Structural parameterizations of budgeted graph coloring

We introduce a variant of the graph coloring problem, which we denote as Budgeted Coloring Problem (BCP). Given a graph G, an integer c and an ordered list of integers (b1,b2,…,bc), BCP asks whether there exists a proper coloring of G where the i-th color is used to color at most bi many vertices. T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 940; s. 209 - 221
Hlavní autoři: Bandopadhyay, Susobhan, Banerjee, Suman, Banik, Aritra, Raman, Venkatesh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 09.01.2023
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We introduce a variant of the graph coloring problem, which we denote as Budgeted Coloring Problem (BCP). Given a graph G, an integer c and an ordered list of integers (b1,b2,…,bc), BCP asks whether there exists a proper coloring of G where the i-th color is used to color at most bi many vertices. This problem generalizes two well-studied graph coloring problems, Bounded Coloring Problem (BoCP) and Equitable Coloring Problem (ECP) and as in the case of other coloring problems, the BCP is NP-hard even for constant values of c. So we study BCP under the paradigm of parameterized complexity, particularly with respect to (structural) parameters that specify how far (the deletion distance) the input graph is from a tractable graph class.•We show that BCP is FPT (fixed-parameter tractable) parameterized by the vertex cover size. This generalizes a similar result for ECP and immediately extends to the BoCP, which was earlier not known.•We show that BCP is polynomial time solvable for cluster graphs generalizing a similar result for ECP. However, we show that BCP is FPT, but unlikely to have polynomial kernel, when parameterized by the deletion distance to clique, contrasting the linear kernel for ECP for the same parameter.•While the BoCP is known to be polynomial time solvable on split graphs, we show that BCP is NP-hard on split graphs. As BoCP is hard on bipartite graphs when c>3, the result follows for BCP as well. We provide a dichotomy result by showing that BCP is polynomial time solvable on bipartite graphs when c=2. We also show that BCP is NP-hard on co-cluster graphs, contrasting the polynomial time algorithm for ECP and BoCP. Finally we present an O⁎(2|V(G)|) algorithm for the BCP, generalizing the known algorithm with a similar bound for the standard chromatic number.
AbstractList We introduce a variant of the graph coloring problem, which we denote as Budgeted Coloring Problem (BCP). Given a graph G, an integer c and an ordered list of integers (b1,b2,…,bc), BCP asks whether there exists a proper coloring of G where the i-th color is used to color at most bi many vertices. This problem generalizes two well-studied graph coloring problems, Bounded Coloring Problem (BoCP) and Equitable Coloring Problem (ECP) and as in the case of other coloring problems, the BCP is NP-hard even for constant values of c. So we study BCP under the paradigm of parameterized complexity, particularly with respect to (structural) parameters that specify how far (the deletion distance) the input graph is from a tractable graph class.•We show that BCP is FPT (fixed-parameter tractable) parameterized by the vertex cover size. This generalizes a similar result for ECP and immediately extends to the BoCP, which was earlier not known.•We show that BCP is polynomial time solvable for cluster graphs generalizing a similar result for ECP. However, we show that BCP is FPT, but unlikely to have polynomial kernel, when parameterized by the deletion distance to clique, contrasting the linear kernel for ECP for the same parameter.•While the BoCP is known to be polynomial time solvable on split graphs, we show that BCP is NP-hard on split graphs. As BoCP is hard on bipartite graphs when c>3, the result follows for BCP as well. We provide a dichotomy result by showing that BCP is polynomial time solvable on bipartite graphs when c=2. We also show that BCP is NP-hard on co-cluster graphs, contrasting the polynomial time algorithm for ECP and BoCP. Finally we present an O⁎(2|V(G)|) algorithm for the BCP, generalizing the known algorithm with a similar bound for the standard chromatic number.
Author Raman, Venkatesh
Bandopadhyay, Susobhan
Banik, Aritra
Banerjee, Suman
Author_xml – sequence: 1
  givenname: Susobhan
  orcidid: 0000-0003-1073-2718
  surname: Bandopadhyay
  fullname: Bandopadhyay, Susobhan
  email: susobhan.bandopadhyay@niser.ac.in
  organization: National Institute of Science, Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, Identi Odisha, India
– sequence: 2
  givenname: Suman
  orcidid: 0000-0003-1761-5944
  surname: Banerjee
  fullname: Banerjee, Suman
  email: suman.banerjee@iitjammu.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology, Jammu, India
– sequence: 3
  givenname: Aritra
  surname: Banik
  fullname: Banik, Aritra
  email: aritra@niser.ac.in
  organization: National Institute of Science, Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, Identi Odisha, India
– sequence: 4
  givenname: Venkatesh
  surname: Raman
  fullname: Raman, Venkatesh
  email: vraman@imsc.res.in
  organization: The Institute of Mathematical Sciences, HBNI, Chennai, India
BookMark eNp9j81KAzEUhYNUsK0-gLt5gRlvfmYywZUU_6DgQl2HJHOnprSTkqSCPr2RuvZsLhz4LudbkNkUJiTkmkJDgXY32ya71DBgrKG0AWBnZE57qWrGlJiROXAQNVeyvSCLlLZQ0spuTuRrjkeXj9HsqoOJZo8Zo_822YcpVWGs7HHYlG6oNtEcPioXdiH6aXNJzkezS3j1d5fk_eH-bfVUr18en1d369oxoXLNcERhRzugpdY4zlUnqFWqBQvGDr3sednshOCyc9yCMNRJqxDaXrjeAl8SevrrYkgp4qgP0e9N_NIU9K-53upirn_NNaW6mBfm9sRgGfbpMerkPE4OBx_RZT0E_w_9A3KvY78
Cites_doi 10.1016/j.tcs.2010.06.026
10.1016/j.ic.2010.11.026
10.1006/jagm.1999.1034
10.1137/120880240
10.1137/20M1323369
10.1006/jctb.1994.1032
10.1007/978-1-4471-5559-1
10.1016/j.tcs.2010.10.043
10.1016/0304-3975(96)00031-X
10.1007/s00224-015-9631-7
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2022.11.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 221
ExternalDocumentID 10_1016_j_tcs_2022_11_002
S0304397522006600
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SEW
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c249t-2efe4bfbdeb1bac339641b9950b0abd8783202c44376c3b04a1c7b9e0584c8b03
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000991261000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sat Nov 29 07:20:05 EST 2025
Fri Feb 23 02:37:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Exact exponential algorithm
Parameterized complexity
Graph coloring
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-2efe4bfbdeb1bac339641b9950b0abd8783202c44376c3b04a1c7b9e0584c8b03
ORCID 0000-0003-1761-5944
0000-0003-1073-2718
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_tcs_2022_11_002
elsevier_sciencedirect_doi_10_1016_j_tcs_2022_11_002
PublicationCentury 2000
PublicationDate 2023-01-09
PublicationDateYYYYMMDD 2023-01-09
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-09
  day: 09
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Ko, Lih (br0060) 1995
Downey, Fellows (br0120) 2013
Sæther, Telle (br0230) 2014; 75
Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen (br0130) 2011; 209
Garey, Johnson (br0180) 1990
Bandopadhyay, Banerjee, Banik, Raman (br0020) 2022
Bodlaender, Jansen (br0040) 1993
Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen (br0140) 2011; 209
Boral, Cygan, Kociumaka, Pilipczuk (br0050) 2016; 58
Gomes, Guedes, dos Santos (br0190) 2019
Coffman, Csirik, Leung (br0090) January 2007
Fomin, Kratsch (br0160) 2010
Niedermeier (br0210) 2006
Chen, Kanj, Xia (br0080) 2010; 411
Fomin, Lokshtanov, Saurabh, Zehavi (br0170) 2019
Gutin, Majumdar, Ordyniak, Wahlström (br0200) 2021; 35
Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (br0100) 2015
Fiala, Golovach, Kratochvíl (br0150) 2011; 412
David (br0220) 1999; 33
Bodlaender, Jansen, Kratsch (br0030) 2014; 28
Chen, Lih (br0070) 1994; 61
Baker, Coffman (br0010) 1996; 162
Diestel (br0110) 2012; vol. 173
Gomes (10.1016/j.tcs.2022.11.002_br0190)
Fomin (10.1016/j.tcs.2022.11.002_br0170) 2019
Fiala (10.1016/j.tcs.2022.11.002_br0150) 2011; 412
Baker (10.1016/j.tcs.2022.11.002_br0010) 1996; 162
Downey (10.1016/j.tcs.2022.11.002_br0120) 2013
Chen (10.1016/j.tcs.2022.11.002_br0060) 1995
Bodlaender (10.1016/j.tcs.2022.11.002_br0030) 2014; 28
Bodlaender (10.1016/j.tcs.2022.11.002_br0040) 1993
Cygan (10.1016/j.tcs.2022.11.002_br0100) 2015
Fomin (10.1016/j.tcs.2022.11.002_br0160) 2010
Niedermeier (10.1016/j.tcs.2022.11.002_br0210) 2006
Chen (10.1016/j.tcs.2022.11.002_br0080) 2010; 411
Fellows (10.1016/j.tcs.2022.11.002_br0130) 2011; 209
Boral (10.1016/j.tcs.2022.11.002_br0050) 2016; 58
Diestel (10.1016/j.tcs.2022.11.002_br0110) 2012; vol. 173
Gutin (10.1016/j.tcs.2022.11.002_br0200) 2021; 35
Sæther (10.1016/j.tcs.2022.11.002_br0230) 2014; 75
Chen (10.1016/j.tcs.2022.11.002_br0070) 1994; 61
Coffman (10.1016/j.tcs.2022.11.002_br0090) 2007
Fellows (10.1016/j.tcs.2022.11.002_br0140) 2011; 209
Bandopadhyay (10.1016/j.tcs.2022.11.002_br0020) 2022
David (10.1016/j.tcs.2022.11.002_br0220) 1999; 33
Garey (10.1016/j.tcs.2022.11.002_br0180) 1990
References_xml – volume: 162
  start-page: 225
  year: 1996
  end-page: 243
  ident: br0010
  article-title: Mutual exclusion scheduling
  publication-title: Theor. Comput. Sci.
– start-page: 291
  year: 1993
  end-page: 300
  ident: br0040
  article-title: On the complexity of scheduling incompatible jobs with unit-times
  publication-title: International Symposium on Mathematical Foundations of Computer Science
– year: 2019
  ident: br0170
  article-title: Kernelization: Theory of Parameterized Preprocessing
– volume: 412
  start-page: 2513
  year: 2011
  end-page: 2523
  ident: br0150
  article-title: Parameterized complexity of coloring problems: treewidth versus vertex cover
  publication-title: Theor. Comput. Sci.
– year: 1990
  ident: br0180
  article-title: Computers and Intractability; A Guide to the Theory of NP-Completeness
– volume: 33
  start-page: 1
  year: 1999
  end-page: 14
  ident: br0220
  article-title: Linear time algorithms for knapsack problems with bounded weights
  publication-title: J. Algorithms
– year: 2019
  ident: br0190
  article-title: Structural parameterizations for equitable coloring
– start-page: 340
  year: 2022
  end-page: 351
  ident: br0020
  article-title: Structural parameterizations of budgeted graph coloring
  publication-title: WALCOM: Algorithms and Computation
– year: 2013
  ident: br0120
  article-title: Fundamentals of Parameterized Complexity
  publication-title: Texts in Computer Science
– year: 2006
  ident: br0210
  article-title: Invitation to Fixed-Parameter Algorithms
– volume: 209
  start-page: 143
  year: 2011
  end-page: 153
  ident: br0140
  article-title: On the complexity of some colorful problems parameterized by treewidth
  publication-title: Inf. Comput.
– volume: 58
  start-page: 357
  year: 2016
  end-page: 376
  ident: br0050
  article-title: A fast branching algorithm for cluster vertex deletion
  publication-title: Theory Comput. Syst.
– year: 2010
  ident: br0160
  article-title: Exact Exponential Algorithms
– volume: 61
  start-page: 83
  year: 1994
  end-page: 87
  ident: br0070
  article-title: Equitable coloring of trees
  publication-title: J. Comb. Theory, Ser. B
– start-page: 1
  year: 1995
  end-page: 5
  ident: br0060
  article-title: Equitable and m-bounded coloring of split graphs
  publication-title: Franco-Japanese and Franco-Chinese Conference on Combinatorics and Computer Science
– volume: 35
  start-page: 575
  year: 2021
  end-page: 596
  ident: br0200
  article-title: Parameterized pre-coloring extension and list coloring problems
  publication-title: SIAM J. Discrete Math.
– volume: 75
  year: 2014
  ident: br0230
  article-title: Between treewidth and clique-width
  publication-title: Algorithmica
– volume: vol. 173
  start-page: 7
  year: 2012
  ident: br0110
  article-title: Graph Theory
  publication-title: Graduate Texts in Mathematics
– year: 2015
  ident: br0100
  article-title: Parameterized Algorithms
– volume: 209
  start-page: 143
  year: 2011
  end-page: 153
  ident: br0130
  article-title: On the complexity of some colorful problems parameterized by treewidth
  publication-title: Inf. Comput.
– volume: 28
  start-page: 277
  year: 2014
  end-page: 305
  ident: br0030
  article-title: Kernelization lower bounds by cross-composition
  publication-title: SIAM J. Discrete Math.
– volume: 411
  year: 2010
  ident: br0080
  article-title: Simplicity is beauty: improved upper bounds for vertex cover
  publication-title: Theor. Comput. Sci.
– start-page: 33-1
  year: January 2007
  end-page: 33–14
  ident: br0090
  article-title: Variants of Classical One-Dimensional Bin Packing
– start-page: 340
  year: 2022
  ident: 10.1016/j.tcs.2022.11.002_br0020
  article-title: Structural parameterizations of budgeted graph coloring
– year: 2015
  ident: 10.1016/j.tcs.2022.11.002_br0100
– ident: 10.1016/j.tcs.2022.11.002_br0190
– volume: 75
  year: 2014
  ident: 10.1016/j.tcs.2022.11.002_br0230
  article-title: Between treewidth and clique-width
  publication-title: Algorithmica
– start-page: 291
  year: 1993
  ident: 10.1016/j.tcs.2022.11.002_br0040
  article-title: On the complexity of scheduling incompatible jobs with unit-times
– volume: 411
  year: 2010
  ident: 10.1016/j.tcs.2022.11.002_br0080
  article-title: Simplicity is beauty: improved upper bounds for vertex cover
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2010.06.026
– volume: 209
  start-page: 143
  issue: 2
  year: 2011
  ident: 10.1016/j.tcs.2022.11.002_br0130
  article-title: On the complexity of some colorful problems parameterized by treewidth
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2010.11.026
– volume: 33
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.tcs.2022.11.002_br0220
  article-title: Linear time algorithms for knapsack problems with bounded weights
  publication-title: J. Algorithms
  doi: 10.1006/jagm.1999.1034
– volume: 28
  start-page: 277
  issue: 1
  year: 2014
  ident: 10.1016/j.tcs.2022.11.002_br0030
  article-title: Kernelization lower bounds by cross-composition
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/120880240
– start-page: 1
  year: 1995
  ident: 10.1016/j.tcs.2022.11.002_br0060
  article-title: Equitable and m-bounded coloring of split graphs
– start-page: 33-1
  year: 2007
  ident: 10.1016/j.tcs.2022.11.002_br0090
– volume: 209
  start-page: 143
  issue: 2
  year: 2011
  ident: 10.1016/j.tcs.2022.11.002_br0140
  article-title: On the complexity of some colorful problems parameterized by treewidth
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2010.11.026
– volume: 35
  start-page: 575
  issue: 1
  year: 2021
  ident: 10.1016/j.tcs.2022.11.002_br0200
  article-title: Parameterized pre-coloring extension and list coloring problems
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/20M1323369
– volume: 61
  start-page: 83
  issue: 1
  year: 1994
  ident: 10.1016/j.tcs.2022.11.002_br0070
  article-title: Equitable coloring of trees
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1006/jctb.1994.1032
– year: 2006
  ident: 10.1016/j.tcs.2022.11.002_br0210
– year: 2010
  ident: 10.1016/j.tcs.2022.11.002_br0160
– year: 2019
  ident: 10.1016/j.tcs.2022.11.002_br0170
– volume: vol. 173
  start-page: 7
  year: 2012
  ident: 10.1016/j.tcs.2022.11.002_br0110
  article-title: Graph Theory
– year: 2013
  ident: 10.1016/j.tcs.2022.11.002_br0120
  article-title: Fundamentals of Parameterized Complexity
  doi: 10.1007/978-1-4471-5559-1
– volume: 412
  start-page: 2513
  issue: 23
  year: 2011
  ident: 10.1016/j.tcs.2022.11.002_br0150
  article-title: Parameterized complexity of coloring problems: treewidth versus vertex cover
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2010.10.043
– volume: 162
  start-page: 225
  issue: 2
  year: 1996
  ident: 10.1016/j.tcs.2022.11.002_br0010
  article-title: Mutual exclusion scheduling
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(96)00031-X
– year: 1990
  ident: 10.1016/j.tcs.2022.11.002_br0180
– volume: 58
  start-page: 357
  issue: 2
  year: 2016
  ident: 10.1016/j.tcs.2022.11.002_br0050
  article-title: A fast branching algorithm for cluster vertex deletion
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-015-9631-7
SSID ssj0000576
Score 2.3697586
Snippet We introduce a variant of the graph coloring problem, which we denote as Budgeted Coloring Problem (BCP). Given a graph G, an integer c and an ordered list of...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 209
SubjectTerms Exact exponential algorithm
Graph coloring
Parameterized complexity
Title Structural parameterizations of budgeted graph coloring
URI https://dx.doi.org/10.1016/j.tcs.2022.11.002
Volume 940
WOSCitedRecordID wos000991261000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211209
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdQxwEOwAZo46UcdtqUybHdOj5WaAgQmyYYU2-RX6HttHRKC9r-ez6_kmoPiR24WFWSuo2_n763f0ZoV0hMiS10rusa54zCIBmmOWOmNoViyvpuwrNv_Pi4nEzESayYLv1xArxpyqsrcflfRQ3XQNhu6-wDxN1NChfgMwgdRhA7jP8k-B-eEdazaThe7wvX75I2WzrXUP02v6zzMz1X9b5jrW6T_Zp32Ol2N-p47MN-tJV96rMxEHCb6bW8ju09CzXtsQb3bTuPNPyuUrB2Y-ZV8LidrdrOKnyXMRd7Zptz5wBP1xMShPqEhFjTW9QVW0Q4ECUpWRFImZKajM8Hi0vCHulbyjzkFeYHK-141Qk5cHSrmPSWK1Xrbxi0rs0wdbDNK5iiclNAwFN57tENwoeiHKCN8ZfDydfedg95qG7HV0h1cN8ReON_3O3JrHknpy_QsxhWZOMAh030yDZb6Hk6siOLGnwLPT3qaHqXLxHvsZLdwkq2qLOElcxjJUtYeYV-fjo8_fg5jydp5BrC61VObG2ZqpUBy6ykplSMWKGEGGKFpTIlB72OiWYMzI2mCjNZaK6ExeCe6lJh-hoNmkVjt1GmwN9kRutCUnC-KVejESdWaSYg8jeS76C9tCrVZSBMqe6Vww5iad2qiOLgyVWAgfu_9uYhv_EWPelR-g4NYGHte_RY_1nNlu2HCIC_uKp4ww
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+parameterizations+of+budgeted+graph+coloring&rft.jtitle=Theoretical+computer+science&rft.au=Bandopadhyay%2C+Susobhan&rft.au=Banerjee%2C+Suman&rft.au=Banik%2C+Aritra&rft.au=Raman%2C+Venkatesh&rft.date=2023-01-09&rft.issn=0304-3975&rft.volume=940&rft.spage=209&rft.epage=221&rft_id=info:doi/10.1016%2Fj.tcs.2022.11.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2022_11_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon