1D convolutional neural networks for chart pattern classification in financial time series

This paper proposes a novel deep learning-based approach for financial chart patterns classification. Convolutional neural networks (CNNs) have made notable achievements in image recognition and computer vision applications. These networks are usually based on two-dimensional convolutional neural ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing Jg. 78; H. 12; S. 14191 - 14214
Hauptverfasser: Liu, Liying, Si, Yain-Whar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2022
Springer Nature B.V
Schlagworte:
ISSN:0920-8542, 1573-0484
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel deep learning-based approach for financial chart patterns classification. Convolutional neural networks (CNNs) have made notable achievements in image recognition and computer vision applications. These networks are usually based on two-dimensional convolutional neural networks (2D CNNs). In this paper, we describe the design and implementation of one-dimensional convolutional neural networks (1D CNNs) for the classification of chart patterns from financial time series. The proposed 1D CNN model is compared against support vector machine, extreme learning machine, long short-term memory, rule-based and dynamic time warping. Experimental results on synthetic datasets reveal that the accuracy of 1D CNN is highest among all the methods evaluated. Results on real datasets also reveal that chart patterns identified by 1D CNN are also the most recognized instances when they are compared to those classified by other methods.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-022-04431-5