Incorporate seagull optimization into ordinal optimization for solving the constrained binary simulation optimization problems
Constrained binary simulation optimization problems (CBSOP) are optimization problems with binary variables and stochastic objective function subject to given constraints. Solving the CBSOP by conventional optimization algorithms becomes highly time-consuming when the problem size is increased. Alth...
Uložené v:
| Vydané v: | The Journal of supercomputing Ročník 79; číslo 5; s. 5730 - 5758 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.03.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Constrained binary simulation optimization problems (CBSOP) are optimization problems with binary variables and stochastic objective function subject to given constraints. Solving the CBSOP by conventional optimization algorithms becomes highly time-consuming when the problem size is increased. Although the ordinal optimization (OO) theory provides a reliable framework to solve CBSOP, the constraints still limit the efficiency and competitiveness of the OO theory. In this work, an approach incorporating binary seagull optimization into ordinal optimization, abbreviated as BSOO, is developed for solving the CBSOP in a reasonable time. The BSOO comprises three essential components: emulator, exploration, and exploitation. First of all, the regularized minimal-energy tensor product B-splines are regarded as an emulator to estimate the performance of a solution. Next, the binary seagull optimization algorithm is utilized to determine
N
exceptional solutions from the decision space. Finally, the reformed optimal computing budget allocation is employed to find an illustrious solution from the
N
exceptional solutions. To verify the proposed method, the BSOO is applied for finding the optimal layout of shortcuts for maximizing the capacity of the sorting conveyor system in a reasonable time. Experimental results of the BSOO are compared to five heuristic methods. The BSOO outperforms the five heuristic methods even after the latter took more than 30 times the CPU time that was consumed by BSOO upon completion. Test results reveal that the BSOO can be adopted in a real-time application of the sortation system. |
|---|---|
| AbstractList | Constrained binary simulation optimization problems (CBSOP) are optimization problems with binary variables and stochastic objective function subject to given constraints. Solving the CBSOP by conventional optimization algorithms becomes highly time-consuming when the problem size is increased. Although the ordinal optimization (OO) theory provides a reliable framework to solve CBSOP, the constraints still limit the efficiency and competitiveness of the OO theory. In this work, an approach incorporating binary seagull optimization into ordinal optimization, abbreviated as BSOO, is developed for solving the CBSOP in a reasonable time. The BSOO comprises three essential components: emulator, exploration, and exploitation. First of all, the regularized minimal-energy tensor product B-splines are regarded as an emulator to estimate the performance of a solution. Next, the binary seagull optimization algorithm is utilized to determine N exceptional solutions from the decision space. Finally, the reformed optimal computing budget allocation is employed to find an illustrious solution from the N exceptional solutions. To verify the proposed method, the BSOO is applied for finding the optimal layout of shortcuts for maximizing the capacity of the sorting conveyor system in a reasonable time. Experimental results of the BSOO are compared to five heuristic methods. The BSOO outperforms the five heuristic methods even after the latter took more than 30 times the CPU time that was consumed by BSOO upon completion. Test results reveal that the BSOO can be adopted in a real-time application of the sortation system. Constrained binary simulation optimization problems (CBSOP) are optimization problems with binary variables and stochastic objective function subject to given constraints. Solving the CBSOP by conventional optimization algorithms becomes highly time-consuming when the problem size is increased. Although the ordinal optimization (OO) theory provides a reliable framework to solve CBSOP, the constraints still limit the efficiency and competitiveness of the OO theory. In this work, an approach incorporating binary seagull optimization into ordinal optimization, abbreviated as BSOO, is developed for solving the CBSOP in a reasonable time. The BSOO comprises three essential components: emulator, exploration, and exploitation. First of all, the regularized minimal-energy tensor product B-splines are regarded as an emulator to estimate the performance of a solution. Next, the binary seagull optimization algorithm is utilized to determine N exceptional solutions from the decision space. Finally, the reformed optimal computing budget allocation is employed to find an illustrious solution from the N exceptional solutions. To verify the proposed method, the BSOO is applied for finding the optimal layout of shortcuts for maximizing the capacity of the sorting conveyor system in a reasonable time. Experimental results of the BSOO are compared to five heuristic methods. The BSOO outperforms the five heuristic methods even after the latter took more than 30 times the CPU time that was consumed by BSOO upon completion. Test results reveal that the BSOO can be adopted in a real-time application of the sortation system. |
| Author | Horng, Shih-Cheng Lin, Shieh-Shing |
| Author_xml | – sequence: 1 givenname: Shih-Cheng surname: Horng fullname: Horng, Shih-Cheng email: schong@cyut.edu.tw organization: Department of Computer Science and Information Engineering, Chaoyang University of Technology – sequence: 2 givenname: Shieh-Shing surname: Lin fullname: Lin, Shieh-Shing organization: Department of Computer Science and Information Engineering, Chaoyang University of Technology |
| BookMark | eNp9kE9PAyEQxYmpiW31C3gi8bw6wG4XjqbxT5MmXvRMdoFWmi1UoCb14GeXdk2MPTQcJjDvN8N7IzRw3hmErgncEoD6LhJCaV0ApQWUnEOxO0NDUtVsfy0HaAiCQsGrkl6gUYwrAChZzYboe-aUDxsfmmRwNM1y23XYb5Jd268mWe-wdcljH7R1zVFn4QOOvvu0bonTu8HKu5hCY53RuM3ysMPRrrddr_6HboJvO7OOl-h80XTRXP3WMXp7fHidPhfzl6fZ9H5eKFqKVJTGMAUVJwYYF4S3LTGtFqoRTJet0kJMWgGU1FQrDfksNNfC1FWteZvf2Rjd9HPz4o-tiUmu_DZkR1EyWk0qXkFZZRXtVSr4GINZyE2w6-xDEpD7nGWfs8w5y0POcpchfgQpmw4u91l0p1HWozHvcUsT_n51gvoBfriZ3A |
| CitedBy_id | crossref_primary_10_3390_math12121863 crossref_primary_10_1016_j_matcom_2023_10_021 crossref_primary_10_1016_j_matcom_2025_06_016 crossref_primary_10_1007_s11831_025_10249_0 crossref_primary_10_3390_math11081854 |
| Cites_doi | 10.1016/j.renene.2016.05.018 10.1016/j.knosys.2018.11.024 10.3139/120.111529 10.1080/24725854.2019.1659524 10.1007/s10589-019-00153-2 10.3390/app11010136 10.1016/j.ast.2021.106589 10.1016/j.cie.2020.107050 10.1080/0305215X.2019.1624740 10.1007/978-0-387-68692-9 10.3390/s21248496 10.1016/j.knosys.2020.106711 10.1016/j.compchemeng.2021.107655 10.1109/ACCESS.2021.3127164 10.3390/app8112153 10.1016/j.cie.2020.106946 10.1080/17480930.2019.1577940 10.1007/s00158-019-02449-7 10.1109/LRA.2020.3005125 10.1109/TCYB.2019.2926248 10.1016/j.asoc.2021.107319 10.3390/pr9020387 10.1016/j.asoc.2019.105576 10.1080/00051144.2021.1997253 10.1002/9781118439241 10.1016/j.cie.2021.107250 10.1137/19M1238265 10.1016/j.simpat.2020.102192 10.32604/cmc.2021.015495 10.1016/j.asoc.2021.107635 10.1142/7437 10.1007/s12351-018-0427-9 10.3390/app10062075 10.1016/j.matcom.2019.06.003 10.3390/atmos13030444 10.1016/j.swevo.2018.10.005 10.1109/JAS.2021.1004129 10.1016/j.cpc.2021.108102 10.1016/j.ast.2017.12.030 10.1109/TAC.2020.2982907 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s11227-022-04880-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 5758 |
| ExternalDocumentID | 10_1007_s11227_022_04880_y |
| GrantInformation_xml | – fundername: Ministry of Science and Technology grantid: MOST111-2221-E-324-021 funderid: http://dx.doi.org/10.13039/100007225 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c249t-4ee3c0581e038918bb1ebd9ca93d4bcd996b902172dcd0d0dfd8d9e757d8b0213 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000875982300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Sun Nov 30 04:22:43 EST 2025 Tue Nov 18 21:44:22 EST 2025 Sat Nov 29 04:27:43 EST 2025 Fri Feb 21 02:46:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Ordinal optimization Sorting conveyor system Binary seagull optimization Shortcuts layout Optimal computing budget allocation Tensor product B-splines |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-4ee3c0581e038918bb1ebd9ca93d4bcd996b902172dcd0d0dfd8d9e757d8b0213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256585045 |
| PQPubID | 2043774 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_3256585045 crossref_primary_10_1007_s11227_022_04880_y crossref_citationtrail_10_1007_s11227_022_04880_y springer_journals_10_1007_s11227_022_04880_y |
| PublicationCentury | 2000 |
| PublicationDate | 20230300 2023-03-00 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Liu, Luh, Bragin, Yan (CR18) 2020; 5 Dhiman, Kumar (CR15) 2019; 165 Sreelaja (CR7) 2021; 111 Horng, Lin (CR21) 2018; 8 Yang, He, Zhong (CR38) 2021; 51 Hu, Yu, Song, Chen (CR27) 2021; 112 Javaloyes-Anton, Kronqvist, Caballero (CR4) 2022; 159 Wu, Sun, Zhang, Zhong, Cheng (CR31) 2022; 10 Chen, Tong, Ge, Lan (CR28) 2021; 106 Hwang, Martins (CR23) 2018; 75 Jagannathan, Gurumoorthy, Stateczny, Divakarachar, Sengupta (CR32) 2021; 21 Estrin, Friedlander, Orban, Saunders (CR25) 2020; 42 Subramanian, Raman (CR30) 2022; 63 Mohammadi-Balani, Nayeri, Azar, Taghizadeh-Yazdi (CR12) 2021; 152 Han, Wang, Shen, Xu (CR29) 2021; 66 Abualigah, Yousri, Abd Elaziz, Ewees, Al-qaness, Gandomi (CR10) 2021; 157 Chen, Li, Zhang, Ye, Xiong, Zhang (CR33) 2021; 9 Valiante, Hernandez, Barzegar, Katzgraber (CR1) 2021; 269 Kobayashi, Takano (CR5) 2020; 75 Anghelescu (CR6) 2021; 67 Xiao, Gao, Lee (CR35) 2020; 52 Tang, Liu, Pan (CR9) 2021; 8 MiarNaeimi, Azizyan, Rashki (CR11) 2021; 213 Ryan (CR40) 2013 Horng, Lin (CR22) 2019; 166 Chen, Lee (CR34) 2010 Abdel-Basset, Mohamed, Mirjalili (CR14) 2021; 151 Hussien, Hassanien, Houssein, Amin, Azar (CR13) 2020; 52 Zhang, Zhang, Yen, Jing (CR8) 2019; 50 Ho, Zhao, Jia (CR17) 2007 Chen, Song, Zhang, Wang (CR36) 2016; 96 Horng, Lee (CR19) 2021; 11 Horng, Lin (CR20) 2020; 10 Fairclough, Gilbert (CR37) 2020; 61 Panagant, Pholdee, Bureerat, Yildiz, Sait (CR16) 2020; 62 Aslan, Gunduz, Kiran (CR2) 2019; 82 Huang, Mahmud, Chen (CR24) 2022; 13 Arthur, Temeng, Ziggah (CR26) 2020; 34 Chen, Chen, Huang, Chang (CR39) 2021; 106 Baykasoglu, Ozsoydan, Senol (CR3) 2020; 20 TP Ryan (4880_CR40) 2013 P Anghelescu (4880_CR6) 2021; 67 CK Arthur (4880_CR26) 2020; 34 J Tang (4880_CR9) 2021; 8 M Abdel-Basset (4880_CR14) 2021; 151 TL Chen (4880_CR39) 2021; 106 YC Ho (4880_CR17) 2007 H Xiao (4880_CR35) 2020; 52 NK Sreelaja (4880_CR7) 2021; 111 R Estrin (4880_CR25) 2020; 42 L Abualigah (4880_CR10) 2021; 157 AD Liu (4880_CR18) 2020; 5 P Jagannathan (4880_CR32) 2021; 21 SC Horng (4880_CR19) 2021; 11 Y Chen (4880_CR28) 2021; 106 A Baykasoglu (4880_CR3) 2020; 20 SC Horng (4880_CR22) 2019; 166 M Aslan (4880_CR2) 2019; 82 K Kobayashi (4880_CR5) 2020; 75 F MiarNaeimi (4880_CR11) 2021; 213 G Dhiman (4880_CR15) 2019; 165 A Mohammadi-Balani (4880_CR12) 2021; 152 AG Hussien (4880_CR13) 2020; 52 SH Huang (4880_CR24) 2022; 13 WW Zhang (4880_CR8) 2019; 50 K Chen (4880_CR36) 2016; 96 WX Han (4880_CR29) 2021; 66 E Valiante (4880_CR1) 2021; 269 J Javaloyes-Anton (4880_CR4) 2022; 159 JT Hwang (4880_CR23) 2018; 75 A Subramanian (4880_CR30) 2022; 63 HD Hu (4880_CR27) 2021; 112 YH Wu (4880_CR31) 2022; 10 SC Horng (4880_CR20) 2020; 10 SC Horng (4880_CR21) 2018; 8 X Chen (4880_CR33) 2021; 9 X Yang (4880_CR38) 2021; 51 N Panagant (4880_CR16) 2020; 62 CH Chen (4880_CR34) 2010 H Fairclough (4880_CR37) 2020; 61 |
| References_xml | – volume: 96 start-page: 676 year: 2016 end-page: 686 ident: CR36 article-title: Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm publication-title: Renew Energy doi: 10.1016/j.renene.2016.05.018 – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: CR15 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.11.024 – volume: 62 start-page: 640 issue: 6 year: 2020 end-page: 644 ident: CR16 article-title: Seagull optimization algorithm for solving real-world design optimization problems publication-title: Materials Testing doi: 10.3139/120.111529 – volume: 52 start-page: 489 issue: 5 year: 2020 end-page: 499 ident: CR35 article-title: Optimal computing budget allocation for complete ranking with input uncertainty publication-title: IISE Trans doi: 10.1080/24725854.2019.1659524 – volume: 75 start-page: 493 issue: 2 year: 2020 end-page: 513 ident: CR5 article-title: A branch-and-cut algorithm for solving mixed-integer semidefinite optimization problems publication-title: Comput Optim Appl doi: 10.1007/s10589-019-00153-2 – volume: 11 start-page: 136 issue: 1 year: 2021 ident: CR19 article-title: Integration of ordinal optimization with ant lion optimization for solving the computationally expensive simulation optimization problems publication-title: Appl Sci doi: 10.3390/app11010136 – volume: 112 start-page: 106589 year: 2021 ident: CR27 article-title: The application of support vector regression and mesh deformation technique in the optimization of transonic compressor design publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2021.106589 – volume: 152 start-page: 107050 year: 2021 ident: CR12 article-title: Golden eagle optimizer: A nature-inspired metaheuristic algorithm publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.107050 – volume: 52 start-page: 945 issue: 6 year: 2020 end-page: 959 ident: CR13 article-title: New binary whale optimization algorithm for discrete optimization problems publication-title: Eng Optim doi: 10.1080/0305215X.2019.1624740 – year: 2007 ident: CR17 publication-title: Ordinal optimization: soft optimization for hard problems doi: 10.1007/978-0-387-68692-9 – volume: 21 start-page: 8496 issue: 24 year: 2021 ident: CR32 article-title: Collision-aware routing using multi-objective seagull optimization algorithm for WSN-Based IoT publication-title: Sensors doi: 10.3390/s21248496 – volume: 213 start-page: 106711 year: 2021 ident: CR11 article-title: Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.106711 – volume: 159 start-page: 107655 year: 2022 ident: CR4 article-title: Simulation-based optimization of distillation processes using an extended cutting plane algorithm publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2021.107655 – volume: 10 start-page: 17268 year: 2022 end-page: 17286 ident: CR31 article-title: A power transformer fault diagnosis method-based hybrid improved seagull optimization algorithm and support vector machine publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3127164 – volume: 8 start-page: 2153 issue: 11 year: 2018 ident: CR21 article-title: Embedding ordinal optimization into tree–seed algorithm for solving the probabilistic constrained simulation optimization problems publication-title: Appl Sci doi: 10.3390/app8112153 – volume: 151 start-page: 106946 year: 2021 ident: CR14 article-title: A binary equilibrium optimization algorithm for 0–1 knapsack problems publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.106946 – volume: 34 start-page: 198 issue: 3 year: 2020 end-page: 222 ident: CR26 article-title: Multivariate adaptive regression splines (MARS) approach to blast-induced ground vibration prediction publication-title: Int J Min Reclam Environ doi: 10.1080/17480930.2019.1577940 – volume: 61 start-page: 1977 issue: 5 year: 2020 end-page: 1999 ident: CR37 article-title: Layout optimization of simplified trusses using mixed integer linear programming with runtime generation of constraints publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02449-7 – volume: 5 start-page: 5051 issue: 4 year: 2020 end-page: 5058 ident: CR18 article-title: Ordinal-optimization concept enabled decomposition and coordination of mixed-integer linear programming problems publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2020.3005125 – volume: 51 start-page: 2419 issue: 5 year: 2021 end-page: 2432 ident: CR38 article-title: Approximate dynamic programming for nonlinear-constrained optimizations publication-title: IEEE Trans Cybernetics doi: 10.1109/TCYB.2019.2926248 – volume: 106 start-page: 107319 year: 2021 ident: CR28 article-title: Fault detection based on auto-regressive extreme learning machine for nonlinear dynamic processes publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107319 – volume: 9 start-page: 387 issue: 2 year: 2021 ident: CR33 article-title: A novel hybrid model based on an improved seagull optimization algorithm for short-term wind speed forecasting publication-title: Processes doi: 10.3390/pr9020387 – volume: 82 start-page: 105576 year: 2019 ident: CR2 article-title: JayaX: Jaya algorithm with XOR operator for binary optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105576 – volume: 63 start-page: 1 issue: 1 year: 2022 end-page: 15 ident: CR30 article-title: Modified seagull optimization algorithm based MPPT for augmented performance of photovoltaic solar energy systems publication-title: Automatika doi: 10.1080/00051144.2021.1997253 – year: 2013 ident: CR40 publication-title: Sample size determination and power doi: 10.1002/9781118439241 – volume: 157 start-page: 107250 year: 2021 ident: CR10 article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107250 – volume: 42 start-page: A1809 issue: 3 year: 2020 end-page: A1835 ident: CR25 article-title: Implementing a smooth exact penalty function for equality-constrained nonlinear optimization publication-title: SIAM J Sci Comput doi: 10.1137/19M1238265 – volume: 106 start-page: 102192 year: 2021 ident: CR39 article-title: Solving the layout design problem by simulation-optimization approach: a case study on a sortation conveyor system publication-title: Simul Modelli Pract Theory doi: 10.1016/j.simpat.2020.102192 – volume: 67 start-page: 3293 issue: 3 year: 2021 end-page: 3310 ident: CR6 article-title: Parallel optimization of program instructions using genetic algorithms publication-title: CMC-Comput Mater Contin doi: 10.32604/cmc.2021.015495 – volume: 111 start-page: 107635 year: 2021 ident: CR7 article-title: Ant colony optimization based light weight binary search for efficient signature matching to filter Ransomware publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107635 – year: 2010 ident: CR34 publication-title: Stochastic simulation optimization: an optimal computing budget allocation doi: 10.1142/7437 – volume: 20 start-page: 2555 issue: 4 year: 2020 end-page: 2581 ident: CR3 article-title: Weighted superposition attraction algorithm for binary optimization problems publication-title: Oper Res Int J doi: 10.1007/s12351-018-0427-9 – volume: 10 start-page: 2075 issue: 6 year: 2020 ident: CR20 article-title: Coupling elephant herding with ordinal optimization for solving the stochastic inequality constrained optimization problems publication-title: Appl Sci doi: 10.3390/app10062075 – volume: 166 start-page: 346 year: 2019 end-page: 364 ident: CR22 article-title: Bat algorithm assisted by ordinal optimization for solving discrete probabilistic bicriteria optimization problems publication-title: Math Comput Simul doi: 10.1016/j.matcom.2019.06.003 – volume: 13 start-page: 444 issue: 3 year: 2022 ident: CR24 article-title: Meaningful trend in climate time series: A discussion based on linear and smoothing techniques for drought analysis in Taiwan publication-title: Atmosphere doi: 10.3390/atmos13030444 – volume: 50 start-page: 100454 year: 2019 ident: CR8 article-title: A cluster-based clonal selection algorithm for optimization in dynamic environment publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2018.10.005 – volume: 8 start-page: 1627 issue: 10 year: 2021 end-page: 1643 ident: CR9 article-title: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends publication-title: IEEE-CAA J Autom Sin doi: 10.1109/JAS.2021.1004129 – volume: 269 start-page: 108102 year: 2021 ident: CR1 article-title: Computational overhead of locality reduction in binary optimization problems publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2021.108102 – volume: 75 start-page: 74 year: 2018 end-page: 87 ident: CR23 article-title: A fast-prediction surrogate model for large datasets publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2017.12.030 – volume: 66 start-page: 468 issue: 1 year: 2021 end-page: 475 ident: CR29 article-title: Interval estimation for uncertain systems via polynomial chaos expansions publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2020.2982907 – volume: 75 start-page: 74 year: 2018 ident: 4880_CR23 publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2017.12.030 – volume-title: Stochastic simulation optimization: an optimal computing budget allocation year: 2010 ident: 4880_CR34 doi: 10.1142/7437 – volume: 10 start-page: 17268 year: 2022 ident: 4880_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3127164 – volume: 75 start-page: 493 issue: 2 year: 2020 ident: 4880_CR5 publication-title: Comput Optim Appl doi: 10.1007/s10589-019-00153-2 – volume: 21 start-page: 8496 issue: 24 year: 2021 ident: 4880_CR32 publication-title: Sensors doi: 10.3390/s21248496 – volume: 96 start-page: 676 year: 2016 ident: 4880_CR36 publication-title: Renew Energy doi: 10.1016/j.renene.2016.05.018 – volume: 42 start-page: A1809 issue: 3 year: 2020 ident: 4880_CR25 publication-title: SIAM J Sci Comput doi: 10.1137/19M1238265 – volume: 152 start-page: 107050 year: 2021 ident: 4880_CR12 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.107050 – volume: 11 start-page: 136 issue: 1 year: 2021 ident: 4880_CR19 publication-title: Appl Sci doi: 10.3390/app11010136 – volume: 50 start-page: 100454 year: 2019 ident: 4880_CR8 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2018.10.005 – volume: 34 start-page: 198 issue: 3 year: 2020 ident: 4880_CR26 publication-title: Int J Min Reclam Environ doi: 10.1080/17480930.2019.1577940 – volume: 13 start-page: 444 issue: 3 year: 2022 ident: 4880_CR24 publication-title: Atmosphere doi: 10.3390/atmos13030444 – volume: 8 start-page: 2153 issue: 11 year: 2018 ident: 4880_CR21 publication-title: Appl Sci doi: 10.3390/app8112153 – volume: 111 start-page: 107635 year: 2021 ident: 4880_CR7 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107635 – volume: 51 start-page: 2419 issue: 5 year: 2021 ident: 4880_CR38 publication-title: IEEE Trans Cybernetics doi: 10.1109/TCYB.2019.2926248 – volume: 82 start-page: 105576 year: 2019 ident: 4880_CR2 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105576 – volume: 151 start-page: 106946 year: 2021 ident: 4880_CR14 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.106946 – volume-title: Sample size determination and power year: 2013 ident: 4880_CR40 doi: 10.1002/9781118439241 – volume: 106 start-page: 102192 year: 2021 ident: 4880_CR39 publication-title: Simul Modelli Pract Theory doi: 10.1016/j.simpat.2020.102192 – volume: 62 start-page: 640 issue: 6 year: 2020 ident: 4880_CR16 publication-title: Materials Testing doi: 10.3139/120.111529 – volume: 52 start-page: 489 issue: 5 year: 2020 ident: 4880_CR35 publication-title: IISE Trans doi: 10.1080/24725854.2019.1659524 – volume: 8 start-page: 1627 issue: 10 year: 2021 ident: 4880_CR9 publication-title: IEEE-CAA J Autom Sin doi: 10.1109/JAS.2021.1004129 – volume: 67 start-page: 3293 issue: 3 year: 2021 ident: 4880_CR6 publication-title: CMC-Comput Mater Contin doi: 10.32604/cmc.2021.015495 – volume: 52 start-page: 945 issue: 6 year: 2020 ident: 4880_CR13 publication-title: Eng Optim doi: 10.1080/0305215X.2019.1624740 – volume: 112 start-page: 106589 year: 2021 ident: 4880_CR27 publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2021.106589 – volume: 20 start-page: 2555 issue: 4 year: 2020 ident: 4880_CR3 publication-title: Oper Res Int J doi: 10.1007/s12351-018-0427-9 – volume: 213 start-page: 106711 year: 2021 ident: 4880_CR11 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.106711 – volume: 106 start-page: 107319 year: 2021 ident: 4880_CR28 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107319 – volume: 159 start-page: 107655 year: 2022 ident: 4880_CR4 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2021.107655 – volume: 166 start-page: 346 year: 2019 ident: 4880_CR22 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2019.06.003 – volume: 269 start-page: 108102 year: 2021 ident: 4880_CR1 publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2021.108102 – volume: 66 start-page: 468 issue: 1 year: 2021 ident: 4880_CR29 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2020.2982907 – volume-title: Ordinal optimization: soft optimization for hard problems year: 2007 ident: 4880_CR17 doi: 10.1007/978-0-387-68692-9 – volume: 9 start-page: 387 issue: 2 year: 2021 ident: 4880_CR33 publication-title: Processes doi: 10.3390/pr9020387 – volume: 61 start-page: 1977 issue: 5 year: 2020 ident: 4880_CR37 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02449-7 – volume: 63 start-page: 1 issue: 1 year: 2022 ident: 4880_CR30 publication-title: Automatika doi: 10.1080/00051144.2021.1997253 – volume: 165 start-page: 169 year: 2019 ident: 4880_CR15 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.11.024 – volume: 5 start-page: 5051 issue: 4 year: 2020 ident: 4880_CR18 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2020.3005125 – volume: 157 start-page: 107250 year: 2021 ident: 4880_CR10 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107250 – volume: 10 start-page: 2075 issue: 6 year: 2020 ident: 4880_CR20 publication-title: Appl Sci doi: 10.3390/app10062075 |
| SSID | ssj0004373 |
| Score | 2.3400161 |
| Snippet | Constrained binary simulation optimization problems (CBSOP) are optimization problems with binary variables and stochastic objective function subject to given... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5730 |
| SubjectTerms | Accuracy Algorithms Compilers Computer Science Constraints Emulators Heuristic methods Interpreters Linear programming Manufacturing Optimization Optimization algorithms Optimization techniques Processor Architectures Programming Languages Real time Simulation Spline functions Tensors |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXhx_sTplBy8aXBt2iY5iYhDUYYHld1K82MycO1cq7CLf7svbWqZ4C7SW9OEhu8leS_J-z6ETulIJUxGFGKTRJPAhJQkOgxJlPhaKO0lFZH2ywMbDPhwKB7dhlvurlXWc2I5UetM2T3yCwprM7i24IFcTt-JVY2yp6tOQmMVrXm-71k7v2ekyYuk1QmzgBCJh4Hvkmaq1DmowIi9y17aMJkvLkyNt_nrgLRcd_rt__7xFtp0Hie-qkxkG62YdAe1azUH7Ab3Lvq6s5SWJa2xwTAAXiE4xRnMKBOXqonHaZFhCFatkNZiCXi-GIzYbk5g8Cixsl6nFZ8wGssy4xfn44lTClus6hRt8j303L95ur4lTp2BKAjZCsDVUNULuWcsR5_HpfSMBHwTQXUglYZASopS_0or3YNnpLkWhoVMcwnv6T5qpVlqDhDWMhLGUpeJiAc0MNzIgGnFhA6phJiwg7wamlg56nLbibe4IV22cMYAZ1zCGc876OynzrQi7lj6dbfGMHaDOI8bADvovLaCpvjv1g6Xt3aENqxofXWTrYtaxezDHKN19VmM89lJacLftpT7Mg priority: 102 providerName: ProQuest |
| Title | Incorporate seagull optimization into ordinal optimization for solving the constrained binary simulation optimization problems |
| URI | https://link.springer.com/article/10.1007/s11227-022-04880-y https://www.proquest.com/docview/3256585045 |
| Volume | 79 |
| WOSCitedRecordID | wos000875982300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1573-0484 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0484 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0484 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0484 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB609eDF-sRqLXvwpoGmmzS7R5UWRSml1VK8hOyjUrCpNFXoxd_ubLIxVFRQAjlkHyQ7s7vzZWe-ATilYxkFokURm0TK8bRPnUj5vtOKmopL5UYZkfbwLuh22WjEezYoLMm93fMjyXSlLoLd3GYzcIz3eap1znIdyrjdMTMd-4NhEQ1Js3NljsCI-V7Thsp838fqdlTYmF-ORdPdplP533tuw5a1LslFpg47sKbjXajkmRuInch78H5j6CtTCmNNUNmfEIiSGa4eUxuWSSbxYkYQmJqkWaslaOUSVFjzI4Kg9UiksTBNogmtiEije0kymdqsYKtNbfaaZB8eOu37q2vHZmJwJMKzBcpQU9nwmasNH5_LhHC1QFlGnCpPSIWgSfA015WSqoHXWDHFdeAHigl8Tg-gFM9ifQhEiRbXhqaMt5hHPc208AIlA658KhD_VcHNBRJKS1NuPuI5LAiWzQCHOMBhOsDhsgpnn21eMpKOX2vXcjmHdsImIUXTD5ETGrhVOM_lWhT_3NvR36ofw6ZJWJ95sdWgtJi_6hPYkG-LSTKvQ_my3e3167B-Gzh144c6wHvPf6ynKv4BcH72nw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH6CgsQuFBhoZR34sJ2GRRMntX2YpmmjomqpdmCotyz-UVSJ_ljTbeplf9L-xj0nzqIiwY0Dyi2JLcf5_Pye7fd9AG_ZSKdctRnGJqmhkY0ZTU0c03YaGqlNkBZE2jd9PhiI4VB-3YC_ZS6MO1ZZ2sTcUJuZdmvk5wznZnRt0QP5OP9BnWqU210tJTQKWPTs6jeGbNmH7hf8v-_CsHNx_fmSelUBqjHUWGJ7LNOtWATWccsFQqnAKmxXKpmJlDYYACiZ6zYZbVp4jYww0vKYG6HwPsN6N2ErYoI7rv4ep1UeJit2tCWGZCKOQp-kU6TqBWHIqTs7n48ZulqfCCvv9t6GbD7PderPrYf2YNd71ORTMQT2YcNOD6BeqlUQb7xewp-uo-zMaZstwXbeYvBNZmgxJz4VlYynyxnBdjuhsPUn6NkTHKRu8YWgx0y086qduIY1ROUZzSQbT7wS2npRr9iTHcK3J-mFI6hNZ1P7CohRbWkdNZtsi4hFVlgVcaO5NDFTGPM2ICihkGhPze4-4i6pSKUdfBKET5LDJ1k14P3_MvOCmOTRt5slZhJvpLKkAkwDzkrUVY8fru348dpOYefy-qqf9LuD3mt4EaJbWJzaa0Jtufhp38C2_rUcZ4uTfPgQ-P7UaPwHv1xZrQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFadQ_eNNR089qjqMViKQW19Bayj0rBpqWJQi_-dmeTjbGigkhu2QfJzmx2vuzO9wGc0qGIfO5RxCaRtBzlUiuSrmt5UVMyIe0oJ9Lud_xuNxgMWO9TFn922r3YksxzGjRLU5w2pnLYKBPf7GbTt_RJ9MwDrfkyrDhaNEjj9ft-mRlJ8z1mhiApcJ2mSZv5vo_FpamMN79skWYrT6v6_2fehA0TdZLL3E22YEnF21AtFB2ImeA78NbWtJYZtbEiOAmeEKCSCX5VxiZdk4zidEIQsGoxrcUSjH4JOrL-QUEwqiRCR55agEJJwrOsX5KMxkYtbLGpUbVJduGxdfNwdWsZhQZLIGxL0baKigs3sJXm6bMDzm3F0cYRo9LhQiKY4izTwJJCXuA1lIFkynd9GXC8T_egEk9itQ9Eco8pTV_GvMChjgoUd3wpfCZdyhEX1sAujBMKQ1-uX-I5LImX9QCHOMBhNsDhvAZnH22mOXnHr7Xrhc1DM5GTkGJIiIgKA98anBc2Lot_7u3gb9VPYK133Qo77e7dIaxrTfv8oFsdKunsRR3BqnhNR8nsOPPvdxJj_gU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporate+seagull+optimization+into+ordinal+optimization+for+solving+the+constrained+binary+simulation+optimization+problems&rft.jtitle=The+Journal+of+supercomputing&rft.au=Horng%2C+Shih-Cheng&rft.au=Lin%2C+Shieh-Shing&rft.date=2023-03-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=79&rft.issue=5&rft.spage=5730&rft.epage=5758&rft_id=info:doi/10.1007%2Fs11227-022-04880-y&rft.externalDocID=10_1007_s11227_022_04880_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |