Obstacle Avoidance Path Planning Using the Elite Ant Colony Algorithm for Parameter Optimization of Unmanned Aerial Vehicles
Unmanned aerial vehicles (UAVs) have attracted considerable research attention because of their strong interoperability, high flexibility, and excellent maneuverability. Path planning and autonomous obstacle avoidance are critical for UAVs. In this study, multiobjective optimization using the ant co...
Gespeichert in:
| Veröffentlicht in: | Arabian journal for science and engineering (2011) Jg. 48; H. 2; S. 2261 - 2275 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2193-567X, 1319-8025, 2191-4281 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Unmanned aerial vehicles (UAVs) have attracted considerable research attention because of their strong interoperability, high flexibility, and excellent maneuverability. Path planning and autonomous obstacle avoidance are critical for UAVs. In this study, multiobjective optimization using the ant colony algorithm was performed for solving the UAV obstacle avoidance path planning problem. To overcome the easy-to-fall-into-deadlock tendency and slow convergence speed of the conventional ant colony algorithm, an elite ant colony algorithm was proposed for improving path selection probability and pheromone update strategy. Next, the response surface method was used to analyze the key parameters in the improved algorithm, construct the regression prediction model of response indicators, perform variance analysis, and verify the reliability of the model. The key parameters were optimized to obtain the best parameter combination, and simulation experiments were conducted. The results revealed that the performance of path length, running time, and robustness in various terrains improved considerably. Thus the proposed method is a feasible scheme for the path planning of UAVs in military search and rescue and material transportation. |
|---|---|
| AbstractList | Unmanned aerial vehicles (UAVs) have attracted considerable research attention because of their strong interoperability, high flexibility, and excellent maneuverability. Path planning and autonomous obstacle avoidance are critical for UAVs. In this study, multiobjective optimization using the ant colony algorithm was performed for solving the UAV obstacle avoidance path planning problem. To overcome the easy-to-fall-into-deadlock tendency and slow convergence speed of the conventional ant colony algorithm, an elite ant colony algorithm was proposed for improving path selection probability and pheromone update strategy. Next, the response surface method was used to analyze the key parameters in the improved algorithm, construct the regression prediction model of response indicators, perform variance analysis, and verify the reliability of the model. The key parameters were optimized to obtain the best parameter combination, and simulation experiments were conducted. The results revealed that the performance of path length, running time, and robustness in various terrains improved considerably. Thus the proposed method is a feasible scheme for the path planning of UAVs in military search and rescue and material transportation. |
| Author | Meng, Xiaoling Zhu, Xijing Zhao, Jing |
| Author_xml | – sequence: 1 givenname: Xiaoling surname: Meng fullname: Meng, Xiaoling organization: Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, School of Mechanical Engineering, North University of China – sequence: 2 givenname: Xijing surname: Zhu fullname: Zhu, Xijing email: zxj161501@163.com organization: Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, School of Mechanical Engineering, North University of China – sequence: 3 givenname: Jing surname: Zhao fullname: Zhao, Jing organization: Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, School of Mechanical Engineering, North University of China |
| BookMark | eNp9kEFrGzEQhUVIoW7iP9CToOdtJK1krY7GuE0hYB_q0JuQVyNbYVdyJaWQkB9f2Q4UevBlZg7vmzfzPqHrEAMg9JmSr5QQeZdp285UQxhriGSEN_IKTRhVtOGso9enuW3ETP76iKY5-y3hXasEpe0Eva22uZh-ADz_E701oQe8NmWP14MJwYcd3uRjLXvAy8GXqgsFL-IQwwueD7uYfNmP2MVUsWRGKJDw6lD86F9N8THg6PAmjHUZWDyH5M2AH2Hvq2W-RR-cGTJM3_sN2nxb_lzcNw-r7z8W84emZ1yVRhAnHOvAus46Q7aCW-442Tqwkqh-pqwwylrFehCUQecEM1Yp6IRpJeOivUFfznsPKf5-hlz0U3xOoVpqJiUXM8KJqip2VvUp5pzA6UPyo0kvmhJ9DFqfg9Y1aH0KWssKdf9BvS-nx0syfriMtmc0V5-wg_TvqgvUX9V6lhE |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3383031 crossref_primary_10_1016_j_ins_2023_119977 crossref_primary_10_1016_j_jclepro_2023_138184 crossref_primary_10_1080_0305215X_2023_2269844 crossref_primary_10_1177_14727978251323113 crossref_primary_10_1145_3737280 crossref_primary_10_3390_jmse12081433 crossref_primary_10_1016_j_aei_2025_103355 crossref_primary_10_3390_drones9020119 crossref_primary_10_1016_j_suscom_2024_100961 crossref_primary_10_1109_ACCESS_2025_3565519 |
| Cites_doi | 10.3390/s20071880 10.1080/01932691.2015.1080611 10.1109/ACCESS.2019.2946448 10.1177/1687814019847863 10.1007/s10846-008-9276-8 10.1016/j.cja.2020.12.018 10.1109/LWC.2020.2973624 10.1007/s10845-007-0039-3 10.1016/j.asoc.2021.107376 10.1007/s11042-015-3240-y 10.1155/2021/4511252 10.1016/j.autcon.2018.05.024 10.1007/s13042-015-0339-4 10.1016/j.knosys.2016.09.021 10.1177/1729881420936154 10.1109/ACCESS.2021.3109879 10.1016/j.eswa.2009.01.020 10.1109/ACCESS.2021.3049892 10.1109/ACCESS.2019.2949952 10.1109/TSMCA.2011.2159586 10.1007/s10489-009-0179-6 10.1017/S0373463320000247 10.1109/ACCESS.2020.3028467 10.32604/iasc.2020.011723 10.3390/s19040815 10.1109/ACCESS.2020.3001621 10.1016/j.asoc.2021.107796 10.1016/j.knosys.2018.05.033 10.1016/j.cie.2021.107230 |
| ContentType | Journal Article |
| Copyright | King Fahd University of Petroleum & Minerals 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s13369-022-07204-7 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2191-4281 |
| EndPage | 2275 |
| ExternalDocumentID | 10_1007_s13369_022_07204_7 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51975540 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
| ID | FETCH-LOGICAL-c249t-50f5f28edf8dfa0b54d4f40bfed709c69d5a9dd92ce512e8f52ad99e85a372453 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853473900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2193-567X 1319-8025 |
| IngestDate | Mon Jun 30 09:15:44 EDT 2025 Sat Nov 29 02:51:47 EST 2025 Tue Nov 18 20:26:21 EST 2025 Fri Feb 21 02:45:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Regression prediction model Unmanned aerial vehicle (UAV) path planning Parameter optimization Elite ant colony algorithm Analysis of variance |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-50f5f28edf8dfa0b54d4f40bfed709c69d5a9dd92ce512e8f52ad99e85a372453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2774560409 |
| PQPubID | 2044268 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2774560409 crossref_primary_10_1007_s13369_022_07204_7 crossref_citationtrail_10_1007_s13369_022_07204_7 springer_journals_10_1007_s13369_022_07204_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Arabian journal for science and engineering (2011) |
| PublicationTitleAbbrev | Arab J Sci Eng |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Fu, Ding, Zhou (CR14) 2012; 42 Samrout, Kouta, Yalaoui, Chatelet, Chebbo (CR21) 2007; 18 Yu, Ru, Chi, Liu, Yu, Fang (CR17) 2016; 75 Ajeil, Ibraheem, Azar, Humaidi (CR22) 2020; 20 Liu, Zhang, Li, Zhang, Cao, Shang (CR10) 2021; 9 Allaire, Tarbouchi, Labonte, Fusina (CR8) 2009; 54 Wen, Su, Ma, Zhao, Zhang (CR12) 2017; 8 Zhang, Hu, Feng, Liu, Zhou, Zhang (CR18) 2019; 7 Shuang, Chen, Li (CR19) 2011; 34 Shiri, Park, Bennis (CR11) 2020; 9 Zhao, Zheng, Liu (CR5) 2018; 158 Tang, Kui, Pang, Zhu (CR24) 2020; 17 Chen, Wan, Wang (CR28) 2020; 26 Tan, Hu, Zhao, Li, Li, Zhang (CR1) 2021; 32 Long, Zuo, Su, Li, Zhang (CR20) 2020; 73 Zhou, Su, Xie, Kong (CR2) 2021; 34 Wei, Xu (CR27) 2021; 2021 Bai, Jiang, Cui, Lu, Chen, Zhang (CR4) 2021; 2021 Pan, Yang, Li (CR9) 2021; 9 Wu, Zhou, Xiao (CR25) 2020; 8 Miao, Chen, Yan, Wu (CR7) 2021; 156 Zheng, Liu, Zhang (CR13) 2016; 114 Zhen, Yao, Pang, Bo (CR32) 2016; 37 Hsu, Wang, Chien, Hou (CR26) 2018; 26 Wang, Kan, Guo, Wang (CR33) 2019; 19 Pehlivanoglu, Pehlivanoglu (CR3) 2021; 112 Song, Zhao, Yang, Lin (CR6) 2019; 11 Alrweili, Georgiou, Stylianou (CR31) 2020; 8 Phung, Ha (CR15) 2021; 107 Luo, Guo, Zhang (CR29) 2019; 7 Yang, Tsai, Kang, Hung (CR16) 2018; 93 Li, Zhu (CR23) 2016; 2016 Mullen, Monekosso, Barman, Remagnino (CR30) 2009; 36 H Alrweili (7204_CR31) 2020; 8 C Zhang (7204_CR18) 2019; 7 J Song (7204_CR6) 2019; 11 FCJ Allaire (7204_CR8) 2009; 54 Z Zheng (7204_CR13) 2016; 114 M Samrout (7204_CR21) 2007; 18 N Wen (7204_CR12) 2017; 8 W Tan (7204_CR1) 2021; 32 Y Long (7204_CR20) 2020; 73 Y Yu (7204_CR17) 2016; 75 H Shiri (7204_CR11) 2020; 9 Y Zhou (7204_CR2) 2021; 34 FH Ajeil (7204_CR22) 2020; 20 B Tang (7204_CR24) 2020; 17 MD Phung (7204_CR15) 2021; 107 Q Liu (7204_CR10) 2021; 9 Z Zhen (7204_CR32) 2016; 37 Y Pan (7204_CR9) 2021; 9 C Wu (7204_CR25) 2020; 8 Y Zhao (7204_CR5) 2018; 158 C-H Yang (7204_CR16) 2018; 93 RJ Mullen (7204_CR30) 2009; 36 P Li (7204_CR23) 2016; 2016 C Miao (7204_CR7) 2021; 156 Y Fu (7204_CR14) 2012; 42 X Bai (7204_CR4) 2021; 2021 X Chen (7204_CR28) 2020; 26 L Wang (7204_CR33) 2019; 19 YV Pehlivanoglu (7204_CR3) 2021; 112 Y Luo (7204_CR29) 2019; 7 C-C Hsu (7204_CR26) 2018; 26 B Shuang (7204_CR19) 2011; 34 X Wei (7204_CR27) 2021; 2021 |
| References_xml | – volume: 20 start-page: 1880 issue: 7 year: 2020 ident: CR22 article-title: Grid-based mobile robot path planning using aging-based ant colony optimization algorithm in static and dynamic environments publication-title: Sensors doi: 10.3390/s20071880 – volume: 2021 start-page: 1 year: 2021 end-page: 12 ident: CR27 article-title: Distributed path planning of unmanned aerial vehicle communication chain based on dual decomposition publication-title: Wirel. Commun. Mob. Comput. – volume: 37 start-page: 743 issue: 5 year: 2016 end-page: 751 ident: CR32 article-title: Optimization of electrocoagulation process to eliminate CODMn in micro-polluted surface water using response surface method publication-title: J. Dispers. Sci. Technol. doi: 10.1080/01932691.2015.1080611 – volume: 7 start-page: 150775 year: 2019 end-page: 150791 ident: CR18 article-title: A self-heuristic ant-based method for path planning of unmanned aerial vehicle in complex 3-D space with dense U-type obstacles publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946448 – volume: 11 start-page: 1 issue: 5 year: 2019 end-page: 12 ident: CR6 article-title: The high-speed rotorcraft unmanned aerial vehicle path planning based on the biogeography-based optimization algorithm publication-title: Adv. Mech. Eng. doi: 10.1177/1687814019847863 – volume: 54 start-page: 495 issue: 1–3 year: 2009 end-page: 510 ident: CR8 article-title: FPGA implementation of genetic algorithm for UAV real-time path planning publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-008-9276-8 – volume: 34 start-page: 199 issue: 9 year: 2021 end-page: 209 ident: CR2 article-title: A newly bio-inspired path planning algorithm for autonomous obstacle avoidance of UAV publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.12.018 – volume: 2016 start-page: 1 year: 2016 end-page: 12 ident: CR23 article-title: Parameter selection for ant colony algorithm based on bacterial foraging algorithm publication-title: Math. Probl. Eng. – volume: 9 start-page: 861 issue: 6 year: 2020 end-page: 865 ident: CR11 article-title: Remote UAV online path planning via neural network-based opportunistic control publication-title: IEEE Commun. Lett. doi: 10.1109/LWC.2020.2973624 – volume: 32 start-page: 382 year: 2021 end-page: 396 ident: CR1 article-title: Heterogeneous multi UAV mission planning based on ant colony algorithm powered BP neural network publication-title: Comput. Intell. Neurosci. – volume: 18 start-page: 663 issue: 6 year: 2007 end-page: 677 ident: CR21 article-title: Parameter's setting of the ant colony algorithm applied in preventive maintenance optimization publication-title: J. Intell. Manuf. doi: 10.1007/s10845-007-0039-3 – volume: 107 start-page: 107376 year: 2021 ident: CR15 article-title: Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107376 – volume: 75 start-page: 14451 issue: 22 year: 2016 end-page: 14476 ident: CR17 article-title: Ant colony optimization based polymorphism-aware routing algorithm for ad hoc UAV network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-015-3240-y – volume: 2021 start-page: 1 year: 2021 end-page: 12 ident: CR4 article-title: UAV path planning based on improved A* and DWA algorithms publication-title: Int. J. Aerosp. Eng. doi: 10.1155/2021/4511252 – volume: 93 start-page: 214 year: 2018 end-page: 230 ident: CR16 article-title: UAV path path planning method for digital terrain model reconstruction—a debris fan example publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.05.024 – volume: 8 start-page: 469 issue: 2 year: 2017 end-page: 487 ident: CR12 article-title: Online UAV path planning in uncertain and hostile environments publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-015-0339-4 – volume: 114 start-page: 36 year: 2016 end-page: 46 ident: CR13 article-title: The more obstacle information sharing, the more effective real-time path planning? publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.09.021 – volume: 17 start-page: 1 issue: 5 year: 2020 end-page: 19 ident: CR24 article-title: Multi-robot path planning using an improved self-adaptive particle swarm optimization publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881420936154 – volume: 9 start-page: 124670 year: 2021 end-page: 124681 ident: CR10 article-title: Multi-UAV path planning based on fusion of sparrow search algorithm and improved bioinspired neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3109879 – volume: 36 start-page: 9608 issue: 6 year: 2009 end-page: 9617 ident: CR30 article-title: A review of ant algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.01.020 – volume: 9 start-page: 7994 year: 2021 end-page: 8005 ident: CR9 article-title: A deep learning trained by genetic algorithm to improve the efficiency of path planning for data collection with multi-UAV publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049892 – volume: 7 start-page: 157655 year: 2019 end-page: 157666 ident: CR29 article-title: A framework of ant colony p system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949952 – volume: 42 start-page: 511 issue: 2 year: 2012 end-page: 526 ident: CR14 article-title: Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV publication-title: IEEE Trans. Syst. Man Cybern. A Syst. Hum. doi: 10.1109/TSMCA.2011.2159586 – volume: 26 start-page: 170 issue: 2 year: 2018 end-page: 179 ident: CR26 article-title: FPGA implementation of improved ant colony optimization algorithm based on pheromone diffusion mechanism for path planning publication-title: J. Mar. Sci. Technol. – volume: 34 start-page: 64 issue: 1 year: 2011 end-page: 73 ident: CR19 article-title: Study on hybrid PS-ACO algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-009-0179-6 – volume: 73 start-page: 1247 issue: 6 year: 2020 end-page: 1262 ident: CR20 article-title: An A*-based bacterial foraging optimisation algorithm for global path planning of unmanned surface vehicles publication-title: J. Navig. doi: 10.1017/S0373463320000247 – volume: 8 start-page: 180773 year: 2020 end-page: 180783 ident: CR25 article-title: Dynamic path planning based on improved ant colony algorithm in traffic congestion publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028467 – volume: 26 start-page: 1531 issue: 6 year: 2020 end-page: 1548 ident: CR28 article-title: A study of unmanned path planning based on a double-twin RBM-BP deep neural network publication-title: Intell. Autom. Soft Comput. doi: 10.32604/iasc.2020.011723 – volume: 19 start-page: 815 year: 2019 ident: CR33 article-title: 3D path planning for the ground robot with improved ant colony optimization publication-title: Sensors doi: 10.3390/s19040815 – volume: 8 start-page: 115123 year: 2020 end-page: 115132 ident: CR31 article-title: A new class of second-order response surface designs publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001621 – volume: 112 start-page: 107796 year: 2021 ident: CR3 article-title: An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107796 – volume: 158 start-page: 54 year: 2018 end-page: 64 ident: CR5 article-title: Survey on computational-intelligence-based UAV path planning publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.05.033 – volume: 156 start-page: 107230 year: 2021 ident: CR7 article-title: Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107230 – volume: 20 start-page: 1880 issue: 7 year: 2020 ident: 7204_CR22 publication-title: Sensors doi: 10.3390/s20071880 – volume: 8 start-page: 469 issue: 2 year: 2017 ident: 7204_CR12 publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-015-0339-4 – volume: 32 start-page: 382 year: 2021 ident: 7204_CR1 publication-title: Comput. Intell. Neurosci. – volume: 8 start-page: 180773 year: 2020 ident: 7204_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028467 – volume: 8 start-page: 115123 year: 2020 ident: 7204_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001621 – volume: 107 start-page: 107376 year: 2021 ident: 7204_CR15 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107376 – volume: 34 start-page: 199 issue: 9 year: 2021 ident: 7204_CR2 publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.12.018 – volume: 93 start-page: 214 year: 2018 ident: 7204_CR16 publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.05.024 – volume: 19 start-page: 815 year: 2019 ident: 7204_CR33 publication-title: Sensors doi: 10.3390/s19040815 – volume: 2016 start-page: 1 year: 2016 ident: 7204_CR23 publication-title: Math. Probl. Eng. – volume: 42 start-page: 511 issue: 2 year: 2012 ident: 7204_CR14 publication-title: IEEE Trans. Syst. Man Cybern. A Syst. Hum. doi: 10.1109/TSMCA.2011.2159586 – volume: 9 start-page: 861 issue: 6 year: 2020 ident: 7204_CR11 publication-title: IEEE Commun. Lett. doi: 10.1109/LWC.2020.2973624 – volume: 158 start-page: 54 year: 2018 ident: 7204_CR5 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.05.033 – volume: 26 start-page: 1531 issue: 6 year: 2020 ident: 7204_CR28 publication-title: Intell. Autom. Soft Comput. doi: 10.32604/iasc.2020.011723 – volume: 11 start-page: 1 issue: 5 year: 2019 ident: 7204_CR6 publication-title: Adv. Mech. Eng. doi: 10.1177/1687814019847863 – volume: 156 start-page: 107230 year: 2021 ident: 7204_CR7 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107230 – volume: 9 start-page: 7994 year: 2021 ident: 7204_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049892 – volume: 7 start-page: 157655 year: 2019 ident: 7204_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949952 – volume: 7 start-page: 150775 year: 2019 ident: 7204_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946448 – volume: 17 start-page: 1 issue: 5 year: 2020 ident: 7204_CR24 publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881420936154 – volume: 9 start-page: 124670 year: 2021 ident: 7204_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3109879 – volume: 73 start-page: 1247 issue: 6 year: 2020 ident: 7204_CR20 publication-title: J. Navig. doi: 10.1017/S0373463320000247 – volume: 2021 start-page: 1 year: 2021 ident: 7204_CR4 publication-title: Int. J. Aerosp. Eng. doi: 10.1155/2021/4511252 – volume: 18 start-page: 663 issue: 6 year: 2007 ident: 7204_CR21 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-007-0039-3 – volume: 26 start-page: 170 issue: 2 year: 2018 ident: 7204_CR26 publication-title: J. Mar. Sci. Technol. – volume: 114 start-page: 36 year: 2016 ident: 7204_CR13 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.09.021 – volume: 37 start-page: 743 issue: 5 year: 2016 ident: 7204_CR32 publication-title: J. Dispers. Sci. Technol. doi: 10.1080/01932691.2015.1080611 – volume: 54 start-page: 495 issue: 1–3 year: 2009 ident: 7204_CR8 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-008-9276-8 – volume: 75 start-page: 14451 issue: 22 year: 2016 ident: 7204_CR17 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-015-3240-y – volume: 34 start-page: 64 issue: 1 year: 2011 ident: 7204_CR19 publication-title: Appl. Intell. doi: 10.1007/s10489-009-0179-6 – volume: 112 start-page: 107796 year: 2021 ident: 7204_CR3 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107796 – volume: 2021 start-page: 1 year: 2021 ident: 7204_CR27 publication-title: Wirel. Commun. Mob. Comput. – volume: 36 start-page: 9608 issue: 6 year: 2009 ident: 7204_CR30 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.01.020 |
| SSID | ssib048395113 ssj0001916267 ssj0061873 |
| Score | 2.3652775 |
| Snippet | Unmanned aerial vehicles (UAVs) have attracted considerable research attention because of their strong interoperability, high flexibility, and excellent... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2261 |
| SubjectTerms | Algorithms Ant colony optimization Engineering Humanities and Social Sciences Maneuverability multidisciplinary Multiple objective analysis Obstacle avoidance Parameters Path planning Prediction models Regression models Reliability analysis Research Article-Computer Engineering and Computer Science Response surface methodology Science Statistical analysis Unmanned aerial vehicles Variance analysis |
| Title | Obstacle Avoidance Path Planning Using the Elite Ant Colony Algorithm for Parameter Optimization of Unmanned Aerial Vehicles |
| URI | https://link.springer.com/article/10.1007/s13369-022-07204-7 https://www.proquest.com/docview/2774560409 |
| Volume | 48 |
| WOSCitedRecordID | wos000853473900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916267 issn: 2193-567X databaseCode: RSV dateStart: 20110101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcG2wM8wDaYKLDpHvbGLKWJ3diPESriqVQboL5Fjj9opTZFbVYJiT-es5sQQAyJPftD0d357uf47n6E_Ex5rE1hBVUFU5QVLqIY5RxlGD1TGxtjtA5kE-lgIEYjOayLwpZNtnvzJBk8dVvsliQ9SX32eeSZVWi6QT5iuBOesOH3n-vGihiGfEQRSfunBRFQHKhk8XQmlPfSUV098_q2zyNUCztfvJSGAHS2-3-f_pns1IATsrWFfCEfbPmVbD9pQ7hH7i8KxIg4CtlqPjHeDmCIyBAaRiMIiQWAWBH6vmYZsrKCU3Sb5R1k05v5YlKNZ4DwF5f5ZC_UFVygL5rVRZ4wd3BVzpT36ZAFm4drOw4Zefvk6qx_eXpOa1YGqvGqVlEeOe5iYY0Txqmo4Mwwx6LCWZNGUvek4UoaI2NtEUxY4XisjJRWcJWkMePJN7JZzkt7QMBq1y2Ub4KGqMxJrpSLNFMGMYUQOup1SLfRRK7rluWeOWOat82WvWRzlGweJJunHXLyuOZ23bDjzdnHjYLz-vAu8xghMQJBvPl2yK9Goe3wv3c7fN_0I7LlyevXOeDHZLNa_LXfySe9qibLxY9g1A9NjPAB |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9aK1Qf7IdKT207D32rCzHZvWQfgyhK7Smtyr2FzX7ogZcrd6lQ8I93di8xKrVgn_eDMDM789vszPwAvqQi1qa0GVMlV4yXLmIU5RzjFD1TGxtjtA5kE-lgkA2H8qQpCpu12e7tk2Tw1F2xW5L0JfPZ55FnVmHpS3jFKWL5jvk_fp63VsQp5BOKSLo_LYSA4kAlS6czYaKfDpvqmb9v-zBCdbDz0UtpCED7b_7v09_CSgM4MZ9byDt4Yav3sHyvDeEq3ByXhBFpFPPrych4O8ATQobYMhphSCxAwoq452uWMa9q3CW3Wf3B_OpiMh3Vl2Mk-EvLfLIX6QqPyReNmyJPnDg8q8bK-3TMg83jub0MGXlrcLa_d7p7wBpWBqbpqlYzETnh4swalxmnolJwwx2PSmdNGkndl0YoaYyMtSUwYTMnYmWktJlQSRpzkazDQjWp7AdAq91OqXwTNEJlTgqlXKS5MoQpskxH_R7stJoodNOy3DNnXBVds2Uv2YIkWwTJFmkPvt6t-TVv2PHP2Vutgovm8M6KmCAxAUG6-fZgu1VoN_z0bhvPm_4ZXh-cfj8qjg4H3zZhyRPZz_PBt2Chnv62H2FRX9ej2fRTMPBblTzy5Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VWlVw6IOC2Ja2c-ittcgm9iY-RpRVq1bLSi1ob5HjB6zEZtESkJD48Yy9SQMVVKo4-yHFM_Z8jr-ZD-BTKmJtSpsxVXLFeOkiRlHOMU7RM7WxMUbrIDaRjkbZZCLHt7L4A9u9fZJc5jT4Kk1VvXtm3G6X-JYkA8k8Ez3yKissXYGn3BPp_X3911HrUZzCPyGKpPvrQmgoDrKytFMTJgbppMmkuX_au9Gqg6B_vZqGYDR8-fjPeAUvGiCK-dJzXsMTW23A-q3yhG_g-qAk7EitmF_Op8b7B44JMWKrdISBcICEIXHf5zJjXtW4R8dpdYX56fF8Ma1PZkiwmIZ5EhjZEA_ojJo1yZ84d3hYzZQ_6zEPewGP7Elg6m3C4XD_99431qg1ME1XuJqJyAkXZ9a4zDgVlYIb7nhUOmvSSOqBNEJJY2SsLYEMmzkRKyOlzYRK0piLZAtWq3lltwGtdv1S-eJohNacFEq5SHNlCGtkmY4GPei3Vil0U8rcK2qcFl0RZr-yBa1sEVa2SHvw-c-Ys2Uhj3_23mmNXTSb-ryICSoTQKQbcQ--tMbtmh-e7e3_df8Iz8dfh8XP76Mf72DN69svaeI7sFovLux7eKYv6-n54kPw9Rvz0fvJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Obstacle+Avoidance+Path+Planning+Using+the+Elite+Ant+Colony+Algorithm+for+Parameter+Optimization+of+Unmanned+Aerial+Vehicles&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Meng+Xiaoling&rft.au=Zhu+Xijing&rft.au=Zhao%2C+Jing&rft.date=2023-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=48&rft.issue=2&rft.spage=2261&rft.epage=2275&rft_id=info:doi/10.1007%2Fs13369-022-07204-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |