Feature selection using binary monarch butterfly optimization
Swarm intelligence algorithms have superior performance in searching for the optimal feature subset, where Monarch Butterfly Optimization (MBO) can solve the continuous optimization problem. However, there exist some defects for MBO such as the limited searchable positions, falling into local optimu...
Saved in:
| Published in: | Applied intelligence (Dordrecht, Netherlands) Vol. 53; no. 1; pp. 706 - 727 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0924-669X, 1573-7497 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Swarm intelligence algorithms have superior performance in searching for the optimal feature subset, where Monarch Butterfly Optimization (MBO) can solve the continuous optimization problem. However, there exist some defects for MBO such as the limited searchable positions, falling into local optimum easily and unsolved binary variables. To address these drawbacks, this paper develops two mechanisms to propose several revisions of binary MBO (BMBO) for metaheuristic feature selection. First, to make MBO suitable to solve the feature selection optimization problems, the S-shaped and V-shaped transfer functions are introduced to convert continuous space into binary, and then force the butterfly to move in the binary search space. Two updated positions of the monarch butterfly population are designed based on these above transfer functions respectively to construct two BMBO models, namely BMBO-S and BMBO-V, as the first mechanism of BMBO. Second, the new step length parameter is proposed to update the position of monarch butterfly individuals. To prevent MBO from falling into the local optimum, the local disturbance and group division strategies are added into MBO to construct new BMBO method. It follows that a mutation rate is employed to enhance the detection stage of BMBO, and the mutation operator-based BMBO (BMBO-M) is designed to avoid the premature convergence of MBO. Third, this fitness function is integrated with the KNN classifier and the weight of the feature subset length to rank the selected feature subset, and a metaheuristic feature selection algorithm with BMBO-M is developed. Experiments applied to nineteen low dimensional UCI datasets and seven high dimensional datasets demonstrate our designed algorithm has great classification efficiency when compared with the other related technologies. |
|---|---|
| AbstractList | Swarm intelligence algorithms have superior performance in searching for the optimal feature subset, where Monarch Butterfly Optimization (MBO) can solve the continuous optimization problem. However, there exist some defects for MBO such as the limited searchable positions, falling into local optimum easily and unsolved binary variables. To address these drawbacks, this paper develops two mechanisms to propose several revisions of binary MBO (BMBO) for metaheuristic feature selection. First, to make MBO suitable to solve the feature selection optimization problems, the S-shaped and V-shaped transfer functions are introduced to convert continuous space into binary, and then force the butterfly to move in the binary search space. Two updated positions of the monarch butterfly population are designed based on these above transfer functions respectively to construct two BMBO models, namely BMBO-S and BMBO-V, as the first mechanism of BMBO. Second, the new step length parameter is proposed to update the position of monarch butterfly individuals. To prevent MBO from falling into the local optimum, the local disturbance and group division strategies are added into MBO to construct new BMBO method. It follows that a mutation rate is employed to enhance the detection stage of BMBO, and the mutation operator-based BMBO (BMBO-M) is designed to avoid the premature convergence of MBO. Third, this fitness function is integrated with the KNN classifier and the weight of the feature subset length to rank the selected feature subset, and a metaheuristic feature selection algorithm with BMBO-M is developed. Experiments applied to nineteen low dimensional UCI datasets and seven high dimensional datasets demonstrate our designed algorithm has great classification efficiency when compared with the other related technologies. |
| Author | Xu, Jiucheng Si, Shanshan Sun, Lin Lin, Yaojin Lv, Zhiying Zhao, Jing |
| Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0003-4917-7651 surname: Sun fullname: Sun, Lin email: sunlin@htu.edu.cn organization: College of Computer and Information Engineering, Henan Normal University, Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Engineering Lab of Intelligence Business and Internet of Things of Henan Province – sequence: 2 givenname: Shanshan surname: Si fullname: Si, Shanshan organization: College of Computer and Information Engineering, Henan Normal University – sequence: 3 givenname: Jing surname: Zhao fullname: Zhao, Jing email: zzzzjjja@163.com organization: College of Computer and Information Engineering, Henan Normal University – sequence: 4 givenname: Jiucheng surname: Xu fullname: Xu, Jiucheng organization: College of Computer and Information Engineering, Henan Normal University – sequence: 5 givenname: Yaojin surname: Lin fullname: Lin, Yaojin email: zzlinyaojin@163.com organization: Key Laboratory of Data Science and Intelligence Application, Minnan Normal University – sequence: 6 givenname: Zhiying surname: Lv fullname: Lv, Zhiying organization: School of Management, Chengdu University of Information Technology |
| BookMark | eNp9kD1PwzAURS1UJNrCH2CKxGx4_krsgQFVFJAqsYDEZjmJXVylSbGdofx60gYJiaHTXe557-rM0KTtWovQNYFbAlDcRQJcKgyUYmBCcKzO0JSIguGCq2KCpqAox3muPi7QLMYNADAGZIrul9akPtgs2sZWyXdt1kffrrPStybss203RPWZlX1KNrhmn3W75Lf-2xy6l-jcmSbaq9-co_fl49viGa9en14WDytcUa4SFo6xipiSCuZITktRS5tbKkXJDdhaKkYLWdamzLkrFWXCSqNI7oiBWhrn2BzdjHd3ofvqbUx60_WhHV5qWuQAVBDFh5YcW1XoYgzW6cqn484UjG80AX2QpUdZepClj7K0GlD6D90Fvx0EnIbYCMWh3K5t-Ft1gvoBLCh_SA |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3310429 crossref_primary_10_1038_s41598_024_80648_z crossref_primary_10_3233_IDA_230651 crossref_primary_10_1007_s11042_023_16686_y crossref_primary_10_1016_j_jocs_2023_102201 crossref_primary_10_1007_s13042_022_01653_0 crossref_primary_10_3390_biomimetics9090572 crossref_primary_10_1093_jcde_qwad009 crossref_primary_10_1007_s13042_024_02222_3 crossref_primary_10_1007_s42235_024_00515_5 crossref_primary_10_1109_ACCESS_2024_3470845 crossref_primary_10_1016_j_asoc_2023_110837 crossref_primary_10_1007_s00521_024_09581_6 crossref_primary_10_1007_s11042_024_20221_y crossref_primary_10_1016_j_matcom_2023_12_037 crossref_primary_10_1186_s42162_024_00422_3 crossref_primary_10_1007_s11042_024_19069_z crossref_primary_10_1007_s13042_023_01788_8 crossref_primary_10_1007_s00521_024_10288_x crossref_primary_10_1007_s10489_024_05555_2 crossref_primary_10_1007_s13042_024_02308_y crossref_primary_10_1016_j_knosys_2025_114119 crossref_primary_10_3390_biomimetics8060492 crossref_primary_10_1016_j_eswa_2024_123362 crossref_primary_10_1016_j_jksuci_2023_101731 |
| Cites_doi | 10.1109/TEVC.2020.2968743 10.1214/aoms/1177731944 10.1016/j.ejor.2017.11.017 10.1109/TCYB.2014.2322602 10.1016/j.ins.2020.05.102 10.3934/mbe.2021016 10.1016/j.knosys.2012.11.005 10.1016/j.ijar.2020.01.012 10.1016/j.knosys.2021.107218 10.1109/TFUZZ.2020.2989098 10.1016/j.swevo.2019.04.004 10.1007/s00521-015-1923-y 10.1007/s11042-020-10147-6 10.1109/ACCESS.2019.2917502 10.1007/s00500-020-05349-x 10.1016/j.cose.2018.11.005 10.1016/j.eswa.2018.09.015 10.1016/j.ins.2019.08.040 10.1109/ACCESS.2020.2992752 10.1080/15325008.2021.1908458 10.1016/j.patrec.2014.10.007 10.1016/j.swevo.2012.09.002 10.1016/j.enconman.2020.113301 10.1007/s00500-019-04218-6 10.1109/TCBB.2015.2476796 10.1007/s11047-009-9175-3 10.1016/j.ins.2021.08.032 10.1109/ACCESS.2019.2957662 10.1007/s00500-016-2385-6 10.1016/j.ins.2021.10.026 10.1504/IJBIC.2020.106428 10.3233/JIFS-210815 10.1007/s10489-020-01981-0 10.1007/s00521-017-3317-9 10.1016/j.compstruc.2016.03.001 10.1007/s00521-021-06224-y 10.1109/TCYB.2020.3015756 10.1016/j.knosys.2018.05.009 10.1016/j.engappai.2020.104079 10.1016/j.procs.2019.11.167 10.1155/2019/4182148 10.1007/s11042-021-10599-4 10.1080/01621459.1961.10482090 10.1007/s00521-016-2665-1 10.1007/s00521-020-05559-2 10.1109/TETCI.2021.3074147 10.1016/j.knosys.2019.105373 10.1109/ICNN.1995.488968 10.1080/21642583.2019.1708830 10.1109/ISCAS.2013.6571881 10.1016/j.ins.2022.02.004 10.1109/TFUZZ.2021.3053844 10.1109/TEVC.2021.3134804 10.1109/TCYB.2021.3061152 10.1007/s00521-015-2135-1 10.1016/j.ins.2019.05.072 10.1016/j.advengsoft.2017.07.002 10.1109/TEVC.2021.3106975 10.11772/j.issn.1001-9081.2021030497 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-022-03554-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 727 |
| ExternalDocumentID | 10_1007_s10489_022_03554_9 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62076089; 61976082 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c249t-5f33c1ab253f162b5d8e6e285b4a0ed893278bdab64fb9235e8a916f1a0d8aff3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784870800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 15:42:35 EST 2025 Tue Nov 18 22:27:05 EST 2025 Sat Nov 29 05:33:29 EST 2025 Fri Feb 21 02:45:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Mutation operator Monarch butterfly optimization Feature selection Metaheuristic |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-5f33c1ab253f162b5d8e6e285b4a0ed893278bdab64fb9235e8a916f1a0d8aff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4917-7651 |
| PQID | 2760025194 |
| PQPubID | 326365 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2760025194 crossref_citationtrail_10_1007_s10489_022_03554_9 crossref_primary_10_1007_s10489_022_03554_9 springer_journals_10_1007_s10489_022_03554_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20230100 2023-01-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Selvakumar, Muneeswaran (CR49) 2019; 81 Zhang, Gong, Cheng (CR45) 2017; 14 Too, Mafarja, Mirjalili (CR53) 2021; 33 Faris, Mafarja, Heidari, Ibrahim, AlZoubi, Seyedali, Hamido (CR21) 2018; 154 CR39 Ghanem, Jantan (CR18) 2018; 30 CR36 Milton (CR60) 1940; 11 Kumar, Naresh (CR38) 2020; 48 Kelidari, Hamidzadeh (CR42) 2021; 25 Zohre, Ebrahim, Hossein (CR41) 2021; 97 Wang, Tan, Niu (CR14) 2019; 48 Mafarja, Aljarah, Faris, Hammouri, AlZoubi (CR22) 2019; 117 CR2 Wan, Chen, Li, Yang, Sang (CR1) 2021; 581 CR5 CR8 Hou, Li, Yu, Li (CR23) 2019; 7 Salem, Liu, Ahmed, Zhang, Chen (CR10) 2020; 18 CR9 CR46 CR43 Huda, Banka (CR47) 2019; 31 Nandhini, Ashokkumar (CR37) 2021; 80 Dorgham, Alweshah, Ryalat, Alshaer, Khader, Alkhalaileh (CR30) 2021; 80 Rashedi, Nezamabadi-pour, Saryazdi (CR44) 2010; 9 Banka, Dara (CR59) 2015; 52 Gu, Cheng, Jin (CR57) 2018; 22 Sun, Yin, Ding, Xu (CR51) 2019; 7 Sun, Chen, Xu, Tian, Zhou (CR32) 2019; 2019 Nancy, Muthurajkumar, Ganapathy, Santhosh Kumar, Selvi, Arputharaj (CR6) 2020; 14 Alweshah (CR35) 2021; 51 Ashakarzadeh (CR55) 2016; 169 CR19 Mirjalili, Lewis (CR40) 2013; 9 Olive (CR61) 1961; 56 CR16 Sun, Wang, Ding, Xu, Lin (CR7) 2021; 578 CR13 CR56 CR11 Tsai, William, Chu (CR48) 2013; 39 Hu, Zhang, Gong (CR3) 2021; 52 Zhang, Jin, Mirijalili (CR54) 2020; 224 Ibrahim, Tawhid, Ward (CR12) 2020; 120 CR50 Xue, Zhu, Liang, Slowik (CR24) 2021; 227 Yi, Lu, Zhao (CR31) 2020; 15 Sun, Yin, Ding, Qin, Xu (CR62) 2020; 537 Ji, Lu, Sun, Zhang, Li, Xiao (CR27) 2020; 8 Roberta, Roberto, Giuseppe, Eleonora (CR25) 2018; 267 Sun, Wang, Ding, Qian, Xu (CR4) 2021; 29 Sun, Zhao, Xu, Xue (CR34) 2020; 33 CR20 Song, Zhang, Guo, Sun, Wang (CR15) 2020; 24 Luo, Qin, Xu (CR26) 2021; 41 Fridausanti, Irhamah (CR28) 2019; 161 Gheats (CR33) 2021; 33 Wang, Deb, Cui (CR29) 2019; 31 Naik, Kuppili, Edla (CR52) 2020; 24 Zhang, Gong, Guo, Tian, Sun (CR17) 2020; 507 Cheng, Jin (CR58) 2015; 45 OM Dorgham (3554_CR30) 2021; 80 WAHM Ghanem (3554_CR18) 2018; 30 P Nancy (3554_CR6) 2020; 14 S Nandhini (3554_CR37) 2021; 80 3554_CR36 3554_CR39 JH Wan (3554_CR1) 2021; 581 H Wang (3554_CR14) 2019; 48 S Zohre (3554_CR41) 2021; 97 DS Roberta (3554_CR25) 2018; 267 S Gu (3554_CR57) 2018; 22 3554_CR43 3554_CR46 GG Wang (3554_CR29) 2019; 31 B Selvakumar (3554_CR49) 2019; 81 Y Xue (3554_CR24) 2021; 227 CF Tsai (3554_CR48) 2013; 39 R Cheng (3554_CR58) 2015; 45 M Mafarja (3554_CR22) 2019; 117 Y Hu (3554_CR3) 2021; 52 M Gheats (3554_CR33) 2021; 33 F Milton (3554_CR60) 1940; 11 RK Huda (3554_CR47) 2019; 31 JG Too (3554_CR53) 2021; 33 L Sun (3554_CR4) 2021; 29 L Sun (3554_CR7) 2021; 578 AM Ibrahim (3554_CR12) 2020; 120 JH Yi (3554_CR31) 2020; 15 V Kumar (3554_CR38) 2020; 48 3554_CR50 Y Zhang (3554_CR54) 2020; 224 3554_CR11 3554_CR13 A Ashakarzadeh (3554_CR55) 2016; 169 3554_CR56 E Rashedi (3554_CR44) 2010; 9 L Sun (3554_CR51) 2019; 7 XF Song (3554_CR15) 2020; 24 3554_CR16 3554_CR19 L Sun (3554_CR32) 2019; 2019 JD Olive (3554_CR61) 1961; 56 OAM Salem (3554_CR10) 2020; 18 NA Fridausanti (3554_CR28) 2019; 161 L Sun (3554_CR62) 2020; 537 Y Zhang (3554_CR45) 2017; 14 AK Naik (3554_CR52) 2020; 24 Y Zhang (3554_CR17) 2020; 507 S Mirjalili (3554_CR40) 2013; 9 3554_CR2 J Luo (3554_CR26) 2021; 41 3554_CR5 3554_CR20 3554_CR8 3554_CR9 B Ji (3554_CR27) 2020; 8 H Faris (3554_CR21) 2018; 154 Y Hou (3554_CR23) 2019; 7 M Kelidari (3554_CR42) 2021; 25 M Alweshah (3554_CR35) 2021; 51 L Sun (3554_CR34) 2020; 33 H Banka (3554_CR59) 2015; 52 |
| References_xml | – volume: 24 start-page: 882 issue: 5 year: 2020 end-page: 895 ident: CR15 article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data publication-title: IEEE Transactions on Evolutionary doi: 10.1109/TEVC.2020.2968743 – volume: 11 start-page: 86 issue: 1 year: 1940 end-page: 92 ident: CR60 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann Math Stat doi: 10.1214/aoms/1177731944 – ident: CR39 – ident: CR16 – volume: 267 start-page: 120 issue: 1 year: 2018 end-page: 137 ident: CR25 article-title: An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2017.11.017 – volume: 45 start-page: 191 issue: 2 year: 2015 end-page: 204 ident: CR58 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2322602 – volume: 537 start-page: 401 year: 2020 end-page: 424 ident: CR62 article-title: Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems publication-title: Inf Sci doi: 10.1016/j.ins.2020.05.102 – volume: 18 start-page: 305 issue: 1 year: 2020 end-page: 327 ident: CR10 article-title: Feature selection based on fuzzy joint mutual information maximization publication-title: Math Biosci Eng doi: 10.3934/mbe.2021016 – ident: CR8 – volume: 33 start-page: 981 issue: 11 year: 2020 end-page: 994 ident: CR34 article-title: Feature selection method based on improved monarch butterfly optimization algorithm publication-title: Chinese Pattern Recognition and Artificial Intelligence – volume: 39 start-page: 240 year: 2013 end-page: 247 ident: CR48 article-title: Genetic algorithms in feature and instance selection publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2012.11.005 – volume: 120 start-page: 74 year: 2020 end-page: 91 ident: CR12 article-title: A binary water wave optimization for feature selection publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2020.01.012 – volume: 227 start-page: 107218 year: 2021 ident: CR24 article-title: Adaptive crosser operator based multi-objective binary genetic algorithm for feature selection in classification publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107218 – volume: 29 start-page: 19 issue: 1 year: 2021 end-page: 33 ident: CR4 article-title: Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.2989098 – ident: CR46 – ident: CR19 – volume: 14 start-page: 888 issue: 5 year: 2020 end-page: 895 ident: CR6 article-title: Intrusion detecting using dynamic feature selection and fuzzy temporal decision tree classification for wireless sensor networks publication-title: The Institution of Engineering and Technology – volume: 48 start-page: 172 year: 2019 end-page: 181 ident: CR14 article-title: Feature selection for classification of microarray gene expression cancers using bacterial colony optimization with multi-dimensional population publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2019.04.004 – volume: 31 start-page: 1995 issue: 7 year: 2019 end-page: 2014 ident: CR29 article-title: Monarch butterfly optimization publication-title: Neural Comput & Applic doi: 10.1007/s00521-015-1923-y – ident: CR50 – volume: 80 start-page: 30057 year: 2021 end-page: 30090 ident: CR30 article-title: Monarch butterfly optimization algorithm for computed tomography image segmentation publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10147-6 – volume: 7 start-page: 81177 year: 2019 end-page: 81194 ident: CR23 article-title: BIFFOA: a novel binary improved fruit fly algorithm for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917502 – volume: 25 start-page: 2911 year: 2021 end-page: 2933 ident: CR42 article-title: Feature selection by using chaotic cuckoo optimization algorithm with levy flight, opposition-based learning and disruption operator publication-title: Soft Comput doi: 10.1007/s00500-020-05349-x – ident: CR11 – volume: 81 start-page: 148 year: 2019 end-page: 155 ident: CR49 article-title: Firefly algorithm-based feature selection for network intrusion detection publication-title: Computers & Security doi: 10.1016/j.cose.2018.11.005 – ident: CR9 – volume: 117 start-page: 267 year: 2019 end-page: 286 ident: CR22 article-title: Binary grasshopper optimization algorithm approaches for feature selection problems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.09.015 – ident: CR36 – ident: CR5 – volume: 507 start-page: 67 year: 2020 end-page: 85 ident: CR17 article-title: Binary differential evolution with self-learning for multi-objective feature selection publication-title: Information Science doi: 10.1016/j.ins.2019.08.040 – volume: 8 start-page: 85989 year: 2020 end-page: 86002 ident: CR27 article-title: Bio-inspired feature selection: an improved binary particle swarm optimization approach publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992752 – volume: 48 start-page: 19 year: 2020 end-page: 20 ident: CR38 article-title: Monarch butterfly optimization-based computational methodology for unit commitment problem publication-title: Electric Power Components and Systems doi: 10.1080/15325008.2021.1908458 – volume: 52 start-page: 94 year: 2015 end-page: 100 ident: CR59 article-title: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2014.10.007 – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: CR40 article-title: S-shaped versus V-shaped transfer function for binary particle swarm optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2012.09.002 – volume: 224 start-page: 113301 year: 2020 ident: CR54 article-title: Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113301 – volume: 24 start-page: 4575 year: 2020 end-page: 4587 ident: CR52 article-title: Efficient feature selection using one-pass generalized classifier neural network and binary bat algorithm with novel fitness function publication-title: Soft Comput doi: 10.1007/s00500-019-04218-6 – ident: CR43 – volume: 14 start-page: 64 issue: 1 year: 2017 end-page: 75 ident: CR45 article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification publication-title: IEEE ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2015.2476796 – volume: 9 start-page: 727 issue: 3 year: 2010 end-page: 745 ident: CR44 article-title: BGSA: binary gravitational search algorithm publication-title: Nat Comput doi: 10.1007/s11047-009-9175-3 – ident: CR2 – volume: 578 start-page: 887 year: 2021 end-page: 912 ident: CR7 article-title: Feature selection using fisher score and multilabel neighborhood rough sets for multilabel classification publication-title: Information Sciences doi: 10.1016/j.ins.2021.08.032 – volume: 7 start-page: 175793 year: 2019 end-page: 175815 ident: CR51 article-title: Hybrid multilabel feature selection using BPSO and neighborhood rough set for multilabel neighborhood decision system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957662 – volume: 22 start-page: 811 year: 2018 end-page: 822 ident: CR57 article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer publication-title: Soft Comput doi: 10.1007/s00500-016-2385-6 – volume: 581 start-page: 891 year: 2021 end-page: 911 ident: CR1 article-title: Dynamic interaction feature selection based on fuzzy rough set publication-title: Inf Sci doi: 10.1016/j.ins.2021.10.026 – volume: 15 start-page: 75 issue: 2 year: 2020 end-page: 89 ident: CR31 article-title: Quantum inspired monarch butterfly optimisation for UCAV path planning navigation problem publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2020.106428 – ident: CR56 – volume: 41 start-page: 3463 issue: 2 year: 2021 end-page: 3480 ident: CR26 article-title: Reverse guidance butterfly optimization algorithm integrated with information cross-sharing publication-title: Journal of Intelligence and Fuzzy Systems doi: 10.3233/JIFS-210815 – volume: 51 start-page: 4058 year: 2021 end-page: 4081 ident: CR35 article-title: Solving feature selection problems by combing mutation and crossover operations with the monarch butterfly optimization algorithm publication-title: Appl Intell doi: 10.1007/s10489-020-01981-0 – volume: 31 start-page: 4287 issue: 8 year: 2019 end-page: 4303 ident: CR47 article-title: Efficient feature selection and classification algorithm based on PSO and rough sets publication-title: Neural Comput Applic doi: 10.1007/s00521-017-3317-9 – volume: 169 start-page: 1 year: 2016 end-page: 12 ident: CR55 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.03.001 – ident: CR13 – volume: 33 start-page: 16229 year: 2021 end-page: 16250 ident: CR53 article-title: Spatial bound whale optimization algorithm: an efficient high-dimensional feature selection approach publication-title: Neural Computing and Application doi: 10.1007/s00521-021-06224-y – volume: 52 start-page: 874 issue: 2 year: 2021 end-page: 888 ident: CR3 article-title: Multiobjective particle swarm optimization for feature selection with fuzzy cost publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.3015756 – volume: 154 start-page: 43 year: 2018 end-page: 67 ident: CR21 article-title: An efficient binary slap swarm algorithm with crossover scheme for feature selection problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.05.009 – volume: 97 start-page: 104079 year: 2021 ident: CR41 article-title: A hybrid feature selection method based on information theory and binary butterfly optimization algorithm publication-title: Engineering Application of Artificial Intelligence doi: 10.1016/j.engappai.2020.104079 – ident: CR20 – volume: 161 start-page: 638 year: 2019 end-page: 646 ident: CR28 article-title: On the comparison of crazy particle swarm optimization and advanced binary ant colony optimization for feature selection on high-dimensional data publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.11.167 – volume: 2019 start-page: 4182148 year: 2019 ident: CR32 article-title: Improved monarch butterfly optimization algorithm based on opposition-based learning and random local perturbation publication-title: Complexity doi: 10.1155/2019/4182148 – volume: 80 start-page: 18583 year: 2021 end-page: 18610 ident: CR37 article-title: Improved crossover-based monarch butterfly optimization for tomato leaf disease classification using convolutional neural work publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-10599-4 – volume: 56 start-page: 52 issue: 293 year: 1961 end-page: 64 ident: CR61 article-title: Multiple comparisons among means publication-title: J Am Stat Assoc doi: 10.1080/01621459.1961.10482090 – volume: 30 start-page: 163 issue: 1 year: 2018 end-page: 181 ident: CR18 article-title: Hybridizing artificial bee colony with monarch butterfly optimization for numerical optimization problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2665-1 – volume: 33 start-page: 11011 year: 2021 end-page: 11025 ident: CR33 article-title: A multi-objective monarch butterfly algorithm for virtual machine placement in cloud computing publication-title: Neural Comput & Applic doi: 10.1007/s00521-020-05559-2 – volume: 578 start-page: 887 year: 2021 ident: 3554_CR7 publication-title: Information Sciences doi: 10.1016/j.ins.2021.08.032 – volume: 18 start-page: 305 issue: 1 year: 2020 ident: 3554_CR10 publication-title: Math Biosci Eng doi: 10.3934/mbe.2021016 – volume: 24 start-page: 4575 year: 2020 ident: 3554_CR52 publication-title: Soft Comput doi: 10.1007/s00500-019-04218-6 – volume: 537 start-page: 401 year: 2020 ident: 3554_CR62 publication-title: Inf Sci doi: 10.1016/j.ins.2020.05.102 – volume: 117 start-page: 267 year: 2019 ident: 3554_CR22 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.09.015 – volume: 14 start-page: 888 issue: 5 year: 2020 ident: 3554_CR6 publication-title: The Institution of Engineering and Technology – volume: 22 start-page: 811 year: 2018 ident: 3554_CR57 publication-title: Soft Comput doi: 10.1007/s00500-016-2385-6 – volume: 120 start-page: 74 year: 2020 ident: 3554_CR12 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2020.01.012 – volume: 45 start-page: 191 issue: 2 year: 2015 ident: 3554_CR58 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2322602 – volume: 169 start-page: 1 year: 2016 ident: 3554_CR55 publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.03.001 – ident: 3554_CR5 doi: 10.1109/TETCI.2021.3074147 – volume: 52 start-page: 874 issue: 2 year: 2021 ident: 3554_CR3 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.3015756 – ident: 3554_CR11 doi: 10.1016/j.knosys.2019.105373 – ident: 3554_CR19 doi: 10.1109/ICNN.1995.488968 – volume: 56 start-page: 52 issue: 293 year: 1961 ident: 3554_CR61 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1961.10482090 – volume: 8 start-page: 85989 year: 2020 ident: 3554_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992752 – ident: 3554_CR46 doi: 10.1080/21642583.2019.1708830 – volume: 51 start-page: 4058 year: 2021 ident: 3554_CR35 publication-title: Appl Intell doi: 10.1007/s10489-020-01981-0 – volume: 31 start-page: 4287 issue: 8 year: 2019 ident: 3554_CR47 publication-title: Neural Comput Applic doi: 10.1007/s00521-017-3317-9 – volume: 33 start-page: 981 issue: 11 year: 2020 ident: 3554_CR34 publication-title: Chinese Pattern Recognition and Artificial Intelligence – volume: 80 start-page: 18583 year: 2021 ident: 3554_CR37 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-10599-4 – volume: 81 start-page: 148 year: 2019 ident: 3554_CR49 publication-title: Computers & Security doi: 10.1016/j.cose.2018.11.005 – volume: 30 start-page: 163 issue: 1 year: 2018 ident: 3554_CR18 publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2665-1 – ident: 3554_CR50 doi: 10.1109/ISCAS.2013.6571881 – volume: 31 start-page: 1995 issue: 7 year: 2019 ident: 3554_CR29 publication-title: Neural Comput & Applic doi: 10.1007/s00521-015-1923-y – volume: 48 start-page: 172 year: 2019 ident: 3554_CR14 publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2019.04.004 – volume: 154 start-page: 43 year: 2018 ident: 3554_CR21 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.05.009 – volume: 507 start-page: 67 year: 2020 ident: 3554_CR17 publication-title: Information Science doi: 10.1016/j.ins.2019.08.040 – volume: 224 start-page: 113301 year: 2020 ident: 3554_CR54 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113301 – volume: 80 start-page: 30057 year: 2021 ident: 3554_CR30 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10147-6 – volume: 15 start-page: 75 issue: 2 year: 2020 ident: 3554_CR31 publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2020.106428 – ident: 3554_CR2 doi: 10.1016/j.ins.2022.02.004 – volume: 24 start-page: 882 issue: 5 year: 2020 ident: 3554_CR15 publication-title: IEEE Transactions on Evolutionary doi: 10.1109/TEVC.2020.2968743 – volume: 29 start-page: 19 issue: 1 year: 2021 ident: 3554_CR4 publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.2989098 – volume: 97 start-page: 104079 year: 2021 ident: 3554_CR41 publication-title: Engineering Application of Artificial Intelligence doi: 10.1016/j.engappai.2020.104079 – ident: 3554_CR13 doi: 10.1109/TFUZZ.2021.3053844 – volume: 25 start-page: 2911 year: 2021 ident: 3554_CR42 publication-title: Soft Comput doi: 10.1007/s00500-020-05349-x – volume: 581 start-page: 891 year: 2021 ident: 3554_CR1 publication-title: Inf Sci doi: 10.1016/j.ins.2021.10.026 – ident: 3554_CR20 doi: 10.1109/TEVC.2021.3134804 – ident: 3554_CR8 doi: 10.1109/TCYB.2021.3061152 – volume: 161 start-page: 638 year: 2019 ident: 3554_CR28 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.11.167 – ident: 3554_CR39 doi: 10.1007/s00521-015-2135-1 – ident: 3554_CR43 – volume: 52 start-page: 94 year: 2015 ident: 3554_CR59 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2014.10.007 – ident: 3554_CR9 doi: 10.1016/j.ins.2019.05.072 – volume: 33 start-page: 11011 year: 2021 ident: 3554_CR33 publication-title: Neural Comput & Applic doi: 10.1007/s00521-020-05559-2 – volume: 2019 start-page: 4182148 year: 2019 ident: 3554_CR32 publication-title: Complexity doi: 10.1155/2019/4182148 – volume: 39 start-page: 240 year: 2013 ident: 3554_CR48 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2012.11.005 – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 3554_CR60 publication-title: Ann Math Stat doi: 10.1214/aoms/1177731944 – volume: 227 start-page: 107218 year: 2021 ident: 3554_CR24 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107218 – volume: 41 start-page: 3463 issue: 2 year: 2021 ident: 3554_CR26 publication-title: Journal of Intelligence and Fuzzy Systems doi: 10.3233/JIFS-210815 – ident: 3554_CR56 doi: 10.1016/j.advengsoft.2017.07.002 – volume: 9 start-page: 727 issue: 3 year: 2010 ident: 3554_CR44 publication-title: Nat Comput doi: 10.1007/s11047-009-9175-3 – volume: 14 start-page: 64 issue: 1 year: 2017 ident: 3554_CR45 publication-title: IEEE ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2015.2476796 – ident: 3554_CR16 doi: 10.1109/TEVC.2021.3106975 – volume: 7 start-page: 175793 year: 2019 ident: 3554_CR51 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957662 – volume: 48 start-page: 19 year: 2020 ident: 3554_CR38 publication-title: Electric Power Components and Systems doi: 10.1080/15325008.2021.1908458 – volume: 33 start-page: 16229 year: 2021 ident: 3554_CR53 publication-title: Neural Computing and Application doi: 10.1007/s00521-021-06224-y – volume: 267 start-page: 120 issue: 1 year: 2018 ident: 3554_CR25 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2017.11.017 – volume: 7 start-page: 81177 year: 2019 ident: 3554_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917502 – ident: 3554_CR36 doi: 10.11772/j.issn.1001-9081.2021030497 – volume: 9 start-page: 1 year: 2013 ident: 3554_CR40 publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2012.09.002 |
| SSID | ssj0003301 |
| Score | 2.439727 |
| Snippet | Swarm intelligence algorithms have superior performance in searching for the optimal feature subset, where Monarch Butterfly Optimization (MBO) can solve the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 706 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Datasets Feature selection Heuristic methods Machines Manufacturing Mechanical Engineering Mutation Operators (mathematics) Optimization Processes Swarm intelligence Transfer functions |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDlwg0prmqTJESEmThPipd2qvIqQxobWDYl_j5OmDBAgwbmpVdmO_bmO8yF0bKQlYHaVcAOVDmWeDTDXJOGOGZlDHcStDWQT-WAghkN5FYfCqua0e9OSDJH6w7Ab9cd7QGTPJ8lELqMVSHfCEzZc39y_x1-o0ANPHlQWCedyGEdlvpfxOR0tMOaXtmjINv32_75zA61HdInPanfYREtuvIXaDXMDjht5GwXkN586XAUaHLAN9gfgH7AO47kYfNNvAKxrGuvRK55AaHmKM5s76K5_cXt-mUQihcRAdTVLWJllJlWasKxMOdHMCscdEUxT1XMWIAvJhbZKc1pqQHzMCQWwsUxVzwpVltkuao0nY7eHcK6YlVIDMBOEKs6UsSCZUMepMSZLOyht9FmYeMu4J7sYFYv7kb1-CtBPEfRTyA46eX_nub5j49fV3cZMRdxvVUFCfxHQKO2g08Ysi8c_S9v_2_IDtOb55ut_MF3Umk3n7hCtmpfZYzU9Cn74Bj1j1mQ priority: 102 providerName: Springer Nature |
| Title | Feature selection using binary monarch butterfly optimization |
| URI | https://link.springer.com/article/10.1007/s10489-022-03554-9 https://www.proquest.com/docview/2760025194 |
| Volume | 53 |
| WOSCitedRecordID | wos000784870800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509eDFt7g-lhy8aXCbNml7EhVFEJfF5-ql5FURdFf3IfjvnWRTFwW9eAmUtkPIJJNvkpn5AHZ0bhiqXVKh0dNJuGMDTBWjwnKdp-gHCWM82UTaamWdTt4OB26DEFZZ2URvqE1PuzPyfeZvkBBvJAevb9SxRrnb1UChMQ0zrkpC5EP3rr4sMfrqnjEPfQwqRN4JSTMhdS5xwULYwabbcmn-fWOaoM0fF6R-3zld-G-PF2E-IE5yOJ4iSzBlu8uwULE5kLC4V8CjwVHfkoGnxkF9ERcU_0iUT9klKM4tCqLG1NbPH6SH5uYl5HGuws3pyfXxGQ3kClSjxzWkvIxjHUnFeFxGgiluMissy7hKZNMahDEszZSRSiSlQhTIbSYRSpaRbJpMlmW8BrVur2vXgaSSmzxXCNYylkjBpTYomSVWJFrrOKpDVI1soUPlcUeA8VxMaiY7bRSojcJro8jrsPv1z-u47safX29VKijCGhwUk_Gvw16lxMnr36Vt_C1tE-Yc5_z4HGYLasP-yG7DrH4fPg36DZhO7-4bMHN00mpf4tN5SrG9aB43_NzEts0fsL28uv0Ek3bmsw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB6xgLRcgOUhytMHOIFF49hOckAI8RCobMWBlXoLfgUhQQttAfGn-I2MnYSKleDGgXOSkeNvPP7G9vgD2DSZZQi7otJgpsOFVwNMNKPSCZMlmAdJa4PYRNJup51OdjEGr3UtjD9WWcfEEKhtz_g18l0WdpCQb_D9-wfqVaP87motoVG6Rcu9PGPKNtg7O0J8txg7Ob48PKWVqgA1mGoMqSji2ERKMxEXkWRa2NRJx1KhuWo6i_M3S1JtlZa80Eh_hEsVcqgiUk2bqqKI0e4vmOBxmvhx1Uroe-SP4yC33MSchkqZdaoinapUj_vDSdghTT_F0-zjRDhit_9tyIZ57mTmp_XQLExXjJoclEPgD4y57hzM1GoVpApe8xDY7mPfkUGQ_kF_JP7Q_zXRoSSZYPN924kupbtvX0gPw-ldVae6AP--5ScWYbzb67olIIkSNss0ktGUcSWFMhYtM-4kN8bEUQOiGsncVDere4GP23x0J7RHP0f084B-njVg-_2b-_JekS_fXq0hz6sYM8hHeDdgp3aa0ePPrS1_bW0Dfp9e_j3Pz8_arRWYYsjqyjWnVRgf9h_dGkyap-HNoL8evJ_A1Xc70xvuuT5k |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58IV58i-szBz1pcZs2aXsQEXVRlGUPCouXmldF0F3dXRX_mr_OSZq6KOjNg-e2Q5qZzHyTzOQD2FKZpqh2EXCFmU7MLBtgImnADVNZgnkQ19qRTSTNZtpuZ60ReK96YWxZZeUTnaPWXWX3yPeoO0FCvBHvFb4sonXcOHh8CiyDlD1preg0ShM5N2-vmL7198-OUdfblDZOLo9OA88wEChMOwYBK6JIhUJSFhUhp5Lp1HBDUyZjUTcaYzlNUqmF5HEhEQoxkwrEU0Uo6joVRRGh3FEYTzDHtOWELXb9GQWiyFEv1zG_CTjP2r5hx7ftxbZQCSenbsN9kH0NikOk--1w1sW8xsx_nq1ZmPZImxyWS2MORkxnHmYqFgvindoCOBT83DOk7yiB0E6JbQa4JdK1KhMcvh07kSWl9_0b6aKbffD9q4tw9Sc_sQRjnW7HLANJBNNZJhGkpjQWnAmlUTKNDY-VUlFYg7DSaq78jeuW-OM-H94VbS0hR0vInSXkWQ12Pr95LO8b-fXttUr9ufc9_Xyo-xrsVgY0fPyztJXfpW3CJNpQfnHWPF-FKYpgr9yKWoOxQe_ZrMOEehnc9XsbbiEQuPlrW_oA3KhHiA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+binary+monarch+butterfly+optimization&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Sun%2C+Lin&rft.au=Si%2C+Shanshan&rft.au=Zhao%2C+Jing&rft.au=Xu%2C+Jiucheng&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=1&rft.spage=706&rft.epage=727&rft_id=info:doi/10.1007%2Fs10489-022-03554-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |