A simple (2+ϵ)-approximation algorithm for Split Vertex Deletion

A split graph is a graph whose vertex set can be partitioned into a clique and a stable set. Given a graph G and weight function w:V(G)→Q≥0, the Split Vertex Deletion (SVD) problem asks to find a minimum weight set of vertices X such that G−X is a split graph. It is easy to show that a graph is a sp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of combinatorics Ročník 121; s. 103844
Hlavní autoři: Drescher, Matthew, Fiorini, Samuel, Huynh, Tony
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2024
ISSN:0195-6698, 1095-9971
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A split graph is a graph whose vertex set can be partitioned into a clique and a stable set. Given a graph G and weight function w:V(G)→Q≥0, the Split Vertex Deletion (SVD) problem asks to find a minimum weight set of vertices X such that G−X is a split graph. It is easy to show that a graph is a split graph if and only if it does not contain a 4-cycle, 5-cycle, or a two edge matching as an induced subgraph. Therefore, SVD admits an easy 5-approximation algorithm. On the other hand, for every δ>0, SVD does not admit a (2−δ)-approximation algorithm, unless P=NP or the Unique Games Conjecture fails. For every ϵ>0, Lokshtanov, Misra, Panolan, Philip, and Saurabh (Lokshtanov et al., 2020) recently gave a randomized(2+ϵ)-approximation algorithm for SVD. In this work we give an extremely simple deterministic (2+ϵ)-approximation algorithm for SVD.
AbstractList A split graph is a graph whose vertex set can be partitioned into a clique and a stable set. Given a graph G and weight function w:V(G)→Q≥0, the Split Vertex Deletion (SVD) problem asks to find a minimum weight set of vertices X such that G−X is a split graph. It is easy to show that a graph is a split graph if and only if it does not contain a 4-cycle, 5-cycle, or a two edge matching as an induced subgraph. Therefore, SVD admits an easy 5-approximation algorithm. On the other hand, for every δ>0, SVD does not admit a (2−δ)-approximation algorithm, unless P=NP or the Unique Games Conjecture fails. For every ϵ>0, Lokshtanov, Misra, Panolan, Philip, and Saurabh (Lokshtanov et al., 2020) recently gave a randomized(2+ϵ)-approximation algorithm for SVD. In this work we give an extremely simple deterministic (2+ϵ)-approximation algorithm for SVD.
ArticleNumber 103844
Author Huynh, Tony
Fiorini, Samuel
Drescher, Matthew
Author_xml – sequence: 1
  givenname: Matthew
  surname: Drescher
  fullname: Drescher, Matthew
  email: knavely@gmail.com
  organization: Département de Mathématique, Université libre de Bruxelles, Boulevard du Triomphe, Brussels, B-1050, Belgium
– sequence: 2
  givenname: Samuel
  surname: Fiorini
  fullname: Fiorini, Samuel
  email: Samuel.Fiorini@ulb.be
  organization: Département de Mathématique, Université libre de Bruxelles, Boulevard du Triomphe, Brussels, B-1050, Belgium
– sequence: 3
  givenname: Tony
  surname: Huynh
  fullname: Huynh, Tony
  email: huynh@di.uniroma1.it
  organization: Dipartimento di Informatica, Sapienza Università di Roma, viale Regina Elena 295, Rome, 00198, Italy
BookMark eNp9kMtOwzAQRS0EEm3hA9h5CUIpYzuJE7GqylOqxILH1nLtMThKk8iOUPkwvoNfwlVZs5oZ6d7R0ZmSw67vkJAzBnMGrLxq5tiYOQcu0i2qPD8gEwZ1kdW1ZIdkAiztZVlXx2QaYwPAWCHEhCwWNPrN0CI955c_3xeZHobQb_1Gj77vqG7f--DHjw11faDPQ-tH-oZhxC29wRZ3mRNy5HQb8fRvzsjr3e3L8iFbPd0_LherzPC8HrOEBhYwsVony1yL0gAWwhqjhXHrwknOZQ7FWrrcScPASK6tFc4iVKZaixlh-78m9DEGdGoICTN8KQZq50A1KjlQOwdq7yB1rvcdTGCfHoOKxmNn0PqAZlS29_-0fwEc0maI
Cites_doi 10.1016/j.jcss.2007.06.019
10.4007/annals.2006.164.51
10.1016/0012-365X(86)90076-2
10.1016/j.aim.2008.07.009
10.1016/j.jctb.2015.01.001
10.1016/j.ejc.2014.02.003
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ejc.2023.103844
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-9971
ExternalDocumentID 10_1016_j_ejc_2023_103844
S0195669823001622
GrantInformation_xml – fundername: Australian Research Council
  funderid: http://dx.doi.org/10.13039/501100000923
GroupedDBID --K
--M
-ET
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
UPT
~HD
ID FETCH-LOGICAL-c249t-2020d0e016df764a36c0e53dcca3cfb5f7227405b7f4f7c10c72add3fde08c8b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284503000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0195-6698
IngestDate Sat Nov 29 02:54:38 EST 2025
Sat Jul 27 15:43:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-2020d0e016df764a36c0e53dcca3cfb5f7227405b7f4f7c10c72add3fde08c8b3
ParticipantIDs crossref_primary_10_1016_j_ejc_2023_103844
elsevier_sciencedirect_doi_10_1016_j_ejc_2023_103844
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle European journal of combinatorics
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bousquet, Lagoutte, Thomassé (b3) 2015; 113
Fox, Sudakov (b6) 2008; 219
Erdős, Hajnal (b5) 1989
Freund, Bar-Yehuda, Bendel (b7) 2005; 36
Lokshtanov, Misra, Mukherjee, Panolan, Philip, Saurabh (b9) 2020
Bar-Yehuda, Even (b1) 1985; vol. 109
Khot, Regev (b8) 2008; 74
Szemerédi (b12) 1978; vol. 260
Rödl (b11) 1986; 59
Bousquet, Lagoutte, Thomassé (b2) 2014; 40
Lokshtanov, Misra, Panolan, Philip, Saurabh (b10) 2020
Chudnovsky, Robertson, Seymour, Thomas (b4) 2006; 164
Chudnovsky (10.1016/j.ejc.2023.103844_b4) 2006; 164
Lokshtanov (10.1016/j.ejc.2023.103844_b9) 2020
Szemerédi (10.1016/j.ejc.2023.103844_b12) 1978; vol. 260
Bar-Yehuda (10.1016/j.ejc.2023.103844_b1) 1985; vol. 109
Khot (10.1016/j.ejc.2023.103844_b8) 2008; 74
Lokshtanov (10.1016/j.ejc.2023.103844_b10) 2020
Bousquet (10.1016/j.ejc.2023.103844_b2) 2014; 40
Bousquet (10.1016/j.ejc.2023.103844_b3) 2015; 113
Erdős (10.1016/j.ejc.2023.103844_b5) 1989
Fox (10.1016/j.ejc.2023.103844_b6) 2008; 219
Freund (10.1016/j.ejc.2023.103844_b7) 2005; 36
Rödl (10.1016/j.ejc.2023.103844_b11) 1986; 59
References_xml – volume: 164
  start-page: 51
  year: 2006
  end-page: 229
  ident: b4
  article-title: The strong perfect graph theorem
  publication-title: Ann. of Math. (2)
– year: 2020
  ident: b10
  article-title: A (2+
  publication-title: 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)
– volume: vol. 109
  start-page: 27
  year: 1985
  end-page: 45
  ident: b1
  article-title: A local-ratio theorem for approximating the weighted vertex cover problem
  publication-title: Analysis and Design of Algorithms for Combinatorial Problems
– start-page: 1010
  year: 2020
  end-page: 1018
  ident: b9
  article-title: -Approximating feedback vertex set in tournaments
  publication-title: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
– volume: 40
  start-page: 73
  year: 2014
  end-page: 92
  ident: b2
  article-title: Clique versus independent set
  publication-title: European J. Combin.
– volume: 59
  start-page: 125
  year: 1986
  end-page: 134
  ident: b11
  article-title: On universality of graphs with uniformly distributed edges
  publication-title: Discrete Math.
– volume: vol. 260
  start-page: 399
  year: 1978
  end-page: 401
  ident: b12
  article-title: Regular partitions of graphs
  publication-title: Problèmes Combinatoires et Théorie des Graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976)
– volume: 113
  start-page: 261
  year: 2015
  end-page: 264
  ident: b3
  article-title: The Erdős–Hajnal conjecture for paths and antipaths
  publication-title: J. Combin. Theory Ser. B
– start-page: 37
  year: 1989
  end-page: 52
  ident: b5
  article-title: Ramsey-type theorems, Vol. 25
– volume: 74
  start-page: 335
  year: 2008
  end-page: 349
  ident: b8
  article-title: Vertex cover might be hard to approximate to within
  publication-title: J. Comput. System Sci.
– volume: 36
  start-page: 422
  year: 2005
  end-page: 463
  ident: b7
  article-title: Local ratio: a unified framework for approximation algorithms
  publication-title: ACM Comput. Surv.
– volume: 219
  start-page: 1771
  year: 2008
  end-page: 1800
  ident: b6
  article-title: Induced Ramsey-type theorems
  publication-title: Adv. Math.
– volume: 36
  start-page: 422
  year: 2005
  ident: 10.1016/j.ejc.2023.103844_b7
  article-title: Local ratio: a unified framework for approximation algorithms
  publication-title: ACM Comput. Surv.
– start-page: 37
  year: 1989
  ident: 10.1016/j.ejc.2023.103844_b5
– volume: 74
  start-page: 335
  issue: 3
  year: 2008
  ident: 10.1016/j.ejc.2023.103844_b8
  article-title: Vertex cover might be hard to approximate to within 2−ϵ
  publication-title: J. Comput. System Sci.
  doi: 10.1016/j.jcss.2007.06.019
– volume: 164
  start-page: 51
  issue: 1
  year: 2006
  ident: 10.1016/j.ejc.2023.103844_b4
  article-title: The strong perfect graph theorem
  publication-title: Ann. of Math. (2)
  doi: 10.4007/annals.2006.164.51
– start-page: 1010
  year: 2020
  ident: 10.1016/j.ejc.2023.103844_b9
  article-title: 2-Approximating feedback vertex set in tournaments
– volume: 59
  start-page: 125
  issue: 1–2
  year: 1986
  ident: 10.1016/j.ejc.2023.103844_b11
  article-title: On universality of graphs with uniformly distributed edges
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(86)90076-2
– volume: vol. 109
  start-page: 27
  year: 1985
  ident: 10.1016/j.ejc.2023.103844_b1
  article-title: A local-ratio theorem for approximating the weighted vertex cover problem
– volume: vol. 260
  start-page: 399
  year: 1978
  ident: 10.1016/j.ejc.2023.103844_b12
  article-title: Regular partitions of graphs
– year: 2020
  ident: 10.1016/j.ejc.2023.103844_b10
  article-title: A (2+ɛ)-factor approximation algorithm for split vertex deletion
– volume: 219
  start-page: 1771
  issue: 6
  year: 2008
  ident: 10.1016/j.ejc.2023.103844_b6
  article-title: Induced Ramsey-type theorems
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2008.07.009
– volume: 113
  start-page: 261
  year: 2015
  ident: 10.1016/j.ejc.2023.103844_b3
  article-title: The Erdős–Hajnal conjecture for paths and antipaths
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/j.jctb.2015.01.001
– volume: 40
  start-page: 73
  year: 2014
  ident: 10.1016/j.ejc.2023.103844_b2
  article-title: Clique versus independent set
  publication-title: European J. Combin.
  doi: 10.1016/j.ejc.2014.02.003
SSID ssj0011533
Score 2.3496387
Snippet A split graph is a graph whose vertex set can be partitioned into a clique and a stable set. Given a graph G and weight function w:V(G)→Q≥0, the Split Vertex...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 103844
Title A simple (2+ϵ)-approximation algorithm for Split Vertex Deletion
URI https://dx.doi.org/10.1016/j.ejc.2023.103844
Volume 121
WOSCitedRecordID wos001284503000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9971
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011533
  issn: 0195-6698
  databaseCode: AIEXJ
  dateStart: 20211209
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IBggyk1-oNIgSpU6FyePabUKkDYh0aG-ZYljb6natGqzqfwwfgd_iePYcdlYpfWBFyuKWudyPtufT875DkIfPE5lhnVmUy8IbClpbmcMhnseUNHv8xDWZFYXm6Cnp-FkEn1rtc6bXJjrGS3LcLOJlv_V1HAOjC1TZ_cwt-kUTsAxGB1aMDu09zJ8bK0LKfkruaNFoB1Y3eGoO_At6QGwaxHxTaEyFq10drFYFdXlvA43_A6MtLJ-8FXFNzATSV1ubbW7fPeax8IzwO46rcVGtlXqYRffwEGXFDdIKWTMX6Hc0fMrPtsi62dZO3nGCz1BaW8E8Uxcm3FQRr4dBKqytJlhVRK0niOlJLvSfPxn-laehGmPT6W6JHF729_elMq-tYSZwMImZm2aQBeJ7CJRXTxAB4T6UdhGB_GX48lX86VJ8t2mZqW87-bLdx0DeOs-7uYuf_GR8VP0RG8kcKwA8Ay1eHmIHp8YFd71czSKsYICPsIEW_j3L_wR3wQANgDAAABcAwArAOAGAC_Q2eh4PPxs67oZNoPNdAWjgTi5w-ERckEDL3UD5nDfzWGwukxkvqCEUCDqGRWeoDAyGSWwzLki507Iwsx9idrlouSvEM5E6KS5SFkaRR4TwGWynPDQDzKSRp5gHfSpeSPJUsmjJDtt0EFe884Sze8Ub0vA_rv_9nqfa7xBj7awfIva1eqKv0MP2XVVrFfvtfH_AIqPbLw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+%28+2+%2B+%CF%B5+%29+-approximation+algorithm+for+Split+Vertex+Deletion&rft.jtitle=European+journal+of+combinatorics&rft.au=Drescher%2C+Matthew&rft.au=Fiorini%2C+Samuel&rft.au=Huynh%2C+Tony&rft.date=2024-10-01&rft.issn=0195-6698&rft.volume=121&rft.spage=103844&rft_id=info:doi/10.1016%2Fj.ejc.2023.103844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejc_2023_103844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6698&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6698&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6698&client=summon