Defective incidence coloring of graphs

•Proper incidence coloring of graphs is generalized as defective incidence coloring of graphs.•Fast algorithms for constructing the optimal defective incidence colorings of certain graphs are presented.•Relation between the 1-defective incidence (n−1)-coloring and Latin square of order n is given. W...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 443; s. 127781
Hlavní autoři: Bi, Huimin, Zhang, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.04.2023
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•Proper incidence coloring of graphs is generalized as defective incidence coloring of graphs.•Fast algorithms for constructing the optimal defective incidence colorings of certain graphs are presented.•Relation between the 1-defective incidence (n−1)-coloring and Latin square of order n is given. We define the d-defective incidence chromatic number of a graph, generalizing the notion of incidence chromatic number, and determine it for some classes of graphs including trees, complete bipartite graphs, complete graphs, and outerplanar graphs. Fast algorithms for constructing the optimal d-defective incidence colorings of those graphs are presented.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2022.127781