TSVMPath: Fast Regularization Parameter Tuning Algorithm for Twin Support Vector Machine

Twin support vector machine (TSVM) has attracted much attention in the field of machine learning with good generalization ability and computational performance. However, the conventional grid search method is very time-consuming to obtain the optimal regularization parameter. To address this problem...

Full description

Saved in:
Bibliographic Details
Published in:Neural processing letters Vol. 54; no. 6; pp. 5457 - 5482
Main Authors: Zhou, Kanglei, Zhang, Qiyang, Li, Juntao
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2022
Springer Nature B.V
Subjects:
ISSN:1370-4621, 1573-773X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Twin support vector machine (TSVM) has attracted much attention in the field of machine learning with good generalization ability and computational performance. However, the conventional grid search method is very time-consuming to obtain the optimal regularization parameter. To address this problem, we develop a novel fast regularization parameter tuning algorithm for TSVM, named TSVMPath. After transforming the models of two sub-optimization problems, we divide the two classes of samples into different sets. Lagrangian multipliers are then proved to be piecewise linear concerning the corresponding regularization parameters, greatly extending the search space of the solution. By proving that the Lagrangian multipliers of two sub-optimization models are 1 when the regularization parameters approach infinity, we design a simple yet effective initialization. As a result, the entirely regularized solution path can be obtained without solving quadratic programming problems. Four types of events are finally defined to update the solution path. Experiments on 8 UCI datasets show that the prediction accuracy of TSVMPath is superior to the best competing methods, with up to four orders of magnitude speed-up for the computational overhead compared with the grid search method.
AbstractList Twin support vector machine (TSVM) has attracted much attention in the field of machine learning with good generalization ability and computational performance. However, the conventional grid search method is very time-consuming to obtain the optimal regularization parameter. To address this problem, we develop a novel fast regularization parameter tuning algorithm for TSVM, named TSVMPath. After transforming the models of two sub-optimization problems, we divide the two classes of samples into different sets. Lagrangian multipliers are then proved to be piecewise linear concerning the corresponding regularization parameters, greatly extending the search space of the solution. By proving that the Lagrangian multipliers of two sub-optimization models are 1 when the regularization parameters approach infinity, we design a simple yet effective initialization. As a result, the entirely regularized solution path can be obtained without solving quadratic programming problems. Four types of events are finally defined to update the solution path. Experiments on 8 UCI datasets show that the prediction accuracy of TSVMPath is superior to the best competing methods, with up to four orders of magnitude speed-up for the computational overhead compared with the grid search method.
Author Li, Juntao
Zhang, Qiyang
Zhou, Kanglei
Author_xml – sequence: 1
  givenname: Kanglei
  surname: Zhou
  fullname: Zhou, Kanglei
  organization: School of Computer Science and Engineering, Beihang University
– sequence: 2
  givenname: Qiyang
  surname: Zhang
  fullname: Zhang, Qiyang
  organization: State Key Laboratory of Networking and Switching, Beijing University of Posts and Telecommunications
– sequence: 3
  givenname: Juntao
  orcidid: 0000-0002-3288-4395
  surname: Li
  fullname: Li, Juntao
  email: lijuntao@htu.edu.cn
  organization: College of Mathematics and Information Science, Henan Normal University
BookMark eNp9kEtLAzEUhYNUsK3-AVcDrkfzmJlk3JViVWix2Fq6C3GaTFOmSU0yiP56Y0cQXLi6l8P57uMMQM9YIwG4RPAaQUhvPEKwICnEOEWQUZiiE9BHOSUppWTdiz2JYlZgdAYG3u8gjBiGfbBeLlazuQjb22QifEieZd02wulPEbQ1yVw4sZdBumTZGm3qZNTU1umw3SfKRvFdm2TRHg7WhWQlqxC1mai22shzcKpE4-XFTx2Cl8ndcvyQTp_uH8ejaVrhrAxpRhhSOXnNSsEUUzDPi0wwUhChIJFVhQllcFOwnEmUlQWVmIo8p1BBUVYbJcgQXHVzD86-tdIHvrOtM3ElxyViJGOU5NHFOlflrPdOKl7pcHwxOKEbjiD_zpF3OfKYIz_myFFE8R_04PReuI__IdJBPppNLd3vVf9QX4xdhog
CitedBy_id crossref_primary_10_3390_info15040235
crossref_primary_10_1016_j_asoc_2024_111816
crossref_primary_10_1109_TPAMI_2023_3346765
crossref_primary_10_1109_TVCG_2023_3247092
crossref_primary_10_1007_s10479_025_06767_6
Cites_doi 10.1007/978-3-642-99789-1_5
10.1109/TNNLS.2012.2183644
10.1007/s10489-014-0611-4
10.1007/s00500-017-2974-z
10.1016/j.eswa.2008.09.066
10.1007/s00521-018-3551-9
10.1109/TNN.2011.2164265
10.1016/j.neucom.2016.01.038
10.1109/TNNLS.2020.3006850
10.1007/s11517-019-02100-z
10.1109/TNNLS.2017.2771456
10.1016/j.knosys.2012.03.013
10.1177/0142331219860279
10.1007/s00521-019-04627-6
10.1007/s13042-015-0394-x
10.1007/s40305-018-00239-4
10.21276/ijre.2018.5.3.3
10.1016/j.scitotenv.2018.09.111
10.1016/j.neucom.2019.09.069
10.1109/TPAMI.2007.1068
10.1109/TNNLS.2020.3015767
10.1016/j.patcog.2011.11.028
10.3390/app6060169
10.1007/s10044-019-00779-2
10.1016/j.patcog.2011.03.001
10.1109/RAMECH.2008.4681433
10.1214/009053606000001370
10.3390/app10031065
10.1016/j.neucom.2019.10.118
10.1016/j.knosys.2018.07.022
10.1016/j.neunet.2012.06.010
10.1007/s12204-014-1524-4
10.1109/TCSII.2021.3128624
10.29252/jsdp.17.1.117
10.1007/s10586-017-1615-8
10.1109/TNNLS.2017.2688182
10.1016/j.neucom.2018.01.093
10.1016/j.knosys.2014.10.011
10.36548/jscp.2019.1.004
10.1109/IWBIS.2018.8471698
10.1007/s10489-019-01422-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
Copyright Springer Nature B.V. Dec 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: Copyright Springer Nature B.V. Dec 2022
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-022-10870-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 5482
ExternalDocumentID 10_1007_s11063_022_10870_1
GrantInformation_xml – fundername: >Natural Science Foundation of China
  grantid: 61203293, 61702164, 31700858
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c249t-4381f53b49a8f8f05564a8363af03ecc23780d6858e14967e27a5570f0a9cdfa3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000807317100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1370-4621
IngestDate Sat Oct 18 23:17:32 EDT 2025
Tue Nov 18 22:22:49 EST 2025
Sat Nov 29 02:27:53 EST 2025
Fri Feb 21 02:46:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Statistical machine learning
Regularized solution path
Parameter tuning algorithm
Twin support vector machine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-4381f53b49a8f8f05564a8363af03ecc23780d6858e14967e27a5570f0a9cdfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3288-4395
PQID 2918348735
PQPubID 2043838
PageCount 26
ParticipantIDs proquest_journals_2918348735
crossref_citationtrail_10_1007_s11063_022_10870_1
crossref_primary_10_1007_s11063_022_10870_1
springer_journals_10_1007_s11063_022_10870_1
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yang, Pan, Xu (CR12) 2018; 160
Xu, Pan, Zhou, Yang, Zhang (CR29) 2015; 42
Ye, Bai, Hua, Shao, Wang, Deng (CR34) 2016; 197
Shao, Chen, Wang, Li, Deng (CR36) 2015; 73
Wang, Gao, Zhao, Chen (CR35) 2019; 49
Asheghi Dizaji, Asghari Aghjehdizaj, Soleimanian Gharehchopogh (CR13) 2020; 17
Kumaresan, Saravanakumar, Balamurugan (CR15) 2019; 22
Fu, Wang, Zhang, Tan (CR16) 2019; 41
Yang, Wu, Li, Shao (CR37) 2016; 7
Sun, Li, Sun (CR2) 2020; 32
Cortes, Vapnik (CR4) 1995; 20
Singla, Shukla (CR41) 2020; 32
CR8
CR9
Al-Dabagh, Alhabib, Al-Mukhtar (CR19) 2018; 5
He, Zheng (CR23) 2014; 19
CR43
Ye, Zhao, Gao, Zheng (CR44) 2012; 35
Rosset, Zhu (CR46) 2007; 35
Liu, Ran, Wu, Xue, Sun (CR3) 2021; 69
Huang, Wei, Zhou (CR22) 2018; 300
Singh (CR25) 2018; 8
Adeleke, Samsudin, Othman, Khalid (CR14) 2019; 16
Chen, Yang, Ye, Liang (CR45) 2011; 44
Gu, Sheng (CR49) 2017; 29
Pan, Yang, Xu, Wang (CR11) 2017; 29
Khemchandani, Chandra (CR5) 2007; 29
Kong, He, Yang, Sun (CR1) 2020; 32
Chen, Wu, Yin (CR38) 2019; 23
Raj, Ananthi (CR17) 2019; 1
Rustam, Rampisela (CR28) 2018; 7
Kumar, Gopal (CR42) 2009; 36
Liu, Ci, Liu (CR6) 2020; 10
Karasuyama, Takeuchi (CR47) 2011; 22
Cervantes, Garcia-Lamont, Rodríguez-Mazahua, Lopez (CR40) 2020; 408
Wang, Lu, Dong, Yang, Yang, Zhang (CR27) 2016; 6
Gupta, Richhariya, Borah (CR24) 2019; 31
Chen, Shao, Li, Liu, Wang, Deng (CR39) 2020; 376
Gao, Bai, Zhan (CR30) 2019; 7
Al-Shibli, Abusham (CR20) 2017; 2
Hastie, Rosset, Tibshirani, Zhu (CR10) 2004; 5
Shao, Deng, Yang (CR32) 2012; 45
de Lima, de Oliveira Roque e Lima, Barbosa (CR7) 2020; 58
CR26
Azad-Manjiri, Amiri, Sedghpour (CR31) 2020; 23
Zhou, Chang, Chang, Kao, Wang, Kang (CR18) 2019; 651
Gu, Wang, Zheng, Yu (CR48) 2012; 23
Al-Dabagh, Rashid, Ahmad (CR21) 2020; 10
Xu, Wang (CR33) 2012; 33
T Kumaresan (10870_CR15) 2019; 22
A Adeleke (10870_CR14) 2019; 16
Y-F Ye (10870_CR34) 2016; 197
Y-H Shao (10870_CR36) 2015; 73
M Singla (10870_CR41) 2020; 32
M Karasuyama (10870_CR47) 2011; 22
L Wang (10870_CR35) 2019; 49
Q Ye (10870_CR44) 2012; 35
10870_CR9
10870_CR8
D Gupta (10870_CR24) 2019; 31
Y Xu (10870_CR33) 2012; 33
Y-H Shao (10870_CR32) 2012; 45
J Cervantes (10870_CR40) 2020; 408
MZN Al-Dabagh (10870_CR19) 2018; 5
S Singh (10870_CR25) 2018; 8
M Azad-Manjiri (10870_CR31) 2020; 23
S Rosset (10870_CR46) 2007; 35
C Sun (10870_CR2) 2020; 32
J He (10870_CR23) 2014; 19
W-J Chen (10870_CR39) 2020; 376
MD de Lima (10870_CR7) 2020; 58
H Huang (10870_CR22) 2018; 300
W Liu (10870_CR6) 2020; 10
X Chen (10870_CR45) 2011; 44
B Gu (10870_CR48) 2012; 23
MZN Al-Dabagh (10870_CR21) 2020; 10
R Khemchandani (10870_CR5) 2007; 29
S Chen (10870_CR38) 2019; 23
Z Asheghi Dizaji (10870_CR13) 2020; 17
W Fu (10870_CR16) 2019; 41
Y Xu (10870_CR29) 2015; 42
L Kong (10870_CR1) 2020; 32
Q-Q Gao (10870_CR30) 2019; 7
JS Raj (10870_CR17) 2019; 1
Y Zhou (10870_CR18) 2019; 651
S Wang (10870_CR27) 2016; 6
MA Kumar (10870_CR42) 2009; 36
J Liu (10870_CR3) 2021; 69
A Al-Shibli (10870_CR20) 2017; 2
10870_CR26
X Pan (10870_CR11) 2017; 29
B Gu (10870_CR49) 2017; 29
10870_CR43
Z-M Yang (10870_CR37) 2016; 7
C Cortes (10870_CR4) 1995; 20
T Hastie (10870_CR10) 2004; 5
Z Rustam (10870_CR28) 2018; 7
Z Yang (10870_CR12) 2018; 160
References_xml – volume: 32
  start-page: 11173
  issue: 15
  year: 2020
  end-page: 11194
  ident: CR41
  article-title: Robust statistics-based support vector machine and its variants: a survey
  publication-title: Neural Comput Appl
– volume: 1
  start-page: 33
  issue: 01
  year: 2019
  end-page: 40
  ident: CR17
  article-title: Recurrent neural networks and nonlinear prediction in support vector machines
  publication-title: J Soft Comput Paradig (JSCP)
– volume: 17
  start-page: 117
  issue: 1
  year: 2020
  end-page: 130
  ident: CR13
  article-title: An improvement in support vector machines algorithm with imperialism competitive algorithm for text documents classification
  publication-title: Signal Data Process
– volume: 29
  start-page: 1876
  issue: 5
  year: 2017
  end-page: 1887
  ident: CR11
  article-title: Safe screening rules for accelerating twin support vector machine classification
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 160
  start-page: 311
  year: 2018
  end-page: 324
  ident: CR12
  article-title: Piecewise linear solution path for pinball twin support vector machine
  publication-title: Knowl Based Syst
– ident: CR8
– volume: 19
  start-page: 448
  issue: 4
  year: 2014
  end-page: 454
  ident: CR23
  article-title: Intrusion detection model with twin support vector machines
  publication-title: J Shanghai Jiaotong Univ (Sci)
– volume: 2
  start-page: 68
  issue: 2
  year: 2017
  end-page: 72
  ident: CR20
  article-title: Face recognition using local graph structure and support vector machine (LGS-SVM)
  publication-title: Int J Comput Appl Sci (IJOCAAS)
– volume: 73
  start-page: 276
  year: 2015
  end-page: 288
  ident: CR36
  article-title: Weighted linear loss twin support vector machine for large-scale classification
  publication-title: Knowl Based Syst
– volume: 22
  start-page: 33
  issue: 1
  year: 2019
  end-page: 46
  ident: CR15
  article-title: Visual and textual features based email spam classification using s-cuckoo search and hybrid kernel support vector machine
  publication-title: Clust Comput
– volume: 36
  start-page: 7535
  issue: 4
  year: 2009
  end-page: 7543
  ident: CR42
  article-title: Least squares twin support vector machines for pattern classification
  publication-title: Expert Syst Appl
– volume: 29
  start-page: 4462
  issue: 9
  year: 2017
  end-page: 4472
  ident: CR49
  article-title: A solution path algorithm for general parametric quadratic programming problem
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 6
  start-page: 169
  issue: 6
  year: 2016
  ident: CR27
  article-title: Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection
  publication-title: Appl Sci
– volume: 35
  start-page: 1012
  year: 2007
  end-page: 1030
  ident: CR46
  article-title: Piecewise linear regularized solution paths
  publication-title: Ann Stat
– volume: 29
  start-page: 905
  issue: 5
  year: 2007
  end-page: 910
  ident: CR5
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 58
  start-page: 519
  issue: 3
  year: 2020
  end-page: 528
  ident: CR7
  article-title: Medical data set classification using a new feature selection algorithm combined with twin-bounded support vector machine
  publication-title: Med Biol Eng Comput
– volume: 5
  start-page: 335
  issue: 3
  year: 2018
  end-page: 338
  ident: CR19
  article-title: Face recognition system based on kernel discriminant analysis, k-nearest neighbor and support vector machine
  publication-title: Int J Res Eng
– ident: CR9
– volume: 23
  start-page: 295
  issue: 1
  year: 2020
  end-page: 308
  ident: CR31
  article-title: ML-SLSTSVM: a new structural least square twin support vector machine for multi-label learning
  publication-title: Pattern Anal Appl
– volume: 35
  start-page: 31
  year: 2012
  end-page: 39
  ident: CR44
  article-title: Weighted twin support vector machines with local information and its application
  publication-title: Neural Netw
– volume: 22
  start-page: 1613
  issue: 10
  year: 2011
  end-page: 1625
  ident: CR47
  article-title: Nonlinear regularization path for quadratic loss support vector machines
  publication-title: IEEE Trans Neural Netw
– volume: 23
  start-page: 800
  issue: 5
  year: 2012
  end-page: 811
  ident: CR48
  article-title: Regularization path for -support vector classification
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 7
  start-page: 6378
  issue: 4
  year: 2018
  end-page: 6877
  ident: CR28
  article-title: Support vector machines and twin support vector machines for classification of schizophrenia data
  publication-title: Int J Eng Technol
– ident: CR26
– volume: 10
  start-page: 1
  year: 2020
  end-page: 4
  ident: CR21
  article-title: Face recognition system based on wavelet transform, histograms of oriented gradients and support vector machine
  publication-title: Int J Comput Digital Syst
– ident: CR43
– volume: 651
  start-page: 230
  year: 2019
  end-page: 240
  ident: CR18
  article-title: Multi-output support vector machine for regional multi-step-ahead pm2.5 forecasting
  publication-title: Sci Total Environ
– volume: 376
  start-page: 10
  year: 2020
  end-page: 24
  ident: CR39
  article-title: -projection twin support vector machine for pattern classification
  publication-title: Neurocomputing
– volume: 7
  start-page: 539
  issue: 4
  year: 2019
  end-page: 559
  ident: CR30
  article-title: Quadratic kernel-free least square twin support vector machine for binary classification problems
  publication-title: J Oper Res Soc China
– volume: 44
  start-page: 2643
  issue: 10–11
  year: 2011
  end-page: 2655
  ident: CR45
  article-title: Recursive projection twin support vector machine via within-class variance minimization
  publication-title: Pattern Recogn
– volume: 42
  start-page: 527
  issue: 3
  year: 2015
  end-page: 536
  ident: CR29
  article-title: Structural least square twin support vector machine for classification
  publication-title: Appl Intell
– volume: 32
  start-page: 3578
  year: 2020
  end-page: 3587
  ident: CR2
  article-title: A parallel framework of adaptive dynamic programming algorithm with off-policy learning
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 69
  start-page: 2156
  year: 2021
  end-page: 2160
  ident: CR3
  article-title: Dynamic event-triggered practical fixed-time consensus for nonlinear multi-agent systems
  publication-title: IEEE Trans Circuits Syst II Express Briefs
– volume: 16
  start-page: 730
  issue: 2
  year: 2019
  end-page: 736
  ident: CR14
  article-title: A two-step feature selection method for quranic text classification
  publication-title: Indones J Electr Eng Comput Sci
– volume: 300
  start-page: 34
  year: 2018
  end-page: 43
  ident: CR22
  article-title: Twin support vector machines: a survey
  publication-title: Neurocomputing
– volume: 32
  start-page: 2584
  issue: 6
  year: 2020
  end-page: 2594
  ident: CR1
  article-title: Robust neurooptimal control for a robot via adaptive dynamic programming
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 10
  start-page: 1065
  issue: 3
  year: 2020
  ident: CR6
  article-title: A new method of fuzzy support vector machine algorithm for intrusion detection
  publication-title: Appl Sci
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR4
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 5
  start-page: 1391
  year: 2004
  end-page: 1415
  ident: CR10
  article-title: The entire regularization path for the support vector machine
  publication-title: J Mach Learn Res
– volume: 45
  start-page: 2299
  issue: 6
  year: 2012
  end-page: 2307
  ident: CR32
  article-title: Least squares recursive projection twin support vector machine for classification
  publication-title: Pattern Recogn
– volume: 8
  start-page: 2804
  issue: 5
  year: 2018
  ident: CR25
  article-title: Forensic and automatic speaker recognition system
  publication-title: Int J Electr Comput Eng
– volume: 33
  start-page: 92
  year: 2012
  end-page: 101
  ident: CR33
  article-title: A weighted twin support vector regression
  publication-title: Knowl Based Syst
– volume: 31
  start-page: 7153
  issue: 11
  year: 2019
  end-page: 7164
  ident: CR24
  article-title: A fuzzy twin support vector machine based on information entropy for class imbalance learning
  publication-title: Neural Comput Appl
– volume: 23
  start-page: 655
  issue: 2
  year: 2019
  end-page: 668
  ident: CR38
  article-title: A novel projection twin support vector machine for binary classification
  publication-title: Soft Comput
– volume: 197
  start-page: 53
  year: 2016
  end-page: 68
  ident: CR34
  article-title: Weighted lagrange -twin support vector regression
  publication-title: Neurocomputing
– volume: 49
  start-page: 3061
  issue: 8
  year: 2019
  end-page: 3081
  ident: CR35
  article-title: A projection wavelet weighted twin support vector regression and its primal solution
  publication-title: Appl Intell
– volume: 408
  start-page: 189
  year: 2020
  end-page: 215
  ident: CR40
  article-title: A comprehensive survey on support vector machine classification: applications, challenges and trends
  publication-title: Neurocomputing
– volume: 41
  start-page: 4436
  issue: 15
  year: 2019
  end-page: 4449
  ident: CR16
  article-title: A hybrid approach for measuring the vibrational trend of hydroelectric unit with enhanced multi-scale chaotic series analysis and optimized least squares support vector machine
  publication-title: Trans Inst Meas Control
– volume: 7
  start-page: 411
  issue: 3
  year: 2016
  end-page: 426
  ident: CR37
  article-title: Least squares recursive projection twin support vector machine for multi-class classification
  publication-title: Int J Mach Learn Cybern
– ident: 10870_CR9
  doi: 10.1007/978-3-642-99789-1_5
– volume: 23
  start-page: 800
  issue: 5
  year: 2012
  ident: 10870_CR48
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2183644
– volume: 42
  start-page: 527
  issue: 3
  year: 2015
  ident: 10870_CR29
  publication-title: Appl Intell
  doi: 10.1007/s10489-014-0611-4
– volume: 23
  start-page: 655
  issue: 2
  year: 2019
  ident: 10870_CR38
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2974-z
– volume: 36
  start-page: 7535
  issue: 4
  year: 2009
  ident: 10870_CR42
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.09.066
– volume: 31
  start-page: 7153
  issue: 11
  year: 2019
  ident: 10870_CR24
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3551-9
– volume: 22
  start-page: 1613
  issue: 10
  year: 2011
  ident: 10870_CR47
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2164265
– volume: 16
  start-page: 730
  issue: 2
  year: 2019
  ident: 10870_CR14
  publication-title: Indones J Electr Eng Comput Sci
– volume: 197
  start-page: 53
  year: 2016
  ident: 10870_CR34
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.038
– volume: 32
  start-page: 2584
  issue: 6
  year: 2020
  ident: 10870_CR1
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3006850
– volume: 58
  start-page: 519
  issue: 3
  year: 2020
  ident: 10870_CR7
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-019-02100-z
– volume: 29
  start-page: 4462
  issue: 9
  year: 2017
  ident: 10870_CR49
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2771456
– volume: 5
  start-page: 1391
  year: 2004
  ident: 10870_CR10
  publication-title: J Mach Learn Res
– volume: 33
  start-page: 92
  year: 2012
  ident: 10870_CR33
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2012.03.013
– volume: 41
  start-page: 4436
  issue: 15
  year: 2019
  ident: 10870_CR16
  publication-title: Trans Inst Meas Control
  doi: 10.1177/0142331219860279
– volume: 32
  start-page: 11173
  issue: 15
  year: 2020
  ident: 10870_CR41
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04627-6
– volume: 7
  start-page: 411
  issue: 3
  year: 2016
  ident: 10870_CR37
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-015-0394-x
– volume: 7
  start-page: 539
  issue: 4
  year: 2019
  ident: 10870_CR30
  publication-title: J Oper Res Soc China
  doi: 10.1007/s40305-018-00239-4
– volume: 5
  start-page: 335
  issue: 3
  year: 2018
  ident: 10870_CR19
  publication-title: Int J Res Eng
  doi: 10.21276/ijre.2018.5.3.3
– volume: 651
  start-page: 230
  year: 2019
  ident: 10870_CR18
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.09.111
– volume: 376
  start-page: 10
  year: 2020
  ident: 10870_CR39
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.069
– volume: 29
  start-page: 905
  issue: 5
  year: 2007
  ident: 10870_CR5
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.1068
– volume: 32
  start-page: 3578
  year: 2020
  ident: 10870_CR2
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3015767
– volume: 45
  start-page: 2299
  issue: 6
  year: 2012
  ident: 10870_CR32
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.11.028
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10870_CR4
  publication-title: Mach Learn
– volume: 6
  start-page: 169
  issue: 6
  year: 2016
  ident: 10870_CR27
  publication-title: Appl Sci
  doi: 10.3390/app6060169
– volume: 23
  start-page: 295
  issue: 1
  year: 2020
  ident: 10870_CR31
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-019-00779-2
– volume: 44
  start-page: 2643
  issue: 10–11
  year: 2011
  ident: 10870_CR45
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.03.001
– ident: 10870_CR43
– volume: 8
  start-page: 2804
  issue: 5
  year: 2018
  ident: 10870_CR25
  publication-title: Int J Electr Comput Eng
– volume: 7
  start-page: 6378
  issue: 4
  year: 2018
  ident: 10870_CR28
  publication-title: Int J Eng Technol
– ident: 10870_CR8
  doi: 10.1109/RAMECH.2008.4681433
– volume: 35
  start-page: 1012
  year: 2007
  ident: 10870_CR46
  publication-title: Ann Stat
  doi: 10.1214/009053606000001370
– volume: 10
  start-page: 1065
  issue: 3
  year: 2020
  ident: 10870_CR6
  publication-title: Appl Sci
  doi: 10.3390/app10031065
– volume: 408
  start-page: 189
  year: 2020
  ident: 10870_CR40
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.118
– volume: 160
  start-page: 311
  year: 2018
  ident: 10870_CR12
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.07.022
– volume: 35
  start-page: 31
  year: 2012
  ident: 10870_CR44
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2012.06.010
– volume: 10
  start-page: 1
  year: 2020
  ident: 10870_CR21
  publication-title: Int J Comput Digital Syst
– volume: 19
  start-page: 448
  issue: 4
  year: 2014
  ident: 10870_CR23
  publication-title: J Shanghai Jiaotong Univ (Sci)
  doi: 10.1007/s12204-014-1524-4
– volume: 69
  start-page: 2156
  year: 2021
  ident: 10870_CR3
  publication-title: IEEE Trans Circuits Syst II Express Briefs
  doi: 10.1109/TCSII.2021.3128624
– volume: 17
  start-page: 117
  issue: 1
  year: 2020
  ident: 10870_CR13
  publication-title: Signal Data Process
  doi: 10.29252/jsdp.17.1.117
– volume: 22
  start-page: 33
  issue: 1
  year: 2019
  ident: 10870_CR15
  publication-title: Clust Comput
  doi: 10.1007/s10586-017-1615-8
– volume: 29
  start-page: 1876
  issue: 5
  year: 2017
  ident: 10870_CR11
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2688182
– volume: 2
  start-page: 68
  issue: 2
  year: 2017
  ident: 10870_CR20
  publication-title: Int J Comput Appl Sci (IJOCAAS)
– volume: 300
  start-page: 34
  year: 2018
  ident: 10870_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.093
– volume: 73
  start-page: 276
  year: 2015
  ident: 10870_CR36
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.10.011
– volume: 1
  start-page: 33
  issue: 01
  year: 2019
  ident: 10870_CR17
  publication-title: J Soft Comput Paradig (JSCP)
  doi: 10.36548/jscp.2019.1.004
– ident: 10870_CR26
  doi: 10.1109/IWBIS.2018.8471698
– volume: 49
  start-page: 3061
  issue: 8
  year: 2019
  ident: 10870_CR35
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01422-7
SSID ssj0010020
Score 2.3352997
Snippet Twin support vector machine (TSVM) has attracted much attention in the field of machine learning with good generalization ability and computational...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5457
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Classification
Complex Systems
Computational Intelligence
Computer Science
Design
Efficiency
Lagrange multiplier
Machine learning
Optimization
Optimization models
Parameters
Quadratic programming
Regularization
Search methods
Support vector machines
Tuning
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UPXgRf0YUTQ_etHHrNrZ5McRIvECIIiFelq5rlQQB2dB_3_dKB9FEL563dcu-1_Z7fe33EXIeAuauloopJ5PMhwSDpVxqJoDcp26QBX6aGbOJsNOJBoO4axfccrutshwTzUCdTSSukV_xGIIP2LUX3EzfGbpGYXXVWmiskw1USUDrhm7wvKwiIBcyCVfoML_BXXtoZnF0DnIhrGByGIggZpn7fWJasc0fBVIz77Sq__3iHbJtGSdtLkJkl6yp8R6plm4O1HbufTLoPfbbXSCE17Ql8oI-GJf6mT2nSbsCt3HhE705rqXQ5ugF3la8vlHgvbT3ORxTtAgFOk_7phRA22ajpjogT6273u09s74LTEIyVjBU_dKBl_qxiHSkUW7HF5HX8IR2PICce2HkZChcryC_aoSKhwKVvLQjYplp4R2SyngyVkeEKumoUHs6kEBbIj9KtQwDY78oeMqFqhG3_OmJtKLk6I0xSlZyyghUAkAlBqjErZGL5TPThSTHn3fXS3QS2z3zZAVNjVyW-K4u_97a8d-tnZAtbkIKt7vUSaWYzdUp2ZQfxTCfnZng_ALZG-iD
  priority: 102
  providerName: ProQuest
Title TSVMPath: Fast Regularization Parameter Tuning Algorithm for Twin Support Vector Machine
URI https://link.springer.com/article/10.1007/s11063-022-10870-1
https://www.proquest.com/docview/2918348735
Volume 54
WOSCitedRecordID wos000807317100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oePAiPiOKZA_edJN229LWGxqIiYE0iIR4abbbXSVBMFD07zu7tBCNmuill32kmdnHNzuPD-DcR53bSkgqrVRQFw0MmjChKEdwn9he6rlJasgm_G43GA7DKE8KmxfR7oVL0pzU62Q3tF60z5Hh0YGrjKLNU8brLtCEDb37wcp3oBGQMbOwj9tgdp4q8_0cn6-jNcb84hY1t0278r__3IWdHF2S5nI57MGGnOxDpWBuIPlGPoBh_37QiRD8XZE2n2ekZxjpZ3lOJom4DtnSI_oL_W5CmuOn6WyUPb8QxLik_z6aEE0HitCdDMyzP-mYoEx5CA_tVv_mluYcC1Sg4ZVRXeFLeU7ihjxQgdKldVweOA2HK8tB9TLHD6xUF6mXaEs1fMl8rqt2KYuHIlXcOYLSZDqRx0CksKSvHOUJhCiBGyRK-J6hWuQsYVxWwS5EHYu8ALnmwRjH69LJWnQxii42oovtKlysxrwuy2_82rtWaDDOt-I8ZiGeWmiWOV4VLguNrZt_nu3kb91PYZsZpetQlxqUstlCnsGWeMtG81kdytetbtSrw-adT_EbeY91s2w_APr84Zg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB4BRaKXQnmooTz20J7KCnttZ51KCKG2ESgkisCg3Mx6vQtIECBxivhT_EZmNjYRleDGoWd7R1rvN7MznscH8E3imftWG268XPMQAwyeCW25Quc-86M8CrPckU3ITifu9RrdKXisemGorLKyic5Q5zea_pFviwaCD73rINq9vePEGkXZ1YpCYwyLlnm4x5BtuHPwG8_3uxDNP8mvfV6yCnCNoUbBaaaVjYIsbKjYxpaGyYQqDuqBsl6AGxKBjL2cxrIbjB7q0gipaE6V9VRD51YFKHcaPqAYSXrVkvw5a0G-lwvwpMfDuvDLJp1xqx7GXpQxFWj4UEe4__IinHi3_yRk3T3XnP_fvtACfCo9arY3VoHPMGX6izBfsVWw0ngtQS85Pm130eH9yZpqWLAjc04luGUfKusqKlOjFcmI_hWxvatz3F1xcc3Qr2fJ_WWfEQUqhivs1KU6WNsVopplOHmX_a3ATP-mb74AM9oz0gY20uiWxWGcWS0jRy-pRCaUqYFfHXKqy6HrxP1xlU7GRRMwUgRG6oCR-jX48bzmdjxy5M231yo0pKX5GaYTKNRgq8LT5PHr0lbflrYJc_tJ-zA9POi0vsJH4eBMpT1rMFMMRmYdZvXf4nI42HCKweDsvXH2BELjQ3A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4NAEN2YaowX62esVt2DNyWFBQp4a1Si0TbEYtMbWZZdbVJpQ6n-fWe3IGrUxHhm2ZCZ_XiPmXmD0IkDPjcE4xrXE6ZZQDC0mDChUQD3sWEnthUnqtmE0-u5w6EXfKjiV9nuZUhyUdMgVZrSvDVNRKsqfAMmI-OPBI4RWHEa8J9lSybSS77eH7zHESQaUpQLxlhtYhRlM9_P8flqqvDmlxCpunn8-v-_eQOtF6gTdxbLZBMt8XQL1cuODrjY4NtoGPYH3QBA4Tn26SzH96pTfVbUauKAylQu-UY4l_9TcGf8OMlG-dMzBuyLw9dRimWbUID0eKDCAbirkjX5Dnrwr8KLa63ovaAxIGS5JpW_hG3Glkdd4QopuWNR12ybVOgmuJ2YjqsnUryeA8dqO5w4VKp5CZ16LBHU3EW1dJLyPYQ507kjTGEzgC6u5caCObZqwUhJTChvIKM0e8QKYXLZH2McVZLK0nQRmC5SpouMBjp9f2e6kOX4dXSz9GZUbNFZRDw4zYCumXYDnZXeqx7_PNv-34Yfo9Xg0o_ubnq3B2iNKP_LbJgmquXZnB-iFfaSj2bZkVq5b6p46fY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TSVMPath%3A+Fast+Regularization+Parameter+Tuning+Algorithm+for+Twin+Support+Vector+Machine&rft.jtitle=Neural+processing+letters&rft.au=Zhou%2C+Kanglei&rft.au=Zhang%2C+Qiyang&rft.au=Li%2C+Juntao&rft.date=2022-12-01&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=54&rft.issue=6&rft.spage=5457&rft.epage=5482&rft_id=info:doi/10.1007%2Fs11063-022-10870-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11063_022_10870_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon