpqAox3muPi7QLMYNADAGZIrul9akPtgs2sZWyXdt1kffrrPStybss203RPWZlX1KNrhmn3W75Lf-2xy6l-jcmSbaq9-co_fl49viGa9en14WDytcUa4SFo6xipiSCuZITktRS5tbKkXJDdhaKkYLWdamzLkrFWXCSqNI7oiBWhrn2BzdjHd3ofvqbUx60_WhHV5qWuQAVBDFh5YcW1XoYgzW6cqn484UjG80AX2QpUdZepClj7K0GlD6D90Fvx0EnIbYCMWh3K5t-Ft1gvoBLCh_SA
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3310429
crossref_primary_10_1038_s41598_024_80648_z
crossref_primary_10_3233_IDA_230651
crossref_primary_10_1007_s11042_023_16686_y
crossref_primary_10_1016_j_jocs_2023_102201
crossref_primary_10_1007_s13042_022_01653_0
crossref_primary_10_3390_biomimetics9090572
crossref_primary_10_1093_jcde_qwad009
crossref_primary_10_1007_s13042_024_02222_3
crossref_primary_10_1007_s42235_024_00515_5
crossref_primary_10_1109_ACCESS_2024_3470845
crossref_primary_10_1016_j_asoc_2023_110837
crossref_primary_10_1007_s00521_024_09581_6
crossref_primary_10_1007_s11042_024_20221_y
crossref_primary_10_1016_j_matcom_2023_12_037
crossref_primary_10_1186_s42162_024_00422_3
crossref_primary_10_1007_s11042_024_19069_z
crossref_primary_10_1007_s13042_023_01788_8
crossref_primary_10_1007_s00521_024_10288_x
crossref_primary_10_1007_s10489_024_05555_2
crossref_primary_10_1007_s13042_024_02308_y
crossref_primary_10_1016_j_knosys_2025_114119
crossref_primary_10_3390_biomimetics8060492
crossref_primary_10_1016_j_eswa_2024_123362
crossref_primary_10_1016_j_jksuci_2023_101731
Cites_doi 10.1109/TEVC.2020.2968743
10.1214/aoms/1177731944
10.1016/j.ejor.2017.11.017
10.1109/TCYB.2014.2322602
10.1016/j.ins.2020.05.102
10.3934/mbe.2021016
10.1016/j.knosys.2012.11.005
10.1016/j.ijar.2020.01.012
10.1016/j.knosys.2021.107218
10.1109/TFUZZ.2020.2989098
10.1016/j.swevo.2019.04.004
10.1007/s00521-015-1923-y
10.1007/s11042-020-10147-6
10.1109/ACCESS.2019.2917502
10.1007/s00500-020-05349-x
10.1016/j.cose.2018.11.005
10.1016/j.eswa.2018.09.015
10.1016/j.ins.2019.08.040
10.1109/ACCESS.2020.2992752
10.1080/15325008.2021.1908458
10.1016/j.patrec.2014.10.007
10.1016/j.swevo.2012.09.002
10.1016/j.enconman.2020.113301
10.1007/s00500-019-04218-6
10.1109/TCBB.2015.2476796
10.1007/s11047-009-9175-3
10.1016/j.ins.2021.08.032
10.1109/ACCESS.2019.2957662
10.1007/s00500-016-2385-6
10.1016/j.ins.2021.10.026
10.1504/IJBIC.2020.106428
10.3233/JIFS-210815
10.1007/s10489-020-01981-0
10.1007/s00521-017-3317-9
10.1016/j.compstruc.2016.03.001
10.1007/s00521-021-06224-y
10.1109/TCYB.2020.3015756
10.1016/j.knosys.2018.05.009
10.1016/j.engappai.2020.104079
10.1016/j.procs.2019.11.167
10.1155/2019/4182148
10.1007/s11042-021-10599-4
10.1080/01621459.1961.10482090
10.1007/s00521-016-2665-1
10.1007/s00521-020-05559-2
10.1109/TETCI.2021.3074147
10.1016/j.knosys.2019.105373
10.1109/ICNN.1995.488968
10.1080/21642583.2019.1708830
10.1109/ISCAS.2013.6571881
10.1016/j.ins.2022.02.004
10.1109/TFUZZ.2021.3053844
10.1109/TEVC.2021.3134804
10.1109/TCYB.2021.3061152
10.1007/s00521-015-2135-1
10.1016/j.ins.2019.05.072
10.1016/j.advengsoft.2017.07.002
10.1109/TEVC.2021.3106975
10.11772/j.issn.1001-9081.2021030497
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-022-03554-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 727
ExternalDocumentID 10_1007_s10489_022_03554_9
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62076089; 61976082
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c249t-5f33c1ab253f162b5d8e6e285b4a0ed893278bdab64fb9235e8a916f1a0d8aff3
IEDL.DBID M7S
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784870800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 15:42:35 EST 2025
Tue Nov 18 22:27:05 EST 2025
Sat Nov 29 05:33:29 EST 2025
Fri Feb 21 02:45:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mutation operator
Monarch butterfly optimization
Feature selection
Metaheuristic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-5f33c1ab253f162b5d8e6e285b4a0ed893278bdab64fb9235e8a916f1a0d8aff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4917-7651
PQID 2760025194
PQPubID 326365
PageCount 22
ParticipantIDs proquest_journals_2760025194
crossref_citationtrail_10_1007_s10489_022_03554_9
crossref_primary_10_1007_s10489_022_03554_9
springer_journals_10_1007_s10489_022_03554_9
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Selvakumar, Muneeswaran (CR49) 2019; 81
Zhang, Gong, Cheng (CR45) 2017; 14
Too, Mafarja, Mirjalili (CR53) 2021; 33
Faris, Mafarja, Heidari, Ibrahim, AlZoubi, Seyedali, Hamido (CR21) 2018; 154
CR39
Ghanem, Jantan (CR18) 2018; 30
CR36
Milton (CR60) 1940; 11
Kumar, Naresh (CR38) 2020; 48
Kelidari, Hamidzadeh (CR42) 2021; 25
Zohre, Ebrahim, Hossein (CR41) 2021; 97
Wang, Tan, Niu (CR14) 2019; 48
Mafarja, Aljarah, Faris, Hammouri, AlZoubi (CR22) 2019; 117
CR2
Wan, Chen, Li, Yang, Sang (CR1) 2021; 581
CR5
CR8
Hou, Li, Yu, Li (CR23) 2019; 7
Salem, Liu, Ahmed, Zhang, Chen (CR10) 2020; 18
CR9
CR46
CR43
Huda, Banka (CR47) 2019; 31
Nandhini, Ashokkumar (CR37) 2021; 80
Dorgham, Alweshah, Ryalat, Alshaer, Khader, Alkhalaileh (CR30) 2021; 80
Rashedi, Nezamabadi-pour, Saryazdi (CR44) 2010; 9
Banka, Dara (CR59) 2015; 52
Gu, Cheng, Jin (CR57) 2018; 22
Sun, Yin, Ding, Xu (CR51) 2019; 7
Sun, Chen, Xu, Tian, Zhou (CR32) 2019; 2019
Nancy, Muthurajkumar, Ganapathy, Santhosh Kumar, Selvi, Arputharaj (CR6) 2020; 14
Alweshah (CR35) 2021; 51
Ashakarzadeh (CR55) 2016; 169
CR19
Mirjalili, Lewis (CR40) 2013; 9
Olive (CR61) 1961; 56
CR16
Sun, Wang, Ding, Xu, Lin (CR7) 2021; 578
CR13
CR56
CR11
Tsai, William, Chu (CR48) 2013; 39
Hu, Zhang, Gong (CR3) 2021; 52
Zhang, Jin, Mirijalili (CR54) 2020; 224
Ibrahim, Tawhid, Ward (CR12) 2020; 120
CR50
Xue, Zhu, Liang, Slowik (CR24) 2021; 227
Yi, Lu, Zhao (CR31) 2020; 15
Sun, Yin, Ding, Qin, Xu (CR62) 2020; 537
Ji, Lu, Sun, Zhang, Li, Xiao (CR27) 2020; 8
Roberta, Roberto, Giuseppe, Eleonora (CR25) 2018; 267
Sun, Wang, Ding, Qian, Xu (CR4) 2021; 29
Sun, Zhao, Xu, Xue (CR34) 2020; 33
CR20
Song, Zhang, Guo, Sun, Wang (CR15) 2020; 24
Luo, Qin, Xu (CR26) 2021; 41
Fridausanti, Irhamah (CR28) 2019; 161
Gheats (CR33) 2021; 33
Wang, Deb, Cui (CR29) 2019; 31
Naik, Kuppili, Edla (CR52) 2020; 24
Zhang, Gong, Guo, Tian, Sun (CR17) 2020; 507
Cheng, Jin (CR58) 2015; 45
OM Dorgham (3554_CR30) 2021; 80
WAHM Ghanem (3554_CR18) 2018; 30
P Nancy (3554_CR6) 2020; 14
S Nandhini (3554_CR37) 2021; 80
3554_CR36
3554_CR39
JH Wan (3554_CR1) 2021; 581
H Wang (3554_CR14) 2019; 48
S Zohre (3554_CR41) 2021; 97
DS Roberta (3554_CR25) 2018; 267
S Gu (3554_CR57) 2018; 22
3554_CR43
3554_CR46
GG Wang (3554_CR29) 2019; 31
B Selvakumar (3554_CR49) 2019; 81
Y Xue (3554_CR24) 2021; 227
CF Tsai (3554_CR48) 2013; 39
R Cheng (3554_CR58) 2015; 45
M Mafarja (3554_CR22) 2019; 117
Y Hu (3554_CR3) 2021; 52
M Gheats (3554_CR33) 2021; 33
F Milton (3554_CR60) 1940; 11
RK Huda (3554_CR47) 2019; 31
JG Too (3554_CR53) 2021; 33
L Sun (3554_CR4) 2021; 29
L Sun (3554_CR7) 2021; 578
AM Ibrahim (3554_CR12) 2020; 120
JH Yi (3554_CR31) 2020; 15
V Kumar (3554_CR38) 2020; 48
3554_CR50
Y Zhang (3554_CR54) 2020; 224
3554_CR11
3554_CR13
A Ashakarzadeh (3554_CR55) 2016; 169
3554_CR56
E Rashedi (3554_CR44) 2010; 9
L Sun (3554_CR51) 2019; 7
XF Song (3554_CR15) 2020; 24
3554_CR16
3554_CR19
L Sun (3554_CR32) 2019; 2019
JD Olive (3554_CR61) 1961; 56
OAM Salem (3554_CR10) 2020; 18
NA Fridausanti (3554_CR28) 2019; 161
L Sun (3554_CR62) 2020; 537
Y Zhang (3554_CR45) 2017; 14
AK Naik (3554_CR52) 2020; 24
Y Zhang (3554_CR17) 2020; 507
S Mirjalili (3554_CR40) 2013; 9
3554_CR2
J Luo (3554_CR26) 2021; 41
3554_CR5
3554_CR20
3554_CR8
3554_CR9
B Ji (3554_CR27) 2020; 8
H Faris (3554_CR21) 2018; 154
Y Hou (3554_CR23) 2019; 7
M Kelidari (3554_CR42) 2021; 25
M Alweshah (3554_CR35) 2021; 51
L Sun (3554_CR34) 2020; 33
H Banka (3554_CR59) 2015; 52
References_xml – volume: 24
  start-page: 882
  issue: 5
  year: 2020
  end-page: 895
  ident: CR15
  article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data
  publication-title: IEEE Transactions on Evolutionary
  doi: 10.1109/TEVC.2020.2968743
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  end-page: 92
  ident: CR60
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177731944
– ident: CR39
– ident: CR16
– volume: 267
  start-page: 120
  issue: 1
  year: 2018
  end-page: 137
  ident: CR25
  article-title: An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.11.017
– volume: 45
  start-page: 191
  issue: 2
  year: 2015
  end-page: 204
  ident: CR58
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2322602
– volume: 537
  start-page: 401
  year: 2020
  end-page: 424
  ident: CR62
  article-title: Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.05.102
– volume: 18
  start-page: 305
  issue: 1
  year: 2020
  end-page: 327
  ident: CR10
  article-title: Feature selection based on fuzzy joint mutual information maximization
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2021016
– ident: CR8
– volume: 33
  start-page: 981
  issue: 11
  year: 2020
  end-page: 994
  ident: CR34
  article-title: Feature selection method based on improved monarch butterfly optimization algorithm
  publication-title: Chinese Pattern Recognition and Artificial Intelligence
– volume: 39
  start-page: 240
  year: 2013
  end-page: 247
  ident: CR48
  article-title: Genetic algorithms in feature and instance selection
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2012.11.005
– volume: 120
  start-page: 74
  year: 2020
  end-page: 91
  ident: CR12
  article-title: A binary water wave optimization for feature selection
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2020.01.012
– volume: 227
  start-page: 107218
  year: 2021
  ident: CR24
  article-title: Adaptive crosser operator based multi-objective binary genetic algorithm for feature selection in classification
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107218
– volume: 29
  start-page: 19
  issue: 1
  year: 2021
  end-page: 33
  ident: CR4
  article-title: Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.2989098
– ident: CR46
– ident: CR19
– volume: 14
  start-page: 888
  issue: 5
  year: 2020
  end-page: 895
  ident: CR6
  article-title: Intrusion detecting using dynamic feature selection and fuzzy temporal decision tree classification for wireless sensor networks
  publication-title: The Institution of Engineering and Technology
– volume: 48
  start-page: 172
  year: 2019
  end-page: 181
  ident: CR14
  article-title: Feature selection for classification of microarray gene expression cancers using bacterial colony optimization with multi-dimensional population
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.04.004
– volume: 31
  start-page: 1995
  issue: 7
  year: 2019
  end-page: 2014
  ident: CR29
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-015-1923-y
– ident: CR50
– volume: 80
  start-page: 30057
  year: 2021
  end-page: 30090
  ident: CR30
  article-title: Monarch butterfly optimization algorithm for computed tomography image segmentation
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10147-6
– volume: 7
  start-page: 81177
  year: 2019
  end-page: 81194
  ident: CR23
  article-title: BIFFOA: a novel binary improved fruit fly algorithm for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917502
– volume: 25
  start-page: 2911
  year: 2021
  end-page: 2933
  ident: CR42
  article-title: Feature selection by using chaotic cuckoo optimization algorithm with levy flight, opposition-based learning and disruption operator
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05349-x
– ident: CR11
– volume: 81
  start-page: 148
  year: 2019
  end-page: 155
  ident: CR49
  article-title: Firefly algorithm-based feature selection for network intrusion detection
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2018.11.005
– ident: CR9
– volume: 117
  start-page: 267
  year: 2019
  end-page: 286
  ident: CR22
  article-title: Binary grasshopper optimization algorithm approaches for feature selection problems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.09.015
– ident: CR36
– ident: CR5
– volume: 507
  start-page: 67
  year: 2020
  end-page: 85
  ident: CR17
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Information Science
  doi: 10.1016/j.ins.2019.08.040
– volume: 8
  start-page: 85989
  year: 2020
  end-page: 86002
  ident: CR27
  article-title: Bio-inspired feature selection: an improved binary particle swarm optimization approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992752
– volume: 48
  start-page: 19
  year: 2020
  end-page: 20
  ident: CR38
  article-title: Monarch butterfly optimization-based computational methodology for unit commitment problem
  publication-title: Electric Power Components and Systems
  doi: 10.1080/15325008.2021.1908458
– volume: 52
  start-page: 94
  year: 2015
  end-page: 100
  ident: CR59
  article-title: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2014.10.007
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: CR40
  article-title: S-shaped versus V-shaped transfer function for binary particle swarm optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2012.09.002
– volume: 224
  start-page: 113301
  year: 2020
  ident: CR54
  article-title: Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113301
– volume: 24
  start-page: 4575
  year: 2020
  end-page: 4587
  ident: CR52
  article-title: Efficient feature selection using one-pass generalized classifier neural network and binary bat algorithm with novel fitness function
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04218-6
– ident: CR43
– volume: 14
  start-page: 64
  issue: 1
  year: 2017
  end-page: 75
  ident: CR45
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2015.2476796
– volume: 9
  start-page: 727
  issue: 3
  year: 2010
  end-page: 745
  ident: CR44
  article-title: BGSA: binary gravitational search algorithm
  publication-title: Nat Comput
  doi: 10.1007/s11047-009-9175-3
– ident: CR2
– volume: 578
  start-page: 887
  year: 2021
  end-page: 912
  ident: CR7
  article-title: Feature selection using fisher score and multilabel neighborhood rough sets for multilabel classification
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.08.032
– volume: 7
  start-page: 175793
  year: 2019
  end-page: 175815
  ident: CR51
  article-title: Hybrid multilabel feature selection using BPSO and neighborhood rough set for multilabel neighborhood decision system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957662
– volume: 22
  start-page: 811
  year: 2018
  end-page: 822
  ident: CR57
  article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2385-6
– volume: 581
  start-page: 891
  year: 2021
  end-page: 911
  ident: CR1
  article-title: Dynamic interaction feature selection based on fuzzy rough set
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.10.026
– volume: 15
  start-page: 75
  issue: 2
  year: 2020
  end-page: 89
  ident: CR31
  article-title: Quantum inspired monarch butterfly optimisation for UCAV path planning navigation problem
  publication-title: International Journal of Bio-Inspired Computation
  doi: 10.1504/IJBIC.2020.106428
– ident: CR56
– volume: 41
  start-page: 3463
  issue: 2
  year: 2021
  end-page: 3480
  ident: CR26
  article-title: Reverse guidance butterfly optimization algorithm integrated with information cross-sharing
  publication-title: Journal of Intelligence and Fuzzy Systems
  doi: 10.3233/JIFS-210815
– volume: 51
  start-page: 4058
  year: 2021
  end-page: 4081
  ident: CR35
  article-title: Solving feature selection problems by combing mutation and crossover operations with the monarch butterfly optimization algorithm
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01981-0
– volume: 31
  start-page: 4287
  issue: 8
  year: 2019
  end-page: 4303
  ident: CR47
  article-title: Efficient feature selection and classification algorithm based on PSO and rough sets
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-017-3317-9
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR55
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.03.001
– ident: CR13
– volume: 33
  start-page: 16229
  year: 2021
  end-page: 16250
  ident: CR53
  article-title: Spatial bound whale optimization algorithm: an efficient high-dimensional feature selection approach
  publication-title: Neural Computing and Application
  doi: 10.1007/s00521-021-06224-y
– volume: 52
  start-page: 874
  issue: 2
  year: 2021
  end-page: 888
  ident: CR3
  article-title: Multiobjective particle swarm optimization for feature selection with fuzzy cost
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.3015756
– volume: 154
  start-page: 43
  year: 2018
  end-page: 67
  ident: CR21
  article-title: An efficient binary slap swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.05.009
– volume: 97
  start-page: 104079
  year: 2021
  ident: CR41
  article-title: A hybrid feature selection method based on information theory and binary butterfly optimization algorithm
  publication-title: Engineering Application of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.104079
– ident: CR20
– volume: 161
  start-page: 638
  year: 2019
  end-page: 646
  ident: CR28
  article-title: On the comparison of crazy particle swarm optimization and advanced binary ant colony optimization for feature selection on high-dimensional data
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.11.167
– volume: 2019
  start-page: 4182148
  year: 2019
  ident: CR32
  article-title: Improved monarch butterfly optimization algorithm based on opposition-based learning and random local perturbation
  publication-title: Complexity
  doi: 10.1155/2019/4182148
– volume: 80
  start-page: 18583
  year: 2021
  end-page: 18610
  ident: CR37
  article-title: Improved crossover-based monarch butterfly optimization for tomato leaf disease classification using convolutional neural work
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-10599-4
– volume: 56
  start-page: 52
  issue: 293
  year: 1961
  end-page: 64
  ident: CR61
  article-title: Multiple comparisons among means
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1961.10482090
– volume: 30
  start-page: 163
  issue: 1
  year: 2018
  end-page: 181
  ident: CR18
  article-title: Hybridizing artificial bee colony with monarch butterfly optimization for numerical optimization problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2665-1
– volume: 33
  start-page: 11011
  year: 2021
  end-page: 11025
  ident: CR33
  article-title: A multi-objective monarch butterfly algorithm for virtual machine placement in cloud computing
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-020-05559-2
– volume: 578
  start-page: 887
  year: 2021
  ident: 3554_CR7
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.08.032
– volume: 18
  start-page: 305
  issue: 1
  year: 2020
  ident: 3554_CR10
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2021016
– volume: 24
  start-page: 4575
  year: 2020
  ident: 3554_CR52
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04218-6
– volume: 537
  start-page: 401
  year: 2020
  ident: 3554_CR62
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.05.102
– volume: 117
  start-page: 267
  year: 2019
  ident: 3554_CR22
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.09.015
– volume: 14
  start-page: 888
  issue: 5
  year: 2020
  ident: 3554_CR6
  publication-title: The Institution of Engineering and Technology
– volume: 22
  start-page: 811
  year: 2018
  ident: 3554_CR57
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2385-6
– volume: 120
  start-page: 74
  year: 2020
  ident: 3554_CR12
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2020.01.012
– volume: 45
  start-page: 191
  issue: 2
  year: 2015
  ident: 3554_CR58
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2322602
– volume: 169
  start-page: 1
  year: 2016
  ident: 3554_CR55
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.03.001
– ident: 3554_CR5
  doi: 10.1109/TETCI.2021.3074147
– volume: 52
  start-page: 874
  issue: 2
  year: 2021
  ident: 3554_CR3
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.3015756
– ident: 3554_CR11
  doi: 10.1016/j.knosys.2019.105373
– ident: 3554_CR19
  doi: 10.1109/ICNN.1995.488968
– volume: 56
  start-page: 52
  issue: 293
  year: 1961
  ident: 3554_CR61
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1961.10482090
– volume: 8
  start-page: 85989
  year: 2020
  ident: 3554_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992752
– ident: 3554_CR46
  doi: 10.1080/21642583.2019.1708830
– volume: 51
  start-page: 4058
  year: 2021
  ident: 3554_CR35
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01981-0
– volume: 31
  start-page: 4287
  issue: 8
  year: 2019
  ident: 3554_CR47
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-017-3317-9
– volume: 33
  start-page: 981
  issue: 11
  year: 2020
  ident: 3554_CR34
  publication-title: Chinese Pattern Recognition and Artificial Intelligence
– volume: 80
  start-page: 18583
  year: 2021
  ident: 3554_CR37
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-10599-4
– volume: 81
  start-page: 148
  year: 2019
  ident: 3554_CR49
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2018.11.005
– volume: 30
  start-page: 163
  issue: 1
  year: 2018
  ident: 3554_CR18
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2665-1
– ident: 3554_CR50
  doi: 10.1109/ISCAS.2013.6571881
– volume: 31
  start-page: 1995
  issue: 7
  year: 2019
  ident: 3554_CR29
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-015-1923-y
– volume: 48
  start-page: 172
  year: 2019
  ident: 3554_CR14
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.04.004
– volume: 154
  start-page: 43
  year: 2018
  ident: 3554_CR21
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.05.009
– volume: 507
  start-page: 67
  year: 2020
  ident: 3554_CR17
  publication-title: Information Science
  doi: 10.1016/j.ins.2019.08.040
– volume: 224
  start-page: 113301
  year: 2020
  ident: 3554_CR54
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113301
– volume: 80
  start-page: 30057
  year: 2021
  ident: 3554_CR30
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10147-6
– volume: 15
  start-page: 75
  issue: 2
  year: 2020
  ident: 3554_CR31
  publication-title: International Journal of Bio-Inspired Computation
  doi: 10.1504/IJBIC.2020.106428
– ident: 3554_CR2
  doi: 10.1016/j.ins.2022.02.004
– volume: 24
  start-page: 882
  issue: 5
  year: 2020
  ident: 3554_CR15
  publication-title: IEEE Transactions on Evolutionary
  doi: 10.1109/TEVC.2020.2968743
– volume: 29
  start-page: 19
  issue: 1
  year: 2021
  ident: 3554_CR4
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.2989098
– volume: 97
  start-page: 104079
  year: 2021
  ident: 3554_CR41
  publication-title: Engineering Application of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.104079
– ident: 3554_CR13
  doi: 10.1109/TFUZZ.2021.3053844
– volume: 25
  start-page: 2911
  year: 2021
  ident: 3554_CR42
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05349-x
– volume: 581
  start-page: 891
  year: 2021
  ident: 3554_CR1
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.10.026
– ident: 3554_CR20
  doi: 10.1109/TEVC.2021.3134804
– ident: 3554_CR8
  doi: 10.1109/TCYB.2021.3061152
– volume: 161
  start-page: 638
  year: 2019
  ident: 3554_CR28
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.11.167
– ident: 3554_CR39
  doi: 10.1007/s00521-015-2135-1
– ident: 3554_CR43
– volume: 52
  start-page: 94
  year: 2015
  ident: 3554_CR59
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2014.10.007
– ident: 3554_CR9
  doi: 10.1016/j.ins.2019.05.072
– volume: 33
  start-page: 11011
  year: 2021
  ident: 3554_CR33
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-020-05559-2
– volume: 2019
  start-page: 4182148
  year: 2019
  ident: 3554_CR32
  publication-title: Complexity
  doi: 10.1155/2019/4182148
– volume: 39
  start-page: 240
  year: 2013
  ident: 3554_CR48
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2012.11.005
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 3554_CR60
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177731944
– volume: 227
  start-page: 107218
  year: 2021
  ident: 3554_CR24
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107218
– volume: 41
  start-page: 3463
  issue: 2
  year: 2021
  ident: 3554_CR26
  publication-title: Journal of Intelligence and Fuzzy Systems
  doi: 10.3233/JIFS-210815
– ident: 3554_CR56
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 9
  start-page: 727
  issue: 3
  year: 2010
  ident: 3554_CR44
  publication-title: Nat Comput
  doi: 10.1007/s11047-009-9175-3
– volume: 14
  start-page: 64
  issue: 1
  year: 2017
  ident: 3554_CR45
  publication-title: IEEE ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2015.2476796
– ident: 3554_CR16
  doi: 10.1109/TEVC.2021.3106975
– volume: 7
  start-page: 175793
  year: 2019
  ident: 3554_CR51
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957662
– volume: 48
  start-page: 19
  year: 2020
  ident: 3554_CR38
  publication-title: Electric Power Components and Systems
  doi: 10.1080/15325008.2021.1908458
– volume: 33
  start-page: 16229
  year: 2021
  ident: 3554_CR53
  publication-title: Neural Computing and Application
  doi: 10.1007/s00521-021-06224-y
– volume: 267
  start-page: 120
  issue: 1
  year: 2018
  ident: 3554_CR25
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.11.017
– volume: 7
  start-page: 81177
  year: 2019
  ident: 3554_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917502
– ident: 3554_CR36
  doi: 10.11772/j.issn.1001-9081.2021030497
– volume: 9
  start-page: 1
  year: 2013
  ident: 3554_CR40
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2012.09.002
SSID ssj0003301
Score 2.439727
Snippet Swarm intelligence algorithms have superior performance in searching for the optimal feature subset, where Monarch Butterfly Optimization (MBO) can solve the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 706
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Datasets
Feature selection
Heuristic methods
Machines
Manufacturing
Mechanical Engineering
Mutation
Operators (mathematics)
Optimization
Processes
Swarm intelligence
Transfer functions
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDlwg0prmqTJESEmThPipd2qvIqQxobWDYl_j5OmDBAgwbmpVdmO_bmO8yF0bKQlYHaVcAOVDmWeDTDXJOGOGZlDHcStDWQT-WAghkN5FYfCqua0e9OSDJH6w7Ab9cd7QGTPJ8lELqMVSHfCEzZc39y_x1-o0ANPHlQWCedyGEdlvpfxOR0tMOaXtmjINv32_75zA61HdInPanfYREtuvIXaDXMDjht5GwXkN586XAUaHLAN9gfgH7AO47kYfNNvAKxrGuvRK55AaHmKM5s76K5_cXt-mUQihcRAdTVLWJllJlWasKxMOdHMCscdEUxT1XMWIAvJhbZKc1pqQHzMCQWwsUxVzwpVltkuao0nY7eHcK6YlVIDMBOEKs6UsSCZUMepMSZLOyht9FmYeMu4J7sYFYv7kb1-CtBPEfRTyA46eX_nub5j49fV3cZMRdxvVUFCfxHQKO2g08Ysi8c_S9v_2_IDtOb55ut_MF3Umk3n7hCtmpfZYzU9Cn74Bj1j1mQ
  priority: 102
  providerName: Springer Nature
Title Feature selection using binary monarch butterfly optimization
URI https://link.springer.com/article/10.1007/s10489-022-03554-9
https://www.proquest.com/docview/2760025194
Volume 53
WOSCitedRecordID wos000784870800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509eDFt7g-lhy8aXCbNml7EhVFEJfF5-ql5FURdFf3IfjvnWRTFwW9eAmUtkPIJJNvkpn5AHZ0bhiqXVKh0dNJuGMDTBWjwnKdp-gHCWM82UTaamWdTt4OB26DEFZZ2URvqE1PuzPyfeZvkBBvJAevb9SxRrnb1UChMQ0zrkpC5EP3rr4sMfrqnjEPfQwqRN4JSTMhdS5xwULYwabbcmn-fWOaoM0fF6R-3zld-G-PF2E-IE5yOJ4iSzBlu8uwULE5kLC4V8CjwVHfkoGnxkF9ERcU_0iUT9klKM4tCqLG1NbPH6SH5uYl5HGuws3pyfXxGQ3kClSjxzWkvIxjHUnFeFxGgiluMissy7hKZNMahDEszZSRSiSlQhTIbSYRSpaRbJpMlmW8BrVur2vXgaSSmzxXCNYylkjBpTYomSVWJFrrOKpDVI1soUPlcUeA8VxMaiY7bRSojcJro8jrsPv1z-u47safX29VKijCGhwUk_Gvw16lxMnr36Vt_C1tE-Yc5_z4HGYLasP-yG7DrH4fPg36DZhO7-4bMHN00mpf4tN5SrG9aB43_NzEts0fsL28uv0Ek3bmsw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB6xgLRcgOUhytMHOIFF49hOckAI8RCobMWBlXoLfgUhQQttAfGn-I2MnYSKleDGgXOSkeNvPP7G9vgD2DSZZQi7otJgpsOFVwNMNKPSCZMlmAdJa4PYRNJup51OdjEGr3UtjD9WWcfEEKhtz_g18l0WdpCQb_D9-wfqVaP87motoVG6Rcu9PGPKNtg7O0J8txg7Ob48PKWVqgA1mGoMqSji2ERKMxEXkWRa2NRJx1KhuWo6i_M3S1JtlZa80Eh_hEsVcqgiUk2bqqKI0e4vmOBxmvhx1Uroe-SP4yC33MSchkqZdaoinapUj_vDSdghTT_F0-zjRDhit_9tyIZ57mTmp_XQLExXjJoclEPgD4y57hzM1GoVpApe8xDY7mPfkUGQ_kF_JP7Q_zXRoSSZYPN924kupbtvX0gPw-ldVae6AP--5ScWYbzb67olIIkSNss0ktGUcSWFMhYtM-4kN8bEUQOiGsncVDere4GP23x0J7RHP0f084B-njVg-_2b-_JekS_fXq0hz6sYM8hHeDdgp3aa0ePPrS1_bW0Dfp9e_j3Pz8_arRWYYsjqyjWnVRgf9h_dGkyap-HNoL8evJ_A1Xc70xvuuT5k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58IV58i-szBz1pcZs2aXsQEXVRlGUPCouXmldF0F3dXRX_mr_OSZq6KOjNg-e2Q5qZzHyTzOQD2FKZpqh2EXCFmU7MLBtgImnADVNZgnkQ19qRTSTNZtpuZ60ReK96YWxZZeUTnaPWXWX3yPeoO0FCvBHvFb4sonXcOHh8CiyDlD1preg0ShM5N2-vmL7198-OUdfblDZOLo9OA88wEChMOwYBK6JIhUJSFhUhp5Lp1HBDUyZjUTcaYzlNUqmF5HEhEQoxkwrEU0Uo6joVRRGh3FEYTzDHtOWELXb9GQWiyFEv1zG_CTjP2r5hx7ftxbZQCSenbsN9kH0NikOk--1w1sW8xsx_nq1ZmPZImxyWS2MORkxnHmYqFgvindoCOBT83DOk7yiB0E6JbQa4JdK1KhMcvh07kSWl9_0b6aKbffD9q4tw9Sc_sQRjnW7HLANJBNNZJhGkpjQWnAmlUTKNDY-VUlFYg7DSaq78jeuW-OM-H94VbS0hR0vInSXkWQ12Pr95LO8b-fXttUr9ufc9_Xyo-xrsVgY0fPyztJXfpW3CJNpQfnHWPF-FKYpgr9yKWoOxQe_ZrMOEehnc9XsbbiEQuPlrW_oA3KhHiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+binary+monarch+butterfly+optimization&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Sun%2C+Lin&rft.au=Si%2C+Shanshan&rft.au=Zhao%2C+Jing&rft.au=Xu%2C+Jiucheng&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=1&rft.spage=706&rft.epage=727&rft_id=info:doi/10.1007%2Fs10489-022-03554-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon