A single exponential-time FPT algorithm for cactus contraction

For a collection F of graphs, the F-Contraction problem takes a graph G and an integer k as input and decides if G can be modified to some graph in F using at most k edge contractions. The F-Contraction problem is NP-Complete for several graph classes F. Heggernes et al. (2014) [4] initiated the stu...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science Vol. 954; p. 113803
Main Authors: Krithika, R., Misra, Pranabendu, Tale, Prafullkumar
Format: Journal Article
Language:English
Published: Elsevier B.V 18.04.2023
Subjects:
ISSN:0304-3975, 1879-2294
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For a collection F of graphs, the F-Contraction problem takes a graph G and an integer k as input and decides if G can be modified to some graph in F using at most k edge contractions. The F-Contraction problem is NP-Complete for several graph classes F. Heggernes et al. (2014) [4] initiated the study of F-Contraction in the realm of parameterized complexity. They showed that it is FPT if F is the set of all trees or the set of all paths. In this paper, we study F-Contraction where F is the set of all cactus graphs and show that we can solve it in 2O(k)⋅|V(G)|O(1) time.
AbstractList For a collection F of graphs, the F-Contraction problem takes a graph G and an integer k as input and decides if G can be modified to some graph in F using at most k edge contractions. The F-Contraction problem is NP-Complete for several graph classes F. Heggernes et al. (2014) [4] initiated the study of F-Contraction in the realm of parameterized complexity. They showed that it is FPT if F is the set of all trees or the set of all paths. In this paper, we study F-Contraction where F is the set of all cactus graphs and show that we can solve it in 2O(k)⋅|V(G)|O(1) time.
ArticleNumber 113803
Author Tale, Prafullkumar
Krithika, R.
Misra, Pranabendu
Author_xml – sequence: 1
  givenname: R.
  surname: Krithika
  fullname: Krithika, R.
  email: krithika@iitpkd.ac.in
  organization: Indian Institute of Technology Palakkad, Palakkad, India
– sequence: 2
  givenname: Pranabendu
  surname: Misra
  fullname: Misra, Pranabendu
  email: pranabendu@cmi.ac.in
  organization: Chennai Mathematical Institute, Chennai, India
– sequence: 3
  givenname: Prafullkumar
  surname: Tale
  fullname: Tale, Prafullkumar
  email: prafullkumar@iiserpune.ac.in
  organization: Indian Institute of Science, Education and Research Pune, Pune, India
BookMark eNp9kMtKAzEUhoNUsK0-gLu8wIy5zSUIQilWhYIu6jpkMic1ZSZTkij69qbUtWdxzr_5fg7fAs385AGhW0pKSmh9dyiTiSUjjJeU8pbwCzSnbSMLxqSYoTnhRBRcNtUVWsR4IHmqpp6jhxWOzu8HwPB9zJU-OT0UyY2AN287rIf9FFz6GLGdAjbapM-IzeRTyNFN_hpdWj1EuPm7S_S-edytn4vt69PLerUtDBMyFRX0Une0s6bJy_K2F5XtpeTCQm_7lpmmlrypRS27jnLRdbqpmdY1ENCUtXyJ6LnXhCnGAFYdgxt1-FGUqJMAdVBZgDoJUGcBmbk_M5Af-3IQVDQOvIHeBTBJ9ZP7h_4FJlVl-g
Cites_doi 10.1016/j.tcs.2013.02.030
10.1007/s00453-012-9630-x
10.1016/j.jctb.2014.09.002
10.1007/s00236-014-0204-z
10.1007/s00224-018-9892-z
10.1145/3319909
10.1016/0166-218X(81)90039-1
10.1016/0166-218X(83)90101-4
10.1016/j.ipl.2013.09.004
10.1016/0022-0000(83)90012-0
10.1016/j.tcs.2012.12.041
10.1007/s00453-021-00897-6
10.1137/130907392
10.1007/s00453-012-9670-2
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2023.113803
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
ExternalDocumentID 10_1016_j_tcs_2023_113803
S0304397523001160
GrantInformation_xml – fundername: SERB
  grantid: MTR/2022/000306
  funderid: https://doi.org/10.13039/501100001843
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c249t-5ed9ab1bfc71bff38d45fd9934fedfd82c769376469bb134bba762aa6e0ea1283
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000956049200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sat Nov 29 07:21:37 EST 2025
Fri Feb 23 02:35:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fixed parameter tractable algorithms
Cactus graphs
Graph contraction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-5ed9ab1bfc71bff38d45fd9934fedfd82c769376469bb134bba762aa6e0ea1283
ParticipantIDs crossref_primary_10_1016_j_tcs_2023_113803
elsevier_sciencedirect_doi_10_1016_j_tcs_2023_113803
PublicationCentury 2000
PublicationDate 2023-04-18
PublicationDateYYYYMMDD 2023-04-18
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-18
  day: 18
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Watanabe, Ae, Nakamura (br0020) 1983; 6
Martin, Paulusma (br0120) 2015; 111
Golovach, van't Hof, Paulusma (br0090) 2013; 476
Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (br0190) 2015
Watanabe, Ae, Nakamura (br0010) 1981; 3
Fomin, Lokshtanov, Saurabh, Zehavi (br0200) 2019
Nederlof (br0210) 2013; 65
Krithika, Misra, Rai, Tale (br0180) 2016
Agarwal, Saurabh, Tale (br0050) 2019; 63
Naor, Schulman, Srinivasan (br0220) 1995
Guillemot, Marx (br0070) 2013; 113
Heggernes, Hof, Lokshtanov, Paul (br0080) 2013; 27
Agrawal, Lokshtanov, Saurabh, Zehavi (br0160) 2019; 11
Cai, Guo (br0110) 2013
Belmonte, Golovach, Hof, Paulusma (br0130) 2014; 51
Golovach, Kamiński, Paulusma, Thilikos (br0140) 2013; 481
Asano, Hirata (br0030) 1983; 26
Lokshtanov, Misra, Saurabh (br0170) 2013
Agrawal, Kanesh, Saurabh, Tale (br0060) 2017
Heggernes, van't Hof, Lévêque, Lokshtanov, Paul (br0040) 2014; 68
Saurabh, Souza, Tale (br0100) 2020
Saurabh, Tale (br0150) 2022; 84
Belmonte (10.1016/j.tcs.2023.113803_br0130) 2014; 51
Golovach (10.1016/j.tcs.2023.113803_br0140) 2013; 481
Martin (10.1016/j.tcs.2023.113803_br0120) 2015; 111
Lokshtanov (10.1016/j.tcs.2023.113803_br0170) 2013
Saurabh (10.1016/j.tcs.2023.113803_br0150) 2022; 84
Nederlof (10.1016/j.tcs.2023.113803_br0210) 2013; 65
Krithika (10.1016/j.tcs.2023.113803_br0180) 2016
Heggernes (10.1016/j.tcs.2023.113803_br0080) 2013; 27
Cygan (10.1016/j.tcs.2023.113803_br0190) 2015
Guillemot (10.1016/j.tcs.2023.113803_br0070) 2013; 113
Saurabh (10.1016/j.tcs.2023.113803_br0100) 2020
Cai (10.1016/j.tcs.2023.113803_br0110) 2013
Agarwal (10.1016/j.tcs.2023.113803_br0050) 2019; 63
Asano (10.1016/j.tcs.2023.113803_br0030) 1983; 26
Agrawal (10.1016/j.tcs.2023.113803_br0160) 2019; 11
Fomin (10.1016/j.tcs.2023.113803_br0200) 2019
Heggernes (10.1016/j.tcs.2023.113803_br0040) 2014; 68
Watanabe (10.1016/j.tcs.2023.113803_br0010) 1981; 3
Agrawal (10.1016/j.tcs.2023.113803_br0060) 2017
Golovach (10.1016/j.tcs.2023.113803_br0090) 2013; 476
Watanabe (10.1016/j.tcs.2023.113803_br0020) 1983; 6
Naor (10.1016/j.tcs.2023.113803_br0220) 1995
References_xml – start-page: 182
  year: 1995
  end-page: 191
  ident: br0220
  article-title: Splitters and near-optimal derandomization
  publication-title: 36th Annual Symposium on Foundations of Computer Science
– start-page: 243
  year: 2013
  end-page: 254
  ident: br0170
  article-title: On the hardness of eliminating small induced subgraphs by contracting edges
  publication-title: International Symposium on Parameterized and Exact Computation
– volume: 6
  start-page: 63
  year: 1983
  end-page: 78
  ident: br0020
  article-title: On the NP-hardness of edge-deletion and edge-contraction problems
  publication-title: Discrete Appl. Math.
– volume: 27
  start-page: 2143
  year: 2013
  end-page: 2156
  ident: br0080
  article-title: Obtaining a bipartite graph by contracting few edges
  publication-title: SIAM J. Discrete Math.
– volume: 11
  start-page: 1
  year: 2019
  end-page: 22
  ident: br0160
  article-title: Split contraction: the untold story
  publication-title: ACM Trans. Comput. Theory
– year: 2016
  ident: br0180
  article-title: Lossy kernels for graph contraction problems
  publication-title: 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS)
– volume: 3
  year: 1981
  ident: br0010
  article-title: On the removal of forbidden graphs by edge-deletion or by edge-contraction
  publication-title: Discrete Appl. Math.
– volume: 63
  start-page: 587
  year: 2019
  end-page: 614
  ident: br0050
  article-title: On the parameterized complexity of contraction to generalization of trees
  publication-title: Theory Comput. Syst.
– volume: 111
  start-page: 17
  year: 2015
  end-page: 37
  ident: br0120
  article-title: The computational complexity of disconnected cut and 2k2-partition
  publication-title: J. Comb. Theory, Ser. B
– volume: 113
  start-page: 906
  year: 2013
  end-page: 912
  ident: br0070
  article-title: A faster FPT algorithm for bipartite contraction
  publication-title: Inf. Process. Lett.
– volume: 476
  start-page: 38
  year: 2013
  end-page: 46
  ident: br0090
  article-title: Obtaining planarity by contracting few edges
  publication-title: Theor. Comput. Sci.
– volume: 68
  start-page: 109
  year: 2014
  end-page: 132
  ident: br0040
  article-title: Contracting graphs to paths and trees
  publication-title: Algorithmica
– year: 2015
  ident: br0190
  article-title: Parameterized Algorithms
– start-page: 97
  year: 2013
  end-page: 109
  ident: br0110
  article-title: Contracting few edges to remove forbidden induced subgraphs
  publication-title: IPEC
– year: 2019
  ident: br0200
  article-title: Kernelization: Theory of Parameterized Preprocessing
– volume: 65
  start-page: 868
  year: 2013
  end-page: 884
  ident: br0210
  article-title: Fast polynomial-space algorithms using inclusion-exclusion
  publication-title: Algorithmica
– start-page: 31
  year: 2017
  end-page: 42
  ident: br0060
  article-title: Paths to trees and cacti
  publication-title: International Conference on Algorithms and Complexity
– volume: 26
  start-page: 197
  year: 1983
  end-page: 208
  ident: br0030
  article-title: Edge-contraction problems
  publication-title: J. Comput. Syst. Sci.
– volume: 51
  start-page: 473
  year: 2014
  end-page: 497
  ident: br0130
  article-title: Parameterized complexity of three edge contraction problems with degree constraints
  publication-title: Acta Inform.
– volume: 84
  start-page: 405
  year: 2022
  end-page: 435
  ident: br0150
  article-title: On the parameterized complexity of maximum degree contraction problem
  publication-title: Algorithmica
– volume: 481
  start-page: 74
  year: 2013
  end-page: 84
  ident: br0140
  article-title: Increasing the minimum degree of a graph by contractions
  publication-title: Theor. Comput. Sci.
– year: 2020
  ident: br0100
  article-title: On the parameterized complexity of grid contraction
  publication-title: 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)
– volume: 481
  start-page: 74
  year: 2013
  ident: 10.1016/j.tcs.2023.113803_br0140
  article-title: Increasing the minimum degree of a graph by contractions
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2013.02.030
– year: 2019
  ident: 10.1016/j.tcs.2023.113803_br0200
– volume: 65
  start-page: 868
  issue: 4
  year: 2013
  ident: 10.1016/j.tcs.2023.113803_br0210
  article-title: Fast polynomial-space algorithms using inclusion-exclusion
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9630-x
– start-page: 31
  year: 2017
  ident: 10.1016/j.tcs.2023.113803_br0060
  article-title: Paths to trees and cacti
– volume: 111
  start-page: 17
  year: 2015
  ident: 10.1016/j.tcs.2023.113803_br0120
  article-title: The computational complexity of disconnected cut and 2k2-partition
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/j.jctb.2014.09.002
– volume: 51
  start-page: 473
  issue: 7
  year: 2014
  ident: 10.1016/j.tcs.2023.113803_br0130
  article-title: Parameterized complexity of three edge contraction problems with degree constraints
  publication-title: Acta Inform.
  doi: 10.1007/s00236-014-0204-z
– year: 2015
  ident: 10.1016/j.tcs.2023.113803_br0190
– volume: 63
  start-page: 587
  issue: 3
  year: 2019
  ident: 10.1016/j.tcs.2023.113803_br0050
  article-title: On the parameterized complexity of contraction to generalization of trees
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-018-9892-z
– volume: 11
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.tcs.2023.113803_br0160
  article-title: Split contraction: the untold story
  publication-title: ACM Trans. Comput. Theory
  doi: 10.1145/3319909
– volume: 3
  issue: 2
  year: 1981
  ident: 10.1016/j.tcs.2023.113803_br0010
  article-title: On the removal of forbidden graphs by edge-deletion or by edge-contraction
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(81)90039-1
– start-page: 182
  year: 1995
  ident: 10.1016/j.tcs.2023.113803_br0220
  article-title: Splitters and near-optimal derandomization
– volume: 6
  start-page: 63
  issue: 1
  year: 1983
  ident: 10.1016/j.tcs.2023.113803_br0020
  article-title: On the NP-hardness of edge-deletion and edge-contraction problems
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(83)90101-4
– volume: 113
  start-page: 906
  issue: 22–24
  year: 2013
  ident: 10.1016/j.tcs.2023.113803_br0070
  article-title: A faster FPT algorithm for bipartite contraction
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2013.09.004
– year: 2016
  ident: 10.1016/j.tcs.2023.113803_br0180
  article-title: Lossy kernels for graph contraction problems
– year: 2020
  ident: 10.1016/j.tcs.2023.113803_br0100
  article-title: On the parameterized complexity of grid contraction
– volume: 26
  start-page: 197
  issue: 2
  year: 1983
  ident: 10.1016/j.tcs.2023.113803_br0030
  article-title: Edge-contraction problems
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(83)90012-0
– volume: 476
  start-page: 38
  year: 2013
  ident: 10.1016/j.tcs.2023.113803_br0090
  article-title: Obtaining planarity by contracting few edges
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2012.12.041
– start-page: 97
  year: 2013
  ident: 10.1016/j.tcs.2023.113803_br0110
  article-title: Contracting few edges to remove forbidden induced subgraphs
– volume: 84
  start-page: 405
  issue: 2
  year: 2022
  ident: 10.1016/j.tcs.2023.113803_br0150
  article-title: On the parameterized complexity of maximum degree contraction problem
  publication-title: Algorithmica
  doi: 10.1007/s00453-021-00897-6
– volume: 27
  start-page: 2143
  issue: 4
  year: 2013
  ident: 10.1016/j.tcs.2023.113803_br0080
  article-title: Obtaining a bipartite graph by contracting few edges
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/130907392
– start-page: 243
  year: 2013
  ident: 10.1016/j.tcs.2023.113803_br0170
  article-title: On the hardness of eliminating small induced subgraphs by contracting edges
– volume: 68
  start-page: 109
  issue: 1
  year: 2014
  ident: 10.1016/j.tcs.2023.113803_br0040
  article-title: Contracting graphs to paths and trees
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9670-2
SSID ssj0000576
Score 2.3781667
Snippet For a collection F of graphs, the F-Contraction problem takes a graph G and an integer k as input and decides if G can be modified to some graph in F using at...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113803
SubjectTerms Cactus graphs
Fixed parameter tractable algorithms
Graph contraction
Title A single exponential-time FPT algorithm for cactus contraction
URI https://dx.doi.org/10.1016/j.tcs.2023.113803
Volume 954
WOSCitedRecordID wos000956049200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211209
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELag4wEeBgwmNhjyA09UqdLEje2XSRXaNJCYJlGkvkX-Cd1KNq0p2p-_u9hJow0kQOLFqhIljnxf787nu_sIeQc-qi-s54nyrEiYsS5RhWVJIY0Rjlvnc9uQTfDTUzGfy7PI37lq6AR4VYmbG3n1X0UN10DYWDr7F-LuXgoX4DcIHUYQO4x_JPjpELf_S4fN-y8rTAZSywQp5IfHZ7OhWn67vF7U3380-YVGmXq9CvnqocKh76zOekWOJrI_DKPJ7BQ1vmxxEVzQUSe-xarhL8J2SJXSrrLrTYggJDDDHQz9X2CKdz_0kOV4ihK1ZRMPu1cTE-qw8KxFBj6UkQtqVXCZZFmgM271rgzdo-_p8BBOOB_VBtupZznSzog03xisLo3wC86FU8E-Cg-U0odkK-MTKQZka_rxaP5pY5MnPJxax29rz7ebTL87E_3aQ-l5HbNnZDtuF-g0iPk5eeCqHfK0peKgUTPvkCefu_a7qxfkcEoDBuhdDFDAAO0wQAEDNGCA9jDwknw9Ppp9OEkiUUZiYPdcJxNnpdJj7Q2HwefCsom34Hky76y3IjPIeMkLVkitxznTWoENVKpwqVPgoOS7ZFDB17wiVHn4UzObWyYtc0wJK41INRiCsUlTzffI-3ZxyqvQD6VsEwXPS1jJEleyDCu5R1i7fGVEZ3DUSpD17x_b_7fHXpPHG5C-IYP6eu0OyCPzswbMv42IuAWsonDF
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+single+exponential-time+FPT+algorithm+for+cactus+contraction&rft.jtitle=Theoretical+computer+science&rft.au=Krithika%2C+R.&rft.au=Misra%2C+Pranabendu&rft.au=Tale%2C+Prafullkumar&rft.date=2023-04-18&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=954&rft_id=info:doi/10.1016%2Fj.tcs.2023.113803&rft.externalDocID=S0304397523001160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon