Secrecy Capacity Maximization for IRS-Assisted High-Speed Train Communications

In this letter, we propose an IRS-assisted MIMO communication system model in the presence of an eavesdropper (Eve). A distance-dependent Rician factor and real-time Doppler frequency offset (DFO) compensation mechanism are utilized to characterize highly time-varying wireless channels. The secrecy...

Full description

Saved in:
Bibliographic Details
Published in:IEEE communications letters Vol. 29; no. 6; pp. 1290 - 1294
Main Authors: Li, Cuiran, Luan, Jiahui, Zhang, Zepeng, Ai, Bo, Wu, Hao, Xie, Jianli
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-7798, 1558-2558
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this letter, we propose an IRS-assisted MIMO communication system model in the presence of an eavesdropper (Eve). A distance-dependent Rician factor and real-time Doppler frequency offset (DFO) compensation mechanism are utilized to characterize highly time-varying wireless channels. The secrecy capacity optimization problem is formulated by jointly optimizing the transmit beamforming, artificial noise (AN) matrix, and IRS phase shifts, subject to transmit power and unit modulus constraints. To solve the non-convex problem, it is transformed into convex optimization problem by using weighted minimum mean square error (WMMSE) algorithm, and an alternating optimization strategy with coupled variables is used to derive the optimal solution. Simulation results show that the optimization algorithm proposed in this letter converges quickly and achieves higher secrecy capacity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2025.3559484