Learning Error Refinement in Stochastic Gradient Descent-Based Latent Factor Analysis via Diversified PID Controllers
In Big Data-based applications, high-dimensional and incomplete (HDI) data are frequently used to represent the complicated interactions among numerous nodes. A stochastic gradient descent (SGD)-based latent factor analysis (LFA) model can process such data efficiently. Unfortunately, a standard SGD...
Uložené v:
| Vydané v: | IEEE transactions on emerging topics in computational intelligence Ročník 9; číslo 5; s. 3582 - 3597 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2471-285X, 2471-285X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!