A bidiagonalization-based numerical algorithm for computing the inverses of (p,q)-tridiagonal matrices

As a generalization of k -tridiagonal matrices, many variations of ( p , q )-tridiagonal matrices have attracted much attention over the years. In this paper, we present an efficient algorithm for numerically computing the inverses of n -square ( p , q )-tridiagonal matrices under a certain conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms Jg. 93; H. 2; S. 899 - 917
Hauptverfasser: Jia, Ji-Teng, Xie, Rong, Xu, Xiao-Yan, Ni, Shuo, Wang, Jie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2023
Springer Nature B.V
Schlagworte:
ISSN:1017-1398, 1572-9265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As a generalization of k -tridiagonal matrices, many variations of ( p , q )-tridiagonal matrices have attracted much attention over the years. In this paper, we present an efficient algorithm for numerically computing the inverses of n -square ( p , q )-tridiagonal matrices under a certain condition. The algorithm is based on the combination of a bidiagonalization approach which preserves the banded structure and sparsity of the original matrix, and a recursive algorithm for inverting general lower bidiagonal matrices. Some numerical results with simulations in MATLAB implementation are provided in order to illustrate the accuracy and efficiency of the proposed algorithms, and its competitiveness with MATLAB built-in function.
AbstractList As a generalization of k-tridiagonal matrices, many variations of (p,q)-tridiagonal matrices have attracted much attention over the years. In this paper, we present an efficient algorithm for numerically computing the inverses of n-square (p,q)-tridiagonal matrices under a certain condition. The algorithm is based on the combination of a bidiagonalization approach which preserves the banded structure and sparsity of the original matrix, and a recursive algorithm for inverting general lower bidiagonal matrices. Some numerical results with simulations in MATLAB implementation are provided in order to illustrate the accuracy and efficiency of the proposed algorithms, and its competitiveness with MATLAB built-in function.
As a generalization of k -tridiagonal matrices, many variations of ( p , q )-tridiagonal matrices have attracted much attention over the years. In this paper, we present an efficient algorithm for numerically computing the inverses of n -square ( p , q )-tridiagonal matrices under a certain condition. The algorithm is based on the combination of a bidiagonalization approach which preserves the banded structure and sparsity of the original matrix, and a recursive algorithm for inverting general lower bidiagonal matrices. Some numerical results with simulations in MATLAB implementation are provided in order to illustrate the accuracy and efficiency of the proposed algorithms, and its competitiveness with MATLAB built-in function.
Author Xie, Rong
Xu, Xiao-Yan
Jia, Ji-Teng
Ni, Shuo
Wang, Jie
Author_xml – sequence: 1
  givenname: Ji-Teng
  surname: Jia
  fullname: Jia, Ji-Teng
  email: lavenderjjt@163.com
  organization: School of Mathematics and Statistics, Xidian University
– sequence: 2
  givenname: Rong
  surname: Xie
  fullname: Xie, Rong
  organization: School of Mathematics and Statistics, Xidian University
– sequence: 3
  givenname: Xiao-Yan
  surname: Xu
  fullname: Xu, Xiao-Yan
  organization: School of Economics & Management, Xidian University
– sequence: 4
  givenname: Shuo
  surname: Ni
  fullname: Ni, Shuo
  organization: School of Physics, Xidian University
– sequence: 5
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  organization: School of Mathematics and Statistics, Xidian University
BookMark eNp9kEtLAzEUhYMo2Fb_gKuAGwWjSSaZZJal-IKCG12HTCbTpsxM2iQV9NcbW1Fw0c19wPku554xOB78YAG4IPiWYCzuIiFYcIQpRZgwViJ8BEaEC4oqWvLjPGMiECkqeQrGMa4wzhgVI9BOYe0apxd-0J371Mn5AdU62gYO294GZ3QHdbfwwaVlD1sfoPH9epvcsIBpaaEb3m2INkLfwqv1zeYapfB7EPY6b8bGM3DS6i7a858-AW8P96-zJzR_eXyeTefIUFYlVBhTcM5YLbTFvOIt05LWJZWsbYg2gnBZF6JgppWGNrwUjZG8zMqGUi6xLibgcn93Hfxma2NSK78N2UlUtCKy5LmyrJJ7lQk-xmBbZVzavZ6Cdp0iWH2nqvapqpyq2qWqcEbpP3QdXK_Dx2Go2EMxi4eFDX-uDlBfdt-MSA
CitedBy_id crossref_primary_10_1007_s11227_024_06173_y
crossref_primary_10_1016_j_apnum_2025_02_017
crossref_primary_10_1515_spma_2025_0041
crossref_primary_10_1007_s11075_025_02189_4
crossref_primary_10_1007_s11075_024_01777_0
Cites_doi 10.1016/j.camwa.2012.11.001
10.1016/S0021-8928(98)00074-4
10.1016/j.camwa.2015.11.022
10.1007/s10910-021-01216-8
10.1016/j.aml.2014.12.018
10.1016/S0024-3795(00)00289-5
10.1090/S0025-5718-1974-0371049-5
10.1016/j.aml.2014.02.015
10.12732/ijpam.v106i2.14
10.3788/CJL201845.0307018
10.1515/spma-2019-0002
10.1016/j.camwa.2015.10.018
10.1088/0266-5611/25/1/015007
10.1016/j.laa.2017.06.010
10.1007/s00211-005-0596-3
10.3390/math9243213
10.1137/0706014
10.1081/NFA-100105108
10.1016/j.jocs.2018.12.009
10.1137/0914062
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s11075-022-01446-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 917
ExternalDocumentID 10_1007_s11075_022_01446_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c249t-3cc35544b7ae0595f4a82b6284fd1ac7158b3734cf8c2d567dc856059d22580a3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000882695000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Thu Nov 06 12:20:40 EST 2025
Sat Nov 29 01:34:59 EST 2025
Tue Nov 18 22:24:17 EST 2025
Fri Feb 21 02:45:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Tridiagonal matrices
Inverses
15A20
65F50
Bidiagonal matrices
Bidiagonalization
(
15B05
,
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-3cc35544b7ae0595f4a82b6284fd1ac7158b3734cf8c2d567dc856059d22580a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918652914
PQPubID 2043837
PageCount 19
ParticipantIDs proquest_journals_2918652914
crossref_citationtrail_10_1007_s11075_022_01446_0
crossref_primary_10_1007_s11075_022_01446_0
springer_journals_10_1007_s11075_022_01446_0
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Jia, Sogabe, El-Mikkawy (CR16) 2013; 65
El-Mikkawy, Sogabe (CR11) 2010; 215
Yamamoto (CR9) 2001; 22
El-Mikkawy, Atlan (CR17) 2014; 32
Nagata, Hada, Iwasaki, Nakamura (CR22) 2016; 71
Tănăsescu, Popescu (CR23) 2019; 31
Ohashi, Sogabe, Usuda (CR5) 2016; 106
Fischer, Usmani (CR7) 1969; 6
Wittenburg (CR8) 1998; 62
Fonseca, Petronilho (CR20) 2005; 100
Fukuda, Ishiwata, Iwasaki, Nakamura (CR12) 2008; 25
Jia, Li (CR19) 2015; 70
CR6
Jia, Yan, He (CR26) 2021; 59
Fonseca, Petronilho (CR15) 2001; 325
Fonseca, Sogabe, Yilmaz (CR4) 2015; 31
Gutknecht (CR13) 1993; 14
El-Mikkawy, Atlan (CR18) 2015; 44
Encinas, Jiménez (CR21) 2018; 542
Fonseca, Kowalenko, Losonczi (CR2) 2020; 57
Takahira, Sogabe, Usuda (CR3) 2019; 7
Chatterjee (CR27) 1974; 28
Borevich, Shafarevich (CR10) 1986
El-Mikkawy (CR14) 2004; 150
Zhang, Feng, Li, Jia (CR24) 2018; 45
Sogabe, El-Mikkawy (CR1) 2011; 218
Shinjo, Wang, Iwasaki, Nakamura (CR25) 2021; 9
MEA El-Mikkawy (1446_CR14) 2004; 150
J Jia (1446_CR26) 2021; 59
J Jia (1446_CR19) 2015; 70
J Wittenburg (1446_CR8) 1998; 62
M Shinjo (1446_CR25) 2021; 9
A Encinas (1446_CR21) 2018; 542
MH Gutknecht (1446_CR13) 1993; 14
CF Fischer (1446_CR7) 1969; 6
N Zhang (1446_CR24) 2018; 45
MEA El-Mikkawy (1446_CR18) 2015; 44
A Fukuda (1446_CR12) 2008; 25
G Chatterjee (1446_CR27) 1974; 28
CMD Fonseca (1446_CR20) 2005; 100
T Yamamoto (1446_CR9) 2001; 22
CMD Fonseca (1446_CR15) 2001; 325
T Sogabe (1446_CR1) 2011; 218
M Nagata (1446_CR22) 2016; 71
CMD Fonseca (1446_CR4) 2015; 31
S Takahira (1446_CR3) 2019; 7
1446_CR6
MEA El-Mikkawy (1446_CR11) 2010; 215
MEA El-Mikkawy (1446_CR17) 2014; 32
J Jia (1446_CR16) 2013; 65
A Tănăsescu (1446_CR23) 2019; 31
ZI Borevich (1446_CR10) 1986
CM Fonseca (1446_CR2) 2020; 57
A Ohashi (1446_CR5) 2016; 106
References_xml – volume: 65
  start-page: 116
  issue: 1
  year: 2013
  end-page: 125
  ident: CR16
  article-title: Inversion of k-tridiagonal matrices with Toeplitz structure
  publication-title: Comput. Math. Applic.
  doi: 10.1016/j.camwa.2012.11.001
– volume: 62
  start-page: 575
  issue: 4
  year: 1998
  end-page: 587
  ident: CR8
  article-title: Inverses of tridiagonal Toeplitz and periodic matrices with applications to mechanics
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/S0021-8928(98)00074-4
– volume: 71
  start-page: 349
  issue: 1
  year: 2016
  end-page: 355
  ident: CR22
  article-title: Eigenvalue clustering of coefficient matrices in the iterative stride reductions for linear systems
  publication-title: Comput. Math. Applic.
  doi: 10.1016/j.camwa.2015.11.022
– volume: 150
  start-page: 669
  issue: 3
  year: 2004
  end-page: 679
  ident: CR14
  article-title: On the inverse of a general tridiagonal matrix
  publication-title: Appl. Math. Comput.
– volume: 215
  start-page: 4456
  issue: 12
  year: 2010
  end-page: 4461
  ident: CR11
  article-title: A new family of k-Fibonacci numbers
  publication-title: Appl. Math. Comput.
– volume: 59
  start-page: 745
  issue: 3
  year: 2021
  end-page: 756
  ident: CR26
  article-title: A block diagonalization based algorithm for the determinants of block k-tridiagonal matrices
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-021-01216-8
– volume: 44
  start-page: 34
  year: 2015
  end-page: 39
  ident: CR18
  article-title: A new recursive algorithm for inverting general k-tridiagonal matrices
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2014.12.018
– volume: 325
  start-page: 7
  issue: 1
  year: 2001
  end-page: 21
  ident: CR15
  article-title: Explicit inverses of some tridiagonal matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(00)00289-5
– volume: 28
  start-page: 713
  issue: 127
  year: 1974
  end-page: 714
  ident: CR27
  article-title: Negative integral powers of a bidiagonal matrix
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1974-0371049-5
– ident: CR6
– volume: 31
  start-page: 10
  issue: 1
  year: 2015
  end-page: 17
  ident: CR4
  article-title: Lower k-Hessenberg matrices and k-Fibonacci, Fibonacci-p and Pell (p,i) numbers
  publication-title: General Mathematical Notes
– volume: 57
  start-page: 298
  issue: 3
  year: 2020
  end-page: 311
  ident: CR2
  article-title: Ninety years of k-tridiagonal matrices
  publication-title: Stud. Sci. Math. Hung.
– volume: 32
  start-page: 41
  year: 2014
  end-page: 47
  ident: CR17
  article-title: A novel algorithm for inverting a general k-tridiagonal matrix
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2014.02.015
– volume: 106
  start-page: 513
  issue: 2
  year: 2016
  end-page: 523
  ident: CR5
  article-title: Fast block diagonalization of $(k, k^{\prime }) $(k,k′)-pentadiagonal matrices
  publication-title: Int. J. Pure Appl. Math.
  doi: 10.12732/ijpam.v106i2.14
– volume: 45
  start-page: 0307018
  issue: 3
  year: 2018
  ident: CR24
  article-title: Fast photoacoustic imaging reconstruction method based on lanczos double diagonalization
  publication-title: Chinese J. Lasers
  doi: 10.3788/CJL201845.0307018
– volume: 218
  start-page: 2740
  issue: 6
  year: 2011
  end-page: 2743
  ident: CR1
  article-title: Fast block diagonalization of k-tridiagonal matrices
  publication-title: Appl. Math. Comput.
– volume: 7
  start-page: 20
  issue: 1
  year: 2019
  end-page: 26
  ident: CR3
  article-title: Bidiagonalization of (k,k + 1)-tridiagonal matrices
  publication-title: Special Matrices
  doi: 10.1515/spma-2019-0002
– volume: 70
  start-page: 3032
  issue: 12
  year: 2015
  end-page: 3042
  ident: CR19
  article-title: Symbolic algorithms for the inverses of general k-tridiagonal matrices
  publication-title: Comput. Math. Applic.
  doi: 10.1016/j.camwa.2015.10.018
– year: 1986
  ident: CR10
  publication-title: Number Theory
– volume: 25
  start-page: 015007
  issue: 1
  year: 2008
  ident: CR12
  article-title: The discrete hungry Lotka–Volterra system and a new algorithm for computing matrix eigenvalues
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/25/1/015007
– volume: 542
  start-page: 402
  year: 2018
  end-page: 421
  ident: CR21
  article-title: Explicit inverse of a tridiagonal (p,r)-Toeplitz matrix
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2017.06.010
– volume: 100
  start-page: 457
  issue: 3
  year: 2005
  end-page: 482
  ident: CR20
  article-title: Explicit inverse of a tridiagonal k- Toeplitz matrix
  publication-title: Numer. Math.
  doi: 10.1007/s00211-005-0596-3
– volume: 9
  start-page: 3213
  issue: 24
  year: 2021
  ident: CR25
  article-title: Roots of characteristic polynomial sequences in iterative block cyclic reductions
  publication-title: Mathematics
  doi: 10.3390/math9243213
– volume: 6
  start-page: 127
  issue: 1
  year: 1969
  end-page: 142
  ident: CR7
  article-title: Properties of some tridiagonal matrices and their application to boundary value problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0706014
– volume: 22
  start-page: 357
  issue: 3-4
  year: 2001
  end-page: 385
  ident: CR9
  article-title: Inversion formulas for tridiagonal matrices with applications to boundary value problems
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1081/NFA-100105108
– volume: 31
  start-page: 1
  year: 2019
  end-page: 5
  ident: CR23
  article-title: A fast singular value decomposition algorithm of general k-tridiagonal matrices
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.12.009
– volume: 14
  start-page: 1020
  issue: 5
  year: 1993
  end-page: 1033
  ident: CR13
  article-title: Variants of BiCGSTAB for matrices with complex spectrum
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0914062
– volume: 100
  start-page: 457
  issue: 3
  year: 2005
  ident: 1446_CR20
  publication-title: Numer. Math.
  doi: 10.1007/s00211-005-0596-3
– ident: 1446_CR6
– volume: 22
  start-page: 357
  issue: 3-4
  year: 2001
  ident: 1446_CR9
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1081/NFA-100105108
– volume: 218
  start-page: 2740
  issue: 6
  year: 2011
  ident: 1446_CR1
  publication-title: Appl. Math. Comput.
– volume: 25
  start-page: 015007
  issue: 1
  year: 2008
  ident: 1446_CR12
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/25/1/015007
– volume: 62
  start-page: 575
  issue: 4
  year: 1998
  ident: 1446_CR8
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/S0021-8928(98)00074-4
– volume: 70
  start-page: 3032
  issue: 12
  year: 2015
  ident: 1446_CR19
  publication-title: Comput. Math. Applic.
  doi: 10.1016/j.camwa.2015.10.018
– volume: 59
  start-page: 745
  issue: 3
  year: 2021
  ident: 1446_CR26
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-021-01216-8
– volume: 106
  start-page: 513
  issue: 2
  year: 2016
  ident: 1446_CR5
  publication-title: Int. J. Pure Appl. Math.
  doi: 10.12732/ijpam.v106i2.14
– volume: 44
  start-page: 34
  year: 2015
  ident: 1446_CR18
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2014.12.018
– volume: 6
  start-page: 127
  issue: 1
  year: 1969
  ident: 1446_CR7
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0706014
– volume: 31
  start-page: 1
  year: 2019
  ident: 1446_CR23
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.12.009
– volume: 31
  start-page: 10
  issue: 1
  year: 2015
  ident: 1446_CR4
  publication-title: General Mathematical Notes
– volume: 45
  start-page: 0307018
  issue: 3
  year: 2018
  ident: 1446_CR24
  publication-title: Chinese J. Lasers
  doi: 10.3788/CJL201845.0307018
– volume-title: Number Theory
  year: 1986
  ident: 1446_CR10
– volume: 9
  start-page: 3213
  issue: 24
  year: 2021
  ident: 1446_CR25
  publication-title: Mathematics
  doi: 10.3390/math9243213
– volume: 32
  start-page: 41
  year: 2014
  ident: 1446_CR17
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2014.02.015
– volume: 65
  start-page: 116
  issue: 1
  year: 2013
  ident: 1446_CR16
  publication-title: Comput. Math. Applic.
  doi: 10.1016/j.camwa.2012.11.001
– volume: 325
  start-page: 7
  issue: 1
  year: 2001
  ident: 1446_CR15
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(00)00289-5
– volume: 150
  start-page: 669
  issue: 3
  year: 2004
  ident: 1446_CR14
  publication-title: Appl. Math. Comput.
– volume: 215
  start-page: 4456
  issue: 12
  year: 2010
  ident: 1446_CR11
  publication-title: Appl. Math. Comput.
– volume: 14
  start-page: 1020
  issue: 5
  year: 1993
  ident: 1446_CR13
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0914062
– volume: 57
  start-page: 298
  issue: 3
  year: 2020
  ident: 1446_CR2
  publication-title: Stud. Sci. Math. Hung.
– volume: 542
  start-page: 402
  year: 2018
  ident: 1446_CR21
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2017.06.010
– volume: 7
  start-page: 20
  issue: 1
  year: 2019
  ident: 1446_CR3
  publication-title: Special Matrices
  doi: 10.1515/spma-2019-0002
– volume: 71
  start-page: 349
  issue: 1
  year: 2016
  ident: 1446_CR22
  publication-title: Comput. Math. Applic.
  doi: 10.1016/j.camwa.2015.11.022
– volume: 28
  start-page: 713
  issue: 127
  year: 1974
  ident: 1446_CR27
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1974-0371049-5
SSID ssj0010027
Score 2.351113
Snippet As a generalization of k -tridiagonal matrices, many variations of ( p , q )-tridiagonal matrices have attracted much attention over the years. In this paper,...
As a generalization of k-tridiagonal matrices, many variations of (p,q)-tridiagonal matrices have attracted much attention over the years. In this paper, we...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 899
SubjectTerms Algebra
Algorithms
Banded structure
Boundary value problems
Computation
Computer Science
Matlab
Numeric Computing
Numerical Analysis
Original Paper
Partial differential equations
Theory of Computation
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCB8hSFgjwwgKhF09iNM6EKUbFQIQESW-TYMVQqaWlSfj9nx20FEiwsWZJcEt3l_J3v8QGcccbSMNCSmhRjVcZVTAVTksqQB1oxY1NjjmwiGgzEy0v84DfcCl9WOfeJzlHrsbJ75FedOBBdjkd2PfmgljXKZlc9hcYqrNkpCYEr3XtcZBFszOWyneiJEekI3zRTtc5h3GN7k21hAoZEtP19YVqizR8JUrfu9Ov_feNt2PKIk_QqE9mBlSzfhbpHn8T_28UubN4vJrgWe2B6JB2i7bw6pF71alK75GmSz6osz4jI0Ss-sHx7Jwh9iXIEEfgRBOWQYW4LPrKCjA05n7Q-Lmg5XQgk744ZICv24bl_-3RzRz0nA1UYqJU0VMoiFJZGMkNkxg2TopN2cZEzOpAqCrhIwyhkygjV0bwbaSUQVPFYo-MQbRkeQC0f59khEC4R3qFNGIWwKE55LJVhXdnRGUNHIuIGBHOFJMoPLLe8GaNkOWrZKjFBJSZOiUm7AZeLeybVuI4_r27ONZf4X7dIlmprQGuu--Xp36Ud_S3tGDYsVX1VZtaEWjmdZSewrj7LYTE9dYb7Bazl8fw
  priority: 102
  providerName: ProQuest
Title A bidiagonalization-based numerical algorithm for computing the inverses of (p,q)-tridiagonal matrices
URI https://link.springer.com/article/10.1007/s11075-022-01446-0
https://www.proquest.com/docview/2918652914
Volume 93
WOSCitedRecordID wos000882695000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHP6bidI4cPCgasG2ypscpiiAOcSq7lTRt5mDrdK3-_b6k7Yaigl56SJNHSF7e-z3eF8AhZyzynFhSHaGtyrgKqGBKUulxJ1ZMG9eYbTbhd7ui3w_uyqSwrIp2r1ySVlLPk93QUjHZxCaUAI0Yiob6EjfVZoyN3nua-Q6MpWV9nCh_Ed-IMlXmexqf1dEcY35xi1ptc7X-v31uwFqJLkmnYIdNWEjSOqyXSJOU7zjDoaqZQzVWh9XbWQHXbAt0h0RDZJ2BBepFqiY1Gi8m6Vvh5BkRORpMpsP8eUwQ-RJlSeJOCdIhw9TEeyQZmWhy9HL6ekzz6YwgGdvGAEm2DY9Xlw8X17RsyUAV2mk59ZQyAIVFvkwQmHHNpHCjNuo4HTtS-Q4Xked7TGmh3Ji3_VgJxFQ8iFFuiDPp7UAtnaTJLhAuEd0hS2iFqCiIeCCVZm3pxglDOSKCBjjVzYSqrFdu2maMwnmlZXPSIZ50aE86PGvAyWzNS1Gt49fZzerCw_LlZqEbOKLN8csacFpd8Pz3z9T2_jZ9H1ZM5_oi6qwJtXz6lhzAsnrPh9m0BUvnl927-xYs3vi0ZQJSey3L5R_T4PFy
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4tSyXgAC0PsRRaH1qpCCw2iZ04B4RoCwIBK4RA4hYcO4aVluyyyYL6p_iNjPPYVSvBjUMvuSQZyc7nmW8yL4BvnLHYc7SkJkZflXEVUsGUpNLjjlbM2NBYMWwi6HTE9XV43oDnuhbGplXWOrFQ1Lqv7D_yHTd0hM_xyvYGD9ROjbLR1XqERgmLk-TPE7ps2e7xb_y-31338ODy1xGtpgpQha5GTj2lrI1lcSAT5BbcMCnc2Ec1bbQjVeBwEXuBx5QRytXcD7QSSAt4qBH6oi09lDsF08xjPm_C9M-DzvnFOG5hvbwivoq6H7mVqMp0ymI99LRsNbRNhUAnjLb_NoUTfvtPSLawdIcL_9sefYT5ilOT_fIQfIJGki7CQsWvSaW9skWYOxv3qM2WwOyTuIun47bwRcpqVGqNuibpqIxj9Yjs3eIC87t7guSeqGIEBm4aQTmkm9qUliQjfUN-DLYfNmk-HAsk98XsgyRbhqt3WfsKNNN-mqwC4RIJLKLeKCR-YcxDqQzzpasThqpShC1wagBEqmrJbieD9KJJM2kLmghBExWgidot2Bq_Mygbkrz59HqNlKhSTlk0gUkLtmusTW6_Lm3tbWlfYebo8uw0Oj3unHyGWRfpYJlUtw7NfDhKNuCDesy72fBLdWwI3Lw3Cl8AzQVOYg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5ERfTgW1yfOXhQNGi3yTY9iroo6iK-8FbSpNGFtbtuq7_fSdruqqggXnpIkyFMJplvmBfAFmcs9j0tqYnRVmVchVQwJan0uacVM9Y15ppNBK2WeHgIrz5k8bto98olWeQ02CpNab7f02Z_mPiGVovNLLZhBWjQUDTaxxiO2aCu65v7gR_BWl3O34lvMWIdUabNfE_js2oa4s0vLlKneZoz_9_zLEyXqJMcFmIyByNJOg8zJQIl5f3OcKhq8lCNzcPU5aCwa7YA5pDEbRSpRwfgixROajWhJulr4fzpENl57Pbb-dMzQURMlCOJuyZIh7RTGweSZKRryHZv72WH5v0BQfLsGgYk2SLcNU9uj05p2aqBKrTfcuorZYELiwOZIGDjhklRjxuo-4z2pAo8LmI_8JkyQtU1bwRaCcRaPNT4nogD6S_BaNpNk2UgXCLqQ1ExCtFSGPNQKsMasq4Thu-LCGvgVacUqbKOuW2n0YmGFZgtpyPkdOQ4HR3UYHewpldU8fh19lp1-FF5o7OoHnqiwfHLarBXHfbw98_UVv42fRMmro6b0cVZ63wVJm1z-yIwbQ1G8_5rsg7j6i1vZ_0NJ-jvnVP52A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bidiagonalization-based+numerical+algorithm+for+computing+the+inverses+of+%28p%2Cq%29-tridiagonal+matrices&rft.jtitle=Numerical+algorithms&rft.au=Jia%2C+Ji-Teng&rft.au=Xie%2C+Rong&rft.au=Xu%2C+Xiao-Yan&rft.au=Ni%2C+Shuo&rft.date=2023-06-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=93&rft.issue=2&rft.spage=899&rft.epage=917&rft_id=info:doi/10.1007%2Fs11075-022-01446-0&rft.externalDocID=10_1007_s11075_022_01446_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon