Algorithmic study on 2-transitivity of graphs
Let G=(V,E) be a graph where V and E are the vertex and edge sets, respectively. For two disjoint subsets A and B of V, we say AdominatesB if every vertex of B is adjacent to at least one vertex of A. A vertex partition π={V1,V2,…,Vk} of G is called a transitive partition of size k if Vi dominates V...
Uloženo v:
| Vydáno v: | Discrete Applied Mathematics Ročník 358; s. 57 - 75 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.12.2024
|
| Témata: | |
| ISSN: | 0166-218X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let G=(V,E) be a graph where V and E are the vertex and edge sets, respectively. For two disjoint subsets A and B of V, we say AdominatesB if every vertex of B is adjacent to at least one vertex of A. A vertex partition π={V1,V2,…,Vk} of G is called a transitive partition of size k if Vi dominates Vj for all 1≤i<j≤k. In this article, we study a variation of transitive partition, namely 2-transitive partition. For two disjoint subsets A and B of V, we say A 2-dominatesB if every vertex of B is adjacent to at least two vertices of A. A vertex partition π={V1,V2,…,Vk} of G is called a 2-transitive partition of size k if Vi2-dominates Vj for all 1≤i<j≤k. The Maximum 2-Transitivity Problem is to find a 2-transitive partition of a given graph with the maximum number of parts. We show that the decision version of this problem is NP-complete for chordal and bipartite graphs. On the positive side, we design three linear-time algorithms for solving Maximum 2-Transitivity Problem in trees, split, and bipartite chain graphs. |
|---|---|
| ISSN: | 0166-218X |
| DOI: | 10.1016/j.dam.2024.06.030 |