On the complexity of the Cable-Trench Problem

The Cable-Trench Problem (CTP) is a common generalization of the Single-Source Shortest Paths Problem (SSSP) and the Minimum Spanning Tree Problem (MST): given an edge-weighted graph with a special root vertex and parameters τ,γ≥0, the goal is to find a spanning tree that minimizes the total edge co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics Jg. 340; S. 272 - 285
Hauptverfasser: Benedito, Marcelo P.L., Pedrosa, Lehilton L.C., Rosado, Hugo K.K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.12.2023
Schlagworte:
ISSN:0166-218X, 1872-6771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Cable-Trench Problem (CTP) is a common generalization of the Single-Source Shortest Paths Problem (SSSP) and the Minimum Spanning Tree Problem (MST): given an edge-weighted graph with a special root vertex and parameters τ,γ≥0, the goal is to find a spanning tree that minimizes the total edge costs plus the total cost of the paths from each vertex to the root, scaled by τ and γ, respectively. While it is well known that both SSSP and MST can be solved in polynomial time, CTP is NP-hard. We show that computing an approximate solution with factor less than 1.000475 is NP-hard, thus ruling out a polynomial-time approximation scheme, unless P=NP. We also consider the more general Steiner Cable-Trench Problem (SCTP), for which only a given subset of terminal vertices must be spanned by a solution. The tree might include non-terminal vertices, known as Steiner vertices, although only paths from terminals to the root are considered in the total cost. For this problem, we present a (2.88+ϵ)-approximation based on a counting argument, for any ϵ>0; also, we give a simple parameterized algorithm with the number of terminals as parameter.
AbstractList The Cable-Trench Problem (CTP) is a common generalization of the Single-Source Shortest Paths Problem (SSSP) and the Minimum Spanning Tree Problem (MST): given an edge-weighted graph with a special root vertex and parameters τ,γ≥0, the goal is to find a spanning tree that minimizes the total edge costs plus the total cost of the paths from each vertex to the root, scaled by τ and γ, respectively. While it is well known that both SSSP and MST can be solved in polynomial time, CTP is NP-hard. We show that computing an approximate solution with factor less than 1.000475 is NP-hard, thus ruling out a polynomial-time approximation scheme, unless P=NP. We also consider the more general Steiner Cable-Trench Problem (SCTP), for which only a given subset of terminal vertices must be spanned by a solution. The tree might include non-terminal vertices, known as Steiner vertices, although only paths from terminals to the root are considered in the total cost. For this problem, we present a (2.88+ϵ)-approximation based on a counting argument, for any ϵ>0; also, we give a simple parameterized algorithm with the number of terminals as parameter.
Author Rosado, Hugo K.K.
Pedrosa, Lehilton L.C.
Benedito, Marcelo P.L.
Author_xml – sequence: 1
  givenname: Marcelo P.L.
  surname: Benedito
  fullname: Benedito, Marcelo P.L.
  email: mplb@ic.unicamp.br
– sequence: 2
  givenname: Lehilton L.C.
  surname: Pedrosa
  fullname: Pedrosa, Lehilton L.C.
  email: lehilton@ic.unicamp.br
– sequence: 3
  givenname: Hugo K.K.
  orcidid: 0000-0002-8881-9699
  surname: Rosado
  fullname: Rosado, Hugo K.K.
  email: hugo.rosado@ic.unicamp.br
BookMark eNp9j09Lw0AQxRepYFr9AN7yBTbObJLdBE9S1AqFeqjgbdnsTmhC_pRNEPvt3VrPnoY3vDfzfku2GMaBGLtHSBBQPrSJM30iQKQJqAQQrliEhRJcKoULFgWP5AKLzxu2nKYWADCoiPHdEM8Hiu3YHzv6buZTPNa_m7WpOuJ7T4M9xO9-DKq_Zde16Sa6-5sr9vHyvF9v-Hb3-rZ-2nIrsnLmaZaZCiuHOdXhU1qRlVkO0hXkrCqdS8HmdV2J0qC1pciski4nJTOQ4NI8XTG83LV-nCZPtT76pjf-pBH0mVe3OvDqM68GpQNvyDxeMhSKfTXk9WSbUJ5c48nO2o3NP-kfaTZeYw
Cites_doi 10.1145/2432622.2432628
10.1111/itor.12312
10.1145/509907.510017
10.1007/BF01294129
10.1002/net.3230010302
10.1137/18M1209489
10.1090/S0002-9939-1956-0078686-7
10.1016/j.procs.2021.11.009
10.1007/BF01386390
10.1002/net.21614
10.1137/S0895480101393155
10.1016/j.tcs.2008.06.046
10.1016/S0305-0548(00)00083-6
10.1016/j.cor.2016.12.015
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.dam.2023.07.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 285
ExternalDocumentID 10_1016_j_dam_2023_07_010
S0166218X23002743
GrantInformation_xml – fundername: National Council for Scientific and Technological Development (CNPq), Brazil
  grantid: #425340/2016-3; #422829/2018-8; #140552/2019-7; #312186/2020-7
  funderid: http://dx.doi.org/10.13039/501100003593
– fundername: São Paulo Research Foundation (FAPESP), Brazil
  grantid: #2015/11937-9; #2019/10400-2
  funderid: http://dx.doi.org/10.13039/501100001807
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
ID FETCH-LOGICAL-c249t-344ab1bd15ef0003bec64506d8edc79dd30c5ffb29a1cc924c76d5e764060d353
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001053668200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Sat Nov 29 07:24:11 EST 2025
Sat Sep 30 17:10:38 EDT 2023
IsPeerReviewed true
IsScholarly true
Keywords Approximation
Parameterized algorithm
Hardness
Steiner tree
Cable-trench
Inapproximability
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-344ab1bd15ef0003bec64506d8edc79dd30c5ffb29a1cc924c76d5e764060d353
ORCID 0000-0002-8881-9699
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_dam_2023_07_010
elsevier_sciencedirect_doi_10_1016_j_dam_2023_07_010
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Discrete Applied Mathematics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fomin, Kaski, Lokshtanov, Panolan, Saurabh (b15) 2015
Khazraei, Held (b17) 2021
Subhash Khot, On the power of unique 2-prover 1-round games, in: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, 2002, pp. 767–775.
Chlebík, Chlebíková (b8) 2003
Nielsen, Riaz, Pedersen, Madsen (b22) 2008
Dijkstra (b11) 1959; 1
Williamson, Shmoys (b29) 2011
Pilipczuk, Pilipczuk, Sankowski, van Leeuwen (b23) 2013; vol. 20
Schwarze, Lalla-Ruiz, Voß (b26) 2020
Kruskal (b20) 1956; 7
Byrka, Grandoni, Rothvoss, Sanità (b5) 2013; 60
Benedito, Pedrosa, Rosado (b2) 2021; 195
Rocha, Ramos, Melo, Benedito, Silva, Cano, Miyazawa, Xavier (b25) 2017; 2
Robins, Zelikovsky (b24) 2005; 19
Held, Spitzley (b16) 2022
Dvorák, Feldmann, Knop, Masarík, Toufar, Vesely (b14) 2021; 35
Vasko, Landquist, Kresge, Tal, Jiang, Papademetris (b28) 2016; 67
Downey, Fellows (b12) 2012
Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (b10) 2015
Benedito, Pedrosa, Rosado (b1) 2019
Chandra Chekuri, Sanjeev Khanna, Joseph Naor, A deterministic algorithm for the cost-distance problem, in: Symposium on Discrete Algorithms: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, 7, 2001, pp. 232–233.
Dreyfus, Wagner (b13) 1971; 1
Khuller, Raghavachari, Young (b19) 1995; 14
Berman, Karpinski, Scott (b4) 2003
Calik, Leitner, Luipersbeck (b6) 2017; 81
Zyma, Girard, Landquist, Schaper, Vasko (b30) 2017; 24
Piotr Berman, Marek Karpinski, Improved approximation lower bounds on small occurence optimization, in: ECCC Report, 2003.
Vasko, Barbieri, Rieksts, Reitmeyer, Stott (b27) 2002; 29
Niedermeier (b21) 2006
Chlebík, Chlebíková (b9) 2008; 406
Dvorák (10.1016/j.dam.2023.07.010_b14) 2021; 35
Dijkstra (10.1016/j.dam.2023.07.010_b11) 1959; 1
Niedermeier (10.1016/j.dam.2023.07.010_b21) 2006
Zyma (10.1016/j.dam.2023.07.010_b30) 2017; 24
Calik (10.1016/j.dam.2023.07.010_b6) 2017; 81
Pilipczuk (10.1016/j.dam.2023.07.010_b23) 2013; vol. 20
Williamson (10.1016/j.dam.2023.07.010_b29) 2011
Vasko (10.1016/j.dam.2023.07.010_b27) 2002; 29
Kruskal (10.1016/j.dam.2023.07.010_b20) 1956; 7
Berman (10.1016/j.dam.2023.07.010_b4) 2003
Held (10.1016/j.dam.2023.07.010_b16) 2022
Schwarze (10.1016/j.dam.2023.07.010_b26) 2020
Robins (10.1016/j.dam.2023.07.010_b24) 2005; 19
Fomin (10.1016/j.dam.2023.07.010_b15) 2015
Cygan (10.1016/j.dam.2023.07.010_b10) 2015
10.1016/j.dam.2023.07.010_b18
Benedito (10.1016/j.dam.2023.07.010_b2) 2021; 195
Rocha (10.1016/j.dam.2023.07.010_b25) 2017; 2
Benedito (10.1016/j.dam.2023.07.010_b1) 2019
Chlebík (10.1016/j.dam.2023.07.010_b9) 2008; 406
Downey (10.1016/j.dam.2023.07.010_b12) 2012
10.1016/j.dam.2023.07.010_b3
Byrka (10.1016/j.dam.2023.07.010_b5) 2013; 60
Dreyfus (10.1016/j.dam.2023.07.010_b13) 1971; 1
Khazraei (10.1016/j.dam.2023.07.010_b17) 2021
Chlebík (10.1016/j.dam.2023.07.010_b8) 2003
Nielsen (10.1016/j.dam.2023.07.010_b22) 2008
10.1016/j.dam.2023.07.010_b7
Vasko (10.1016/j.dam.2023.07.010_b28) 2016; 67
Khuller (10.1016/j.dam.2023.07.010_b19) 1995; 14
References_xml – year: 2006
  ident: b21
  article-title: Invitation to Fixed-Parameter Algorithms
– volume: 60
  start-page: 6:1
  year: 2013
  end-page: 6:33
  ident: b5
  article-title: Steiner tree approximation via iterative randomized rounding
  publication-title: J. ACM
– volume: 406
  start-page: 207
  year: 2008
  end-page: 214
  ident: b9
  article-title: The steiner tree problem on graphs: Inapproximability results
  publication-title: Theoret. Comput. Sci.
– volume: 1
  start-page: 195
  year: 1971
  end-page: 207
  ident: b13
  article-title: The Steiner problem in graphs
  publication-title: Networks
– reference: Chandra Chekuri, Sanjeev Khanna, Joseph Naor, A deterministic algorithm for the cost-distance problem, in: Symposium on Discrete Algorithms: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, 7, 2001, pp. 232–233.
– volume: 7
  start-page: 48
  year: 1956
  end-page: 50
  ident: b20
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc.
– year: 2011
  ident: b29
  article-title: The Design of Approximation Algorithms
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: b11
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
– year: 2019
  ident: b1
  article-title: A constant-factor approximation for the generalized cable-trench problem
  publication-title: Anais do IV Encontro de Teoria da Computação
– year: 2003
  ident: b4
  article-title: Approximation Hardness and Satisfiability of Bounded Occurrence Instances of SAT
– start-page: 1
  year: 2020
  end-page: 23
  ident: b26
  article-title: Modeling the capacitated
  publication-title: Cent. Eur. J. Oper. Res.
– volume: 81
  start-page: 128
  year: 2017
  end-page: 140
  ident: b6
  article-title: A Benders decomposition based framework for solving cable trench problems
  publication-title: Comput. Oper. Res.
– volume: 67
  start-page: 199
  year: 2016
  end-page: 208
  ident: b28
  article-title: A simple and efficient strategy for solving very large-scale generalized cable-trench problems
  publication-title: Networks
– year: 2015
  ident: b10
  article-title: Parameterized algorithms, Vol. 4, No. 8
– year: 2012
  ident: b12
  article-title: Parameterized Complexity
– start-page: 494
  year: 2015
  end-page: 505
  ident: b15
  article-title: Parameterized single-exponential time polynomial space algorithm for steiner tree
  publication-title: International Colloquium on Automata, Languages, and Programming
– volume: 2
  year: 2017
  ident: b25
  article-title: Abordagens Heurísticas para o
  publication-title: 2
– volume: 19
  start-page: 122
  year: 2005
  end-page: 134
  ident: b24
  article-title: Tighter bounds for graph steiner tree approximation
  publication-title: SIAM J. Discrete Math.
– volume: 35
  start-page: 546
  year: 2021
  end-page: 574
  ident: b14
  article-title: Parameterized approximation schemes for steiner trees with small number of steiner vertices
  publication-title: SIAM J. Discrete Math.
– volume: 195
  start-page: 39
  year: 2021
  end-page: 48
  ident: b2
  article-title: On the inapproximability of the Cable-Trench problem
  publication-title: Procedia Comput. Sci.
– reference: Piotr Berman, Marek Karpinski, Improved approximation lower bounds on small occurence optimization, in: ECCC Report, 2003.
– start-page: 585
  year: 2008
  end-page: 588
  ident: b22
  article-title: On the potential of using the cable trench problem in planning of ICT access networks
  publication-title: 2008 50th International Symposium ELMAR, Vol. 2
– volume: 29
  start-page: 441
  year: 2002
  end-page: 458
  ident: b27
  article-title: The cable trench problem: combining the shortest path and minimum spanning tree problems
  publication-title: Comput. Oper. Res.
– reference: Subhash Khot, On the power of unique 2-prover 1-round games, in: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, 2002, pp. 767–775.
– volume: 24
  start-page: 943
  year: 2017
  end-page: 957
  ident: b30
  article-title: Formulating and solving a radio astronomy antenna connection problem as a generalized cable-trench problem: an empirical study
  publication-title: Int. Trans. Oper. Res.
– volume: 14
  start-page: 305
  year: 1995
  end-page: 321
  ident: b19
  article-title: Balancing minimum spanning trees and shortest-path trees
  publication-title: Algorithmica
– year: 2022
  ident: b16
  article-title: Further improvements on approximating the uniform cost-distance steiner tree problem
– volume: vol. 20
  start-page: 353
  year: 2013
  end-page: 364
  ident: b23
  article-title: Subexponential-time parameterized algorithm for steiner tree on planar graphs
  publication-title: 30th International Symposium on Theoretical Aspects of Computer Science
– start-page: 189
  year: 2021
  end-page: 203
  ident: b17
  article-title: An improved approximation algorithm for the uniform cost-distance steiner tree problem
  publication-title: Approximation and Online Algorithms
– start-page: 152
  year: 2003
  end-page: 164
  ident: b8
  article-title: Approximation hardness for small occurrence instances of NP-hard problems
  publication-title: Algorithms and Complexity
– volume: 60
  start-page: 6:1
  issue: 1
  year: 2013
  ident: 10.1016/j.dam.2023.07.010_b5
  article-title: Steiner tree approximation via iterative randomized rounding
  publication-title: J. ACM
  doi: 10.1145/2432622.2432628
– year: 2012
  ident: 10.1016/j.dam.2023.07.010_b12
– year: 2006
  ident: 10.1016/j.dam.2023.07.010_b21
– volume: 24
  start-page: 943
  issue: 5
  year: 2017
  ident: 10.1016/j.dam.2023.07.010_b30
  article-title: Formulating and solving a radio astronomy antenna connection problem as a generalized cable-trench problem: an empirical study
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12312
– ident: 10.1016/j.dam.2023.07.010_b18
  doi: 10.1145/509907.510017
– volume: 14
  start-page: 305
  issue: 4
  year: 1995
  ident: 10.1016/j.dam.2023.07.010_b19
  article-title: Balancing minimum spanning trees and shortest-path trees
  publication-title: Algorithmica
  doi: 10.1007/BF01294129
– year: 2003
  ident: 10.1016/j.dam.2023.07.010_b4
– year: 2011
  ident: 10.1016/j.dam.2023.07.010_b29
– year: 2019
  ident: 10.1016/j.dam.2023.07.010_b1
  article-title: A constant-factor approximation for the generalized cable-trench problem
– volume: 1
  start-page: 195
  issue: 3
  year: 1971
  ident: 10.1016/j.dam.2023.07.010_b13
  article-title: The Steiner problem in graphs
  publication-title: Networks
  doi: 10.1002/net.3230010302
– start-page: 152
  year: 2003
  ident: 10.1016/j.dam.2023.07.010_b8
  article-title: Approximation hardness for small occurrence instances of NP-hard problems
– volume: 35
  start-page: 546
  issue: 1
  year: 2021
  ident: 10.1016/j.dam.2023.07.010_b14
  article-title: Parameterized approximation schemes for steiner trees with small number of steiner vertices
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/18M1209489
– volume: vol. 20
  start-page: 353
  year: 2013
  ident: 10.1016/j.dam.2023.07.010_b23
  article-title: Subexponential-time parameterized algorithm for steiner tree on planar graphs
– volume: 7
  start-page: 48
  issue: 1
  year: 1956
  ident: 10.1016/j.dam.2023.07.010_b20
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1956-0078686-7
– year: 2022
  ident: 10.1016/j.dam.2023.07.010_b16
– volume: 2
  year: 2017
  ident: 10.1016/j.dam.2023.07.010_b25
  article-title: Abordagens Heurísticas para o p-Cabo-Trincheira com Localização de Instalações
– volume: 195
  start-page: 39
  year: 2021
  ident: 10.1016/j.dam.2023.07.010_b2
  article-title: On the inapproximability of the Cable-Trench problem
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.11.009
– ident: 10.1016/j.dam.2023.07.010_b3
– ident: 10.1016/j.dam.2023.07.010_b7
– year: 2015
  ident: 10.1016/j.dam.2023.07.010_b10
– start-page: 1
  year: 2020
  ident: 10.1016/j.dam.2023.07.010_b26
  article-title: Modeling the capacitated p-cable trench problem with facility costs
  publication-title: Cent. Eur. J. Oper. Res.
– start-page: 494
  year: 2015
  ident: 10.1016/j.dam.2023.07.010_b15
  article-title: Parameterized single-exponential time polynomial space algorithm for steiner tree
– volume: 1
  start-page: 269
  issue: 1
  year: 1959
  ident: 10.1016/j.dam.2023.07.010_b11
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– volume: 67
  start-page: 199
  issue: 3
  year: 2016
  ident: 10.1016/j.dam.2023.07.010_b28
  article-title: A simple and efficient strategy for solving very large-scale generalized cable-trench problems
  publication-title: Networks
  doi: 10.1002/net.21614
– start-page: 189
  year: 2021
  ident: 10.1016/j.dam.2023.07.010_b17
  article-title: An improved approximation algorithm for the uniform cost-distance steiner tree problem
– start-page: 585
  year: 2008
  ident: 10.1016/j.dam.2023.07.010_b22
  article-title: On the potential of using the cable trench problem in planning of ICT access networks
– volume: 19
  start-page: 122
  issue: 1
  year: 2005
  ident: 10.1016/j.dam.2023.07.010_b24
  article-title: Tighter bounds for graph steiner tree approximation
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480101393155
– volume: 406
  start-page: 207
  issue: 3
  year: 2008
  ident: 10.1016/j.dam.2023.07.010_b9
  article-title: The steiner tree problem on graphs: Inapproximability results
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2008.06.046
– volume: 29
  start-page: 441
  issue: 5
  year: 2002
  ident: 10.1016/j.dam.2023.07.010_b27
  article-title: The cable trench problem: combining the shortest path and minimum spanning tree problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(00)00083-6
– volume: 81
  start-page: 128
  year: 2017
  ident: 10.1016/j.dam.2023.07.010_b6
  article-title: A Benders decomposition based framework for solving cable trench problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.12.015
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.3773284
Snippet The Cable-Trench Problem (CTP) is a common generalization of the Single-Source Shortest Paths Problem (SSSP) and the Minimum Spanning Tree Problem (MST): given...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 272
SubjectTerms Approximation
Cable-trench
Hardness
Inapproximability
Parameterized algorithm
Steiner tree
Title On the complexity of the Cable-Trench Problem
URI https://dx.doi.org/10.1016/j.dam.2023.07.010
Volume 340
WOSCitedRecordID wos001053668200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20220331
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZa6AEOiJZW5dEqh566cpQ4iZ0c0UJFyxYQUGlvUexxYFGVRbCg_fmMH9mEUqS2Ui9R4siR4xmPvxnPg5BPFY814zVQjbsDKiiS00rziKYZJJnUeSaryBabEEdH-XhcnPjokltbTkA0TT6fF9f_ldTYhsQ2obN_Qe7FR7EB75HoeEWy4_WPCH_sHBetr7iee48L0zI0UVLUOMGqSxMgYArJ9LHp3gRFCGLoBTL9vkjp2tnSUTTCxJZeMmE-Sv-cDk7CUdhJWMBt1wLSkb6cmJLVg1E4XLw_xZdgex_cXUwHh-Fh2Lc7sMT4cLjIS2cMexIQ4-yTnFNEDWO3vTiZmgtGuXCVVlqhm7gkTa3YdOV7_A7MXBGfJ8Ld2RmucEgmhQBLbNZV7xT7OGf2mRmHGQYqWEbvTl6SZSayAsXe8u7X_fG3XoYxkz5vpbXJdUdQCMVSnxje_VF7JG6dA38Zwu9BTQ-onK-TNa9hBLuOM16TF7p5Q1Z7tNwg9LgJ8DHoeCSY1ralzyOB55G35MeX_fPhAfV1M6hCZXpGkzStZCwhznRtdF5cpjzNIg65BiUKgCRSWV1LVlSxUqiAK8Eh04IjuItwiSbvyFIzbfR7EgDEuZQyx5Ur01oXVQ0mKLMCBjHjEG-Sz-2Pl9cuPUrZ-g1elThLpZmlMhIlztImSdupKT2-c7itRAo_323r37ptk5WObXfI0uzmTn8gr9T9bHJ789HzwQM2pmzA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+complexity+of+the+Cable-Trench+Problem&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Benedito%2C+Marcelo+P.L.&rft.au=Pedrosa%2C+Lehilton+L.C.&rft.au=Rosado%2C+Hugo+K.K.&rft.date=2023-12-15&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=340&rft.spage=272&rft.epage=285&rft_id=info:doi/10.1016%2Fj.dam.2023.07.010&rft.externalDocID=S0166218X23002743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon