1D convolutional neural networks for chart pattern classification in financial time series

This paper proposes a novel deep learning-based approach for financial chart patterns classification. Convolutional neural networks (CNNs) have made notable achievements in image recognition and computer vision applications. These networks are usually based on two-dimensional convolutional neural ne...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 78; číslo 12; s. 14191 - 14214
Hlavní autoři: Liu, Liying, Si, Yain-Whar
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2022
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes a novel deep learning-based approach for financial chart patterns classification. Convolutional neural networks (CNNs) have made notable achievements in image recognition and computer vision applications. These networks are usually based on two-dimensional convolutional neural networks (2D CNNs). In this paper, we describe the design and implementation of one-dimensional convolutional neural networks (1D CNNs) for the classification of chart patterns from financial time series. The proposed 1D CNN model is compared against support vector machine, extreme learning machine, long short-term memory, rule-based and dynamic time warping. Experimental results on synthetic datasets reveal that the accuracy of 1D CNN is highest among all the methods evaluated. Results on real datasets also reveal that chart patterns identified by 1D CNN are also the most recognized instances when they are compared to those classified by other methods.
AbstractList This paper proposes a novel deep learning-based approach for financial chart patterns classification. Convolutional neural networks (CNNs) have made notable achievements in image recognition and computer vision applications. These networks are usually based on two-dimensional convolutional neural networks (2D CNNs). In this paper, we describe the design and implementation of one-dimensional convolutional neural networks (1D CNNs) for the classification of chart patterns from financial time series. The proposed 1D CNN model is compared against support vector machine, extreme learning machine, long short-term memory, rule-based and dynamic time warping. Experimental results on synthetic datasets reveal that the accuracy of 1D CNN is highest among all the methods evaluated. Results on real datasets also reveal that chart patterns identified by 1D CNN are also the most recognized instances when they are compared to those classified by other methods.
Author Si, Yain-Whar
Liu, Liying
Author_xml – sequence: 1
  givenname: Liying
  surname: Liu
  fullname: Liu, Liying
  organization: Department of Computer and Information Science, University of Macau
– sequence: 2
  givenname: Yain-Whar
  orcidid: 0000-0001-8468-6182
  surname: Si
  fullname: Si, Yain-Whar
  email: fstasp@umac.mo
  organization: Department of Computer and Information Science, University of Macau
BookMark eNp9kEtLAzEUhYNUsFb_gKuA69E857GU-oSCG924CXcyiaZOk5pkFP-901YQXHRzDxfOdx_nGE188AahM0ouKCHVZaKUsaogjBVECE4LeYCmVFZ8bGsxQVPSMFLUUrAjdJzSkhAieMWn6IVeYx38Z-iH7IKHHnszxK3krxDfE7YhYv0GMeM15Gyix7qHlJx1GjYIdh5b58FrN2LZrQxOJjqTTtChhT6Z01-doefbm6f5fbF4vHuYXy0KzUSTCyZlJ9rGWF5C25rKNryTXIy1Y1bKRtYULGsMq7WpoCtL3kIlNBAmgXZA-Qyd7-auY_gYTMpqGYY4vpIUKxsqSUk5GV1s59IxpBSNVevoVhC_FSVqk6HaZajGDNU2QyVHqP4HaZe3X-cIrt-P8h2axj3-1cS_q_ZQPwGHiUA
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102582
crossref_primary_10_1088_2631_8695_ad22be
crossref_primary_10_1109_TCE_2023_3339140
crossref_primary_10_1007_s11227_024_06495_x
crossref_primary_10_1109_TGRS_2024_3520479
crossref_primary_10_1016_j_jfds_2024_100132
crossref_primary_10_1007_s12145_025_01966_y
crossref_primary_10_1016_j_apenergy_2024_125212
crossref_primary_10_3390_signals5030025
crossref_primary_10_3390_app14188500
crossref_primary_10_3390_app14209379
crossref_primary_10_3390_su16198547
crossref_primary_10_1109_TIM_2023_3338650
crossref_primary_10_3390_electronics14071459
crossref_primary_10_1007_s44443_025_00077_4
crossref_primary_10_3390_electronics14030403
Cites_doi 10.1016/j.eswa.2016.02.017
10.1007/978-3-642-24797-2
10.1145/2339530.2339576
10.1016/j.asoc.2019.105700
10.1016/j.asoc.2017.03.023
10.1016/j.asoc.2021.107460
10.1186/s40854-020-00187-0
10.1145/130385.130401
10.1145/3468891.3468896
10.1145/3383455.3422544
10.1109/TNSRE.2017.2721116
10.1016/j.ins.2017.05.028
10.1007/978-0-387-30162-4_415
10.1007/s10618-019-00619-1
10.33793/acperpro.03.01.89
10.1007/s00500-017-2703-7
10.3390/pr9091484
10.1016/j.engappai.2006.07.003
10.1016/j.neunet.2005.06.042
10.1109/CVPR.2015.7298594
10.1016/j.patcog.2017.10.013
10.1109/ICASSP.2019.8682194
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-022-04431-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 14214
ExternalDocumentID 10_1007_s11227_022_04431_5
GrantInformation_xml – fundername: universidade de macau
  grantid: MYRG2019-00136-FST
  funderid: http://dx.doi.org/10.13039/501100004733
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c249t-255d4b9ef36abbe7f93d53493dd2f559581af29e28ce7ad663ba74ca025a1da13
IEDL.DBID RSV
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776045100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:54:52 EDT 2025
Tue Nov 18 21:32:48 EST 2025
Sat Nov 29 04:27:42 EST 2025
Fri Feb 21 02:45:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Chart patterns
1D convolutional neural networks
Financial time series
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-255d4b9ef36abbe7f93d53493dd2f559581af29e28ce7ad663ba74ca025a1da13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8468-6182
PQID 2691506130
PQPubID 2043774
PageCount 24
ParticipantIDs proquest_journals_2691506130
crossref_primary_10_1007_s11227_022_04431_5
crossref_citationtrail_10_1007_s11227_022_04431_5
springer_journals_10_1007_s11227_022_04431_5
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1–9
FuTak-chungChungFu-laiLukRobertNgChak-manStock time series pattern matching: template-based vs. rule-based approachesEng Appl Artif Intell200720334736410.1016/j.engappai.2006.07.003
LeCun Y, Bengio Y et al (1995) Convolutional networks for images, speech, and time series. Handbook Brain Theory Neural Netw 3361(10):1995
Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E (2012) Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 262–270. ACM
WanYSiYWAdaptive neuro fuzzy inference system for chart pattern matching in financial time seriesAppl Soft Comput20175711810.1016/j.asoc.2017.03.023
Oord AVD, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: a generative model for raw audio. arXiv preprintarXiv:1609.03499
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
HuangGBZhuQYSiewCKExtreme learning machine: a new learning scheme of feedforward neural networksNeural Netw20042985990
LeCun Y et al. (2015) Lenet-5, convolutional neural networks. URL: http://yann.lecun.com/exdb/lenet, 20:5
Murphy JJ (1999) Technical analysis of the financial markets: a comprehensive guide to trading methods and applications. Penguin
Cortes C, Vapnik V (June 17 1997). Soft margin classifier. US Patent 5,640,492
MoghaddamAHMomtaziSImage processing meets time series analysis: predicting forex profitable technical pattern positionsAppl Soft Comput202110810746010.1016/j.asoc.2021.107460
Wang Z, Oates T (2015) Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence
Hussain M, Haque MA et al. (2018) Swishnet: a fast convolutional neural network for speech, music and noise classification and segmentation. arXiv preprint arXiv:1812.00149
HuWSiYWFongSLauRYKA formal approach to candlestick pattern classification in financial time seriesAppl Soft Comput20198410.1016/j.asoc.2019.105700
Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman DJ (2019) 1D convolutional neural networks and applications: a survey. arXiv preprint arXiv:1905.03554
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
Ulyanov D, Vedaldi A, Lempitsky V (2016) Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022
Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271
Cohen N, Balch T, Veloso M (2020) Trading via image classification. In: Proceedings of the First ACM International Conference on AI in Finance, ICAIF ’20, New York, NY, USA. Association for Computing Machinery
Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop, 10, 359–370. Seattle, WA
Cristianini Nello, Ricci Elisa (2008) Support vector machines: 1992; boser, guyon, vapnik. Encyclopedia of Algorithms, pp 928–932
LinYLiuSYangHWuHJiangBImproving stock trading decisions based on pattern recognition using machine learning technologyPLOS ONE2021168125
GuJiuxiangWangZhenhuaKuenJasonMaLianyangShahroudyAmirShuaiBingLiuTingWangXingxingWangGangCaiJianfeiRecent advances in convolutional neural networksPattern Recognit20187735437710.1016/j.patcog.2017.10.013
WanYYwSiA hidden semi-markov model for chart pattern matching in financial time seriesSoft Comput201822196525654410.1007/s00500-017-2703-7
www.tradingview.com. Tradingview. Accessed January 23, 2021
GravesAlexSchmidhuberJürgenFramewise phoneme classification with bidirectional lstm and other neural network architecturesNeural netw2005185–660261010.1016/j.neunet.2005.06.042
SupratakADongHWuCGuoYDeepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eegIEEE Trans Neural Syst Rehabil Eng201725111998200810.1109/TNSRE.2017.2721116
Graves A (2012) Supervised sequence labelling with recurrent neural networks. 2012. URL http://books.google.com/books
Kaya C, Yilmaz A, Uzun GN, Kilimci ZH (2020) Stock pattern classification from charts using deep learning algorithms. In: 8th International symposium on innovative technologies in engineering and science, pp 445–454
WanYSiYWA formal approach to chart patterns classification in financial time seriesInf Sci201741115117510.1016/j.ins.2017.05.028
Zhang Z, Jiang J, Liu X, Lau R, Wang H, Zhang R (2010) A real time hybrid pattern matching scheme for stock time series. In Proceedings of the Twenty-First Australasian Conference on Database Technologies-Volume 104, pp 161–170. Australian Computer Society, Inc
Bulkowski TN (2011) Encyclopedia of chart patterns, 2nd edn. John Wiley & Sons
Hochreiter S, Schmidhuber J (1997) Lstm can solve hard long time lag problems. In: Advances in neural information processing systems, pp 473–479
GongXueyuanSiYain-WharFongSimonBiuk-AghaiRobert PFinancial time series pattern matching with extended ucr suite and support vector machineExpert Syst Appl20165528429610.1016/j.eswa.2016.02.017
FawazHIForestierGWeberJIdoumgharLMullerPADeep learning for time series classification: a reviewData Min Knowl Discov2019334917963396203910.1007/s10618-019-00619-1
Xu C (2021) Image-based candlestick pattern classification with machine learning. In: 2021 6th International Conference on Machine Learning Technologies, ICMLT 2021, pp 26-33, New York, NY, USA. Association for Computing Machinery
Cheng C-S, Ho Y, Chiu T-C (2021) End-to-end control chart pattern classification using a 1d convolutional neural network and transfer learning. Processes, 9(9)
Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory, pp 144–152. ACM
Chen J-H Tsai Y-C 2020) Encoding candlesticks as images for pattern classification using convolutional neural networks. Financial Innovation 6
Y Wan (4431_CR36) 2017; 411
Jiuxiang Gu (4431_CR15) 2018; 77
4431_CR23
GB Huang (4431_CR19) 2004; 2
4431_CR22
4431_CR24
4431_CR26
A Supratak (4431_CR30) 2017; 25
4431_CR29
4431_CR28
Tak-chung Fu (4431_CR10) 2007; 20
4431_CR40
W Hu (4431_CR18) 2019; 84
4431_CR21
4431_CR20
Xueyuan Gong (4431_CR14) 2016; 55
4431_CR7
4431_CR6
4431_CR5
4431_CR4
Alex Graves (4431_CR13) 2005; 18
Y Wan (4431_CR35) 2017; 57
4431_CR3
4431_CR2
4431_CR1
4431_CR12
Y Lin (4431_CR25) 2021; 16
4431_CR34
4431_CR33
4431_CR16
4431_CR38
4431_CR9
4431_CR8
4431_CR17
4431_CR39
AH Moghaddam (4431_CR27) 2021; 108
Y Wan (4431_CR37) 2018; 22
HI Fawaz (4431_CR11) 2019; 33
4431_CR32
4431_CR31
References_xml – reference: WanYSiYWA formal approach to chart patterns classification in financial time seriesInf Sci201741115117510.1016/j.ins.2017.05.028
– reference: HuangGBZhuQYSiewCKExtreme learning machine: a new learning scheme of feedforward neural networksNeural Netw20042985990
– reference: Xu C (2021) Image-based candlestick pattern classification with machine learning. In: 2021 6th International Conference on Machine Learning Technologies, ICMLT 2021, pp 26-33, New York, NY, USA. Association for Computing Machinery
– reference: LeCun Y, Bengio Y et al (1995) Convolutional networks for images, speech, and time series. Handbook Brain Theory Neural Netw 3361(10):1995
– reference: www.tradingview.com. Tradingview. Accessed January 23, 2021
– reference: FuTak-chungChungFu-laiLukRobertNgChak-manStock time series pattern matching: template-based vs. rule-based approachesEng Appl Artif Intell200720334736410.1016/j.engappai.2006.07.003
– reference: Ulyanov D, Vedaldi A, Lempitsky V (2016) Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022
– reference: Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop, 10, 359–370. Seattle, WA
– reference: Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman DJ (2019) 1D convolutional neural networks and applications: a survey. arXiv preprint arXiv:1905.03554
– reference: Murphy JJ (1999) Technical analysis of the financial markets: a comprehensive guide to trading methods and applications. Penguin
– reference: WanYYwSiA hidden semi-markov model for chart pattern matching in financial time seriesSoft Comput201822196525654410.1007/s00500-017-2703-7
– reference: Cortes C, Vapnik V (June 17 1997). Soft margin classifier. US Patent 5,640,492
– reference: Zhang Z, Jiang J, Liu X, Lau R, Wang H, Zhang R (2010) A real time hybrid pattern matching scheme for stock time series. In Proceedings of the Twenty-First Australasian Conference on Database Technologies-Volume 104, pp 161–170. Australian Computer Society, Inc
– reference: Chen J-H Tsai Y-C 2020) Encoding candlesticks as images for pattern classification using convolutional neural networks. Financial Innovation 6
– reference: Kaya C, Yilmaz A, Uzun GN, Kilimci ZH (2020) Stock pattern classification from charts using deep learning algorithms. In: 8th International symposium on innovative technologies in engineering and science, pp 445–454
– reference: Hussain M, Haque MA et al. (2018) Swishnet: a fast convolutional neural network for speech, music and noise classification and segmentation. arXiv preprint arXiv:1812.00149
– reference: Cristianini Nello, Ricci Elisa (2008) Support vector machines: 1992; boser, guyon, vapnik. Encyclopedia of Algorithms, pp 928–932
– reference: GuJiuxiangWangZhenhuaKuenJasonMaLianyangShahroudyAmirShuaiBingLiuTingWangXingxingWangGangCaiJianfeiRecent advances in convolutional neural networksPattern Recognit20187735437710.1016/j.patcog.2017.10.013
– reference: Oord AVD, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: a generative model for raw audio. arXiv preprintarXiv:1609.03499
– reference: WanYSiYWAdaptive neuro fuzzy inference system for chart pattern matching in financial time seriesAppl Soft Comput20175711810.1016/j.asoc.2017.03.023
– reference: GongXueyuanSiYain-WharFongSimonBiuk-AghaiRobert PFinancial time series pattern matching with extended ucr suite and support vector machineExpert Syst Appl20165528429610.1016/j.eswa.2016.02.017
– reference: Hochreiter S, Schmidhuber J (1997) Lstm can solve hard long time lag problems. In: Advances in neural information processing systems, pp 473–479
– reference: MoghaddamAHMomtaziSImage processing meets time series analysis: predicting forex profitable technical pattern positionsAppl Soft Comput202110810746010.1016/j.asoc.2021.107460
– reference: HuWSiYWFongSLauRYKA formal approach to candlestick pattern classification in financial time seriesAppl Soft Comput20198410.1016/j.asoc.2019.105700
– reference: LinYLiuSYangHWuHJiangBImproving stock trading decisions based on pattern recognition using machine learning technologyPLOS ONE2021168125
– reference: Wang Z, Oates T (2015) Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence
– reference: Bulkowski TN (2011) Encyclopedia of chart patterns, 2nd edn. John Wiley & Sons
– reference: FawazHIForestierGWeberJIdoumgharLMullerPADeep learning for time series classification: a reviewData Min Knowl Discov2019334917963396203910.1007/s10618-019-00619-1
– reference: GravesAlexSchmidhuberJürgenFramewise phoneme classification with bidirectional lstm and other neural network architecturesNeural netw2005185–660261010.1016/j.neunet.2005.06.042
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1–9
– reference: Graves A (2012) Supervised sequence labelling with recurrent neural networks. 2012. URL http://books.google.com/books
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
– reference: SupratakADongHWuCGuoYDeepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eegIEEE Trans Neural Syst Rehabil Eng201725111998200810.1109/TNSRE.2017.2721116
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
– reference: Cohen N, Balch T, Veloso M (2020) Trading via image classification. In: Proceedings of the First ACM International Conference on AI in Finance, ICAIF ’20, New York, NY, USA. Association for Computing Machinery
– reference: Cheng C-S, Ho Y, Chiu T-C (2021) End-to-end control chart pattern classification using a 1d convolutional neural network and transfer learning. Processes, 9(9)
– reference: LeCun Y et al. (2015) Lenet-5, convolutional neural networks. URL: http://yann.lecun.com/exdb/lenet, 20:5
– reference: Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory, pp 144–152. ACM
– reference: Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271
– reference: Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E (2012) Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 262–270. ACM
– ident: 4431_CR23
– volume: 2
  start-page: 985
  year: 2004
  ident: 4431_CR19
  publication-title: Neural Netw
– volume: 55
  start-page: 284
  year: 2016
  ident: 4431_CR14
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.02.017
– ident: 4431_CR1
– ident: 4431_CR12
  doi: 10.1007/978-3-642-24797-2
– ident: 4431_CR29
  doi: 10.1145/2339530.2339576
– ident: 4431_CR17
– volume: 84
  year: 2019
  ident: 4431_CR18
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105700
– ident: 4431_CR33
– ident: 4431_CR9
– volume: 57
  start-page: 1
  year: 2017
  ident: 4431_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.03.023
– volume: 16
  start-page: 1
  issue: 8
  year: 2021
  ident: 4431_CR25
  publication-title: PLOS ONE
– volume: 108
  start-page: 107460
  year: 2021
  ident: 4431_CR27
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107460
– ident: 4431_CR3
– ident: 4431_CR8
  doi: 10.1186/s40854-020-00187-0
– ident: 4431_CR2
  doi: 10.1145/130385.130401
– ident: 4431_CR39
  doi: 10.1145/3468891.3468896
– ident: 4431_CR5
  doi: 10.1145/3383455.3422544
– ident: 4431_CR16
– volume: 25
  start-page: 1998
  issue: 11
  year: 2017
  ident: 4431_CR30
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2017.2721116
– volume: 411
  start-page: 151
  year: 2017
  ident: 4431_CR36
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.05.028
– ident: 4431_CR7
  doi: 10.1007/978-0-387-30162-4_415
– ident: 4431_CR28
– ident: 4431_CR26
– ident: 4431_CR24
– volume: 33
  start-page: 917
  issue: 4
  year: 2019
  ident: 4431_CR11
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-019-00619-1
– ident: 4431_CR32
– ident: 4431_CR22
  doi: 10.33793/acperpro.03.01.89
– volume: 22
  start-page: 6525
  issue: 19
  year: 2018
  ident: 4431_CR37
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2703-7
– ident: 4431_CR6
  doi: 10.3390/pr9091484
– ident: 4431_CR34
– ident: 4431_CR4
– volume: 20
  start-page: 347
  issue: 3
  year: 2007
  ident: 4431_CR10
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2006.07.003
– ident: 4431_CR38
– volume: 18
  start-page: 602
  issue: 5–6
  year: 2005
  ident: 4431_CR13
  publication-title: Neural netw
  doi: 10.1016/j.neunet.2005.06.042
– ident: 4431_CR40
– ident: 4431_CR31
  doi: 10.1109/CVPR.2015.7298594
– volume: 77
  start-page: 354
  year: 2018
  ident: 4431_CR15
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.013
– ident: 4431_CR20
  doi: 10.1109/ICASSP.2019.8682194
– ident: 4431_CR21
SSID ssj0004373
Score 2.3971252
Snippet This paper proposes a novel deep learning-based approach for financial chart patterns classification. Convolutional neural networks (CNNs) have made notable...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14191
SubjectTerms Artificial neural networks
Compilers
Computer Science
Computer vision
Datasets
Deep learning
Image classification
Interpreters
Machine learning
Object recognition
Pattern classification
Processor Architectures
Programming Languages
Support vector machines
Time series
Title 1D convolutional neural networks for chart pattern classification in financial time series
URI https://link.springer.com/article/10.1007/s11227-022-04431-5
https://www.proquest.com/docview/2691506130
Volume 78
WOSCitedRecordID wos000776045100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509eDF9Ymrq-TgTQNtkr6Ooi4eZBEfy-KlJGkKgtRlW_39TrKpRVFBL-2hSVpmJp1vyMw3AMdBrIsyiEuqE5NQ9PiSZhHaciqUVIxzox2pz-Q6GY_T6TS78UVhdZvt3h5Juj91V-wWMpZQm30eCHR7NFqGFXR3qW3YcHs36aoh-eJcOcPAKI0E86Uy36_x2R11GPPLsajzNqP-_75zA9Y9uiRnC3PYhCVTbUG_7dxA_Ebehsfwgth8c293OMXyWrqbywqvCWJZYiuyGjJzDJwV0RZn28Qip0vyVJGyZesgtkM9scZs6h14GF3en19R32WBagy9GooxRSFUZkoeS6VMUma8iLjAa8FKjDeiNJQlywxLtUlkgQhFyURoiWBJhoUM-S70qpfK7AEpRMwLhdoPpBZGp0rbnkQYZGst8AVqAGEr7Fx7CnLbCeM578iTrfByFF7uhJdHAzj5mDNbEHD8OnrY6jD3m7HOWZxZHkX01gM4bXXWPf55tf2_DT-ANebUbtMDh9Br5q_mEFb1W_NUz4-ckb4DkvzhTw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4poU2Sb8exQ8mziE6x_ClJGkKA6ljrf79XrLWoqigL-1Dk7TcXXp35He_Azh2A5VmbpA5KtShgx5fOLGPthxxKSRlTCtL6jPqh4NBNB7Hd1VRWFGj3esjSfunbordPEpDx6DPXY5uz_EXYYmjxzKM-fcPo6Yaks3PlWNMjCKf06pU5vs1PrujJsb8cixqvc1V-3_fuQ5rVXRJzubmsAELOt-Edt25gVQbeQuevAti8OaV3eEUw2tpbxYVXhCMZYmpyCrJ1DJw5kSZONsAi6wuySQnWc3WQUyHemKMWRfb8Hh1OTzvOVWXBUdh6lU6mFOkXMY6Y4GQUodZzFKfcbymNMN8w488kdFY00jpUKQYoUgRciUwWBJeKjy2A638Jde7QFIesFSi9l2huFaRVKYnESbZSnF8geyAVws7URUFuemE8Zw05MlGeAkKL7HCS_wOnHzMmc4JOH4d3a11mFSbsUhoEBseRfTWHTitddY8_nm1vb8NP4KV3vC2n_SvBzf7sEqtCRioYBda5exVH8CyeisnxezQGuw7KzjkMw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFadQ_eNLTZbF5HsRbFUgpqKV7CvgIFiaWJ_n5nt4lRUUG8JIfsJmH2W2aG_eYbgNNuIFXaDVJHhjp00ONzJ_YRyxETXFDP09KK-owH4XAYTSbx6EMVv2W7V0eSi5oGo9KUFZ2ZSjt14ZtLaegYJnqXoQt0_GVYYYZIb_L1u3FdGektzphjTJIin9GybOb7d3x2TXW8-eWI1HqefvP__7wJG2XUSS4WMNmCJZ1tQ7Pq6EDKDb4Dj26PGB56iUecYvQu7c2yxXOCMS4xlVoFmVllzoxIE38bwpFdYzLNSFqpeBDTuZ4YkOt8Fx76V_eX107ZfcGRmJIVDuYaiolYp17AhdBhGnvK9xheFU0xD_Ejl6c01jSSOuQKIxfBQyY5BlHcVdz19qCRPWd6H4higacEoqLLJdMyEtL0KsLkW0qGHxAtcCvDJ7KUJjcdMp6SWlTZGC9B4yXWeInfgrP3ObOFMMevo9vVeiblJs0TGsRGXxG9eAvOq_WrH__8toO_DT-BtVGvnwxuhreHsE4tAgyDsA2NYv6ij2BVvhbTfH5ssfsG7WvtFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1D+convolutional+neural+networks+for+chart+pattern+classification+in+financial+time+series&rft.jtitle=The+Journal+of+supercomputing&rft.au=Liu%2C+Liying&rft.au=Si%2C+Yain-Whar&rft.date=2022-08-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=12&rft.spage=14191&rft.epage=14214&rft_id=info:doi/10.1007%2Fs11227-022-04431-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_022_04431_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon