A simple (2+ϵ)-approximation algorithm for Split Vertex Deletion

A split graph is a graph whose vertex set can be partitioned into a clique and a stable set. Given a graph G and weight function w:V(G)→Q≥0, the Split Vertex Deletion (SVD) problem asks to find a minimum weight set of vertices X such that G−X is a split graph. It is easy to show that a graph is a sp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of combinatorics Ročník 121; s. 103844
Hlavní autori: Drescher, Matthew, Fiorini, Samuel, Huynh, Tony
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2024
ISSN:0195-6698, 1095-9971
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A split graph is a graph whose vertex set can be partitioned into a clique and a stable set. Given a graph G and weight function w:V(G)→Q≥0, the Split Vertex Deletion (SVD) problem asks to find a minimum weight set of vertices X such that G−X is a split graph. It is easy to show that a graph is a split graph if and only if it does not contain a 4-cycle, 5-cycle, or a two edge matching as an induced subgraph. Therefore, SVD admits an easy 5-approximation algorithm. On the other hand, for every δ>0, SVD does not admit a (2−δ)-approximation algorithm, unless P=NP or the Unique Games Conjecture fails. For every ϵ>0, Lokshtanov, Misra, Panolan, Philip, and Saurabh (Lokshtanov et al., 2020) recently gave a randomized(2+ϵ)-approximation algorithm for SVD. In this work we give an extremely simple deterministic (2+ϵ)-approximation algorithm for SVD.
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2023.103844