A multi-objective evolutionary algorithm for robust positive-unlabeled learning

Positive and unlabeled (PU) learning is to learn a binary classifier with good generalization ability from PU data. A variety of PU learning algorithms with promising performance have been proposed. However, most of them assume that PU samples are “clean”, which is not true in real applications due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 678; S. 120992
Hauptverfasser: Qiu, Jianfeng, Tang, Qi, Tan, Ming, Li, Kaixuan, Xie, Juan, Cai, Xiaoqiang, Cheng, Fan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.09.2024
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Positive and unlabeled (PU) learning is to learn a binary classifier with good generalization ability from PU data. A variety of PU learning algorithms with promising performance have been proposed. However, most of them assume that PU samples are “clean”, which is not true in real applications due to the existing noisy or redundant samples. Thus, how to obtain a robust PU classifier with better performance is a challenging problem. To this end, we propose a novel multi-objective evolutionary algorithm to tackle it, named BPUSS-MOEA. Specifically, we firstly transform the robust PU learning into a bi-objective PU sample selection (BPUSS) problem, in which two objectives are designed. One is the number of selected “clean” PU samples and the other is the PU accuracy. Then, a dual-coding scheme is designed to represent the selected “clean” PU samples and the labels of U samples. With the dual-coding scheme, a novel offspring generation strategy is developed to achieve the offsprings with high quality. To further improve the performance of BPUSS-MOEA, an effective population initialization strategy is designed. Experiments on 10 datasets with different noise levels show that compared with the state-of-the-arts, the proposed algorithm demonstrates its robustness in terms of the PU accuracy.
AbstractList Positive and unlabeled (PU) learning is to learn a binary classifier with good generalization ability from PU data. A variety of PU learning algorithms with promising performance have been proposed. However, most of them assume that PU samples are “clean”, which is not true in real applications due to the existing noisy or redundant samples. Thus, how to obtain a robust PU classifier with better performance is a challenging problem. To this end, we propose a novel multi-objective evolutionary algorithm to tackle it, named BPUSS-MOEA. Specifically, we firstly transform the robust PU learning into a bi-objective PU sample selection (BPUSS) problem, in which two objectives are designed. One is the number of selected “clean” PU samples and the other is the PU accuracy. Then, a dual-coding scheme is designed to represent the selected “clean” PU samples and the labels of U samples. With the dual-coding scheme, a novel offspring generation strategy is developed to achieve the offsprings with high quality. To further improve the performance of BPUSS-MOEA, an effective population initialization strategy is designed. Experiments on 10 datasets with different noise levels show that compared with the state-of-the-arts, the proposed algorithm demonstrates its robustness in terms of the PU accuracy.
ArticleNumber 120992
Author Xie, Juan
Tang, Qi
Cai, Xiaoqiang
Tan, Ming
Li, Kaixuan
Qiu, Jianfeng
Cheng, Fan
Author_xml – sequence: 1
  givenname: Jianfeng
  surname: Qiu
  fullname: Qiu, Jianfeng
  email: qiujianf@ahu.edu.cn
  organization: Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
– sequence: 2
  givenname: Qi
  surname: Tang
  fullname: Tang, Qi
  email: 15856229622@163.com
  organization: School of Computer Science and Technology, Anhui University, Hefei 230601, China
– sequence: 3
  givenname: Ming
  surname: Tan
  fullname: Tan, Ming
  email: tanming@hfuu.edu.cn
  organization: School of Artificial Intelligence and Big Data, Hefei University, Hefei 230601, China
– sequence: 4
  givenname: Kaixuan
  surname: Li
  fullname: Li, Kaixuan
  email: kxli@ahu.edu.cn
  organization: Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
– sequence: 5
  givenname: Juan
  surname: Xie
  fullname: Xie, Juan
  email: xiejuan0176@163.com
  organization: School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
– sequence: 6
  givenname: Xiaoqiang
  surname: Cai
  fullname: Cai, Xiaoqiang
  email: saiqiang413@gmail.com
  organization: School of Computer Science and Technology, Anhui University, Hefei 230601, China
– sequence: 7
  givenname: Fan
  orcidid: 0000-0003-0175-0818
  surname: Cheng
  fullname: Cheng, Fan
  email: chengfan@mail.ustc.edu.cn
  organization: Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
BookMark eNp9kMtqwzAQAEVJoUnaD-jNP2BXWstyRE8h9AWBXNqzkOVVKuNIQbIN_fs6pOee9rKzzM6KLHzwSMgjowWjTDx1hfOpAAq8YEClhBuyZJsacgGSLciSUqA5haq6I6uUOkopr4VYksM2O4394PLQdGgGN2GGU-jHwQWv40-m-2OIbvg-ZTbELIZmTEN2DsldVvPR97rBHtusRx2988d7cmt1n_Dhb67J1-vL5-493x_ePnbbfW6AyyFnRvPStEYAaI1ctxsAaXlZNkJKK2pLhZyNeVVCYxlaVrfMmLrmQEVly7ZcE3a9a2JIKaJV5-hOs7FiVF2KqE7NRdSliLoWmZnnK4Oz2OQwqmQceoOti_Pvqg3uH_oXq61sQA
Cites_doi 10.1016/j.asoc.2021.107794
10.1007/s11063-021-10590-y
10.1002/int.22437
10.1145/3340848
10.1109/TPAMI.2018.2860995
10.1007/s10994-021-06111-6
10.1016/j.asoc.2020.106986
10.1109/TPAMI.2019.2941684
10.1109/TEVC.2014.2308305
10.1109/4235.996017
10.1016/j.eswa.2021.116232
10.1016/j.ipm.2017.02.008
10.1109/TEVC.2021.3051608
10.1007/s10994-020-05877-5
10.1504/IJBIC.2016.076329
10.1109/TGRS.2019.2892567
10.1016/j.ins.2021.08.099
10.1109/TNNLS.2018.2870666
10.1016/j.swevo.2022.101174
10.1016/j.ins.2021.01.002
10.1093/bioinformatics/btv550
10.1016/j.compbiolchem.2021.107566
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2024.120992
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
ExternalDocumentID 10_1016_j_ins_2024_120992
S002002552400906X
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c249t-1ca43cdc622aae4ad8229f433b699f67f0690204532bf1ef17d1cc7742065f3d3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302628900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 02:44:14 EST 2025
Sat Jun 29 15:30:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Robust PU learning
PU sample selection
Multi-objective evolutionary algorithm
Dual-coding scheme
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-1ca43cdc622aae4ad8229f433b699f67f0690204532bf1ef17d1cc7742065f3d3
ORCID 0000-0003-0175-0818
ParticipantIDs crossref_primary_10_1016_j_ins_2024_120992
elsevier_sciencedirect_doi_10_1016_j_ins_2024_120992
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Sun, Cheng, Ma, Sun (br0380) 2020
Su, Chen, Xu (br0280) 2021
Zhao, Pang, Liu, Ye (br0410) 2021
Carnevali, Rossi, Milios, de Andrade Lopes (br0030) 2021; 580
Kalyanmoy, Jain (br0070) 2013; 18
Wang, Lin, Bi, Sun, Si, Liu (br0310) 2022; 191
Sansone, De Natale, Zhou (br0260) 2018; 41
Liu, Lee, Yu, Li (br0160) 2002
Caravanti de Souza, Nogueira, Rossi, Marcacini, dos Santos, Rezende (br0060) 2021; 111
Luo, Zhao, Chen, Qiao, Du, Zhang, Wu, Cai, He, Rajmohan, Lin (br0170) 2021
Ren, Yang, Zhao, Chen, Xue, Miao, Huang, Liu (br0250) 2019; 30
Xue, Xue, Zhang (br0350) 2019; 13
Zhang, Ren, Liu, Yang, Gong (br0370) 2019
Wu, Zhan, Zhang (br0320) 2021; 25
Li, Liu (br0150) 2003
Lee, Liu (br0130) 2003
Zhao, Xu, Jiang, Wen, Huang (br0400) 2022
Nguyen, Li, Ng (br0190) 2011
Du Plessis, Niu, Sugiyama (br0090) 2014
Qiu, Cai, Zhang, Cheng (br0210) 2022; 75
Xiang, Tian, Xiao, Zhang (br0340) 2019
Yang, Humphrey, James, Yang, Jothi (br0360) 2016; 32
Mu, Sun, Yuan, Shi (br0180) 2021; 36
Wang, Peng, He, Liu, Li (br0300) 2021; 53
Gong, Shi, Liu, Zhang, Yang, Tao (br0120) 2021; 43
Van Der Maaten (br0290) 2014; 15
Du Plessis, Niu, Sugiyama (br0100) 2015
Deb, Pratap, Agarwal, Meyarivan (br0080) 2002; 6
Cai, Ma, Gong, Tian (br0020) 2016; 8
Shi, Pan, Yang, Gong (br0270) 2018
Xuxi Chen, Wuyang Chen, Tianlong Chen, Ye Yuan, Chen Gong, Kewei Chen, Zhangyang Wang, Self-PU: Self boosted and calibrated positive-unlabeled training, 2020, pp. 1510–1519.
Qiu, Xiang, Wang, Zhang (br0240) 2021; 112
Zhang, Tian, Cheng, Jin (br0390) 2014; 19
Qiu, Cai, Zhang, Cheng, Yuan, Fu (br0220) 2021; 101
Onan, Korukoğlu, Bulut (br0200) 2017; 53
Gao, Pan, Zuo, Gao, Xu (br0110) 2019; 57
Bekker, Davis (br0010) 2020; 109
Li, Wang, Ma, Ortal, Zhao, Stenger, Hirate (br0140) 2019
Qiu, Cai, Zhang, Cheng, Yuan, Fu (br0230) 2021; 101
Chen, Gong, Yang (br0040) 2021; 558
Zheng, Peng, Zhang, Zhao, Gao, Li (br0420) 2019; 20
Wu, Zhu, Wang, Zhang (br0330) 2021; 95
Deb (10.1016/j.ins.2024.120992_br0080) 2002; 6
Cai (10.1016/j.ins.2024.120992_br0020) 2016; 8
Kalyanmoy (10.1016/j.ins.2024.120992_br0070) 2013; 18
Qiu (10.1016/j.ins.2024.120992_br0230) 2021; 101
Xiang (10.1016/j.ins.2024.120992_br0340) 2019
Li (10.1016/j.ins.2024.120992_br0150) 2003
Qiu (10.1016/j.ins.2024.120992_br0220) 2021; 101
Yang (10.1016/j.ins.2024.120992_br0360) 2016; 32
Gong (10.1016/j.ins.2024.120992_br0120) 2021; 43
Liu (10.1016/j.ins.2024.120992_br0160) 2002
Chen (10.1016/j.ins.2024.120992_br0040) 2021; 558
10.1016/j.ins.2024.120992_br0050
Du Plessis (10.1016/j.ins.2024.120992_br0090) 2014
Zhang (10.1016/j.ins.2024.120992_br0370) 2019
Zheng (10.1016/j.ins.2024.120992_br0420) 2019; 20
Shi (10.1016/j.ins.2024.120992_br0270) 2018
Onan (10.1016/j.ins.2024.120992_br0200) 2017; 53
Su (10.1016/j.ins.2024.120992_br0280) 2021
Wang (10.1016/j.ins.2024.120992_br0300) 2021; 53
Nguyen (10.1016/j.ins.2024.120992_br0190) 2011
Bekker (10.1016/j.ins.2024.120992_br0010) 2020; 109
Wu (10.1016/j.ins.2024.120992_br0320) 2021; 25
Carnevali (10.1016/j.ins.2024.120992_br0030) 2021; 580
Wang (10.1016/j.ins.2024.120992_br0310) 2022; 191
Zhao (10.1016/j.ins.2024.120992_br0400) 2022
Caravanti de Souza (10.1016/j.ins.2024.120992_br0060) 2021; 111
Zhao (10.1016/j.ins.2024.120992_br0410) 2021
Du Plessis (10.1016/j.ins.2024.120992_br0100) 2015
Wu (10.1016/j.ins.2024.120992_br0330) 2021; 95
Zhang (10.1016/j.ins.2024.120992_br0380) 2020
Li (10.1016/j.ins.2024.120992_br0140) 2019
Luo (10.1016/j.ins.2024.120992_br0170) 2021
Qiu (10.1016/j.ins.2024.120992_br0240) 2021; 112
Ren (10.1016/j.ins.2024.120992_br0250) 2019; 30
Zhang (10.1016/j.ins.2024.120992_br0390) 2014; 19
Sansone (10.1016/j.ins.2024.120992_br0260) 2018; 41
Gao (10.1016/j.ins.2024.120992_br0110) 2019; 57
Xue (10.1016/j.ins.2024.120992_br0350) 2019; 13
Lee (10.1016/j.ins.2024.120992_br0130) 2003
Van Der Maaten (10.1016/j.ins.2024.120992_br0290) 2014; 15
Mu (10.1016/j.ins.2024.120992_br0180) 2021; 36
Qiu (10.1016/j.ins.2024.120992_br0210) 2022; 75
References_xml – start-page: 1421
  year: 2011
  end-page: 1426
  ident: br0190
  article-title: Positive unlabeled learning for time series classification
  publication-title: International Joint Conference on Artificial Intelligence
– volume: 101
  start-page: 1
  year: 2021
  end-page: 14
  ident: br0220
  article-title: An evolutionary multi-objective approach to learn from positive and unlabeled data
  publication-title: Appl. Soft Comput.
– volume: 580
  start-page: 655
  year: 2021
  end-page: 672
  ident: br0030
  article-title: A graph-based approach for positive and unlabeled learning
  publication-title: Inf. Sci.
– volume: 41
  start-page: 2584
  year: 2018
  end-page: 2598
  ident: br0260
  article-title: Efficient training for positive unlabeled learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2995
  year: 2021
  end-page: 3001
  ident: br0280
  article-title: Positive-unlabeled learning from imbalanced data
  publication-title: International Joint Conference on Artificial Intelligence
– volume: 13
  start-page: 1
  year: 2019
  end-page: 27
  ident: br0350
  article-title: Self-adaptive particle swarm optimization for large-scale feature selection in classification
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 57
  start-page: 4720
  year: 2019
  end-page: 4734
  ident: br0110
  article-title: An optimized deep network representation of multimutation differential evolution and its application in seismic inversion
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 19
  start-page: 201
  year: 2014
  end-page: 213
  ident: br0390
  article-title: An efficient approach to nondominated sorting for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 577
  year: 2013
  end-page: 601
  ident: br0070
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 36
  start-page: 3767
  year: 2021
  end-page: 3788
  ident: br0180
  article-title: Positive unlabeled learning-based anomaly detection in videos
  publication-title: Int. J. Intell. Syst.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 12
  ident: br0420
  article-title: DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions
  publication-title: BMC Bioinform.
– year: 2019
  ident: br0340
  article-title: A clustering-based surrogate-assisted multi-objective evolutionary algorithm for shelter location under uncertainty of road networks
  publication-title: IEEE Trans. Ind. Inform.
– volume: 558
  start-page: 229
  year: 2021
  end-page: 245
  ident: br0040
  article-title: Cost-sensitive positive and unlabeled learning
  publication-title: Inf. Sci.
– volume: 111
  start-page: 3549
  year: 2021
  end-page: 3592
  ident: br0060
  article-title: A network-based positive and unlabeled learning approach for fake news detection
  publication-title: Mach. Learn.
– start-page: 2689
  year: 2018
  end-page: 2695
  ident: br0270
  article-title: Positive and unlabeled learning via loss decomposition and centroid estimation
  publication-title: International Joint Conference on Artificial Intelligence
– volume: 191
  year: 2022
  ident: br0310
  article-title: Adaptive multi-task positive-unlabeled learning for joint prediction of multiple chronic diseases using online shopping behaviors
  publication-title: Expert Syst. Appl.
– start-page: 387
  year: 2002
  end-page: 394
  ident: br0160
  article-title: Partially supervised classification of text documents
  publication-title: International Conference on Machine Learning
– volume: 32
  start-page: 252
  year: 2016
  end-page: 259
  ident: br0360
  article-title: Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data
  publication-title: Bioinformatics
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: br0080
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 4250
  year: 2019
  end-page: 4256
  ident: br0370
  article-title: Positive and unlabeled learning with label disambiguation
  publication-title: International Joint Conference on Artificial Intelligence
– start-page: 8784
  year: 2021
  end-page: 8792
  ident: br0170
  article-title: PULNS: positive-unlabeled learning with effective negative sample selector
  publication-title: AAAI Conference on Artificial Intelligence
– start-page: 14441
  year: 2022
  end-page: 14450
  ident: br0400
  article-title: Dist-PU: positive-unlabeled learning from a label distribution perspective
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 509
  year: 2021
  end-page: 518
  ident: br0410
  article-title: Positive-unlabeled learning for cell detection in histopathology images with incomplete annotations
  publication-title: Medical Image Computing and Computer Assisted Intervention
– volume: 8
  start-page: 84
  year: 2016
  end-page: 98
  ident: br0020
  article-title: A survey on network community detection based on evolutionary computation
  publication-title: Int. J. Bio-Inspir. Comput.
– volume: 53
  start-page: 4239
  year: 2021
  end-page: 4255
  ident: br0300
  article-title: A two-step classification method based on collaborative representation for positive and unlabeled learning
  publication-title: Neural Process. Lett.
– start-page: 399
  year: 2019
  end-page: 408
  ident: br0140
  article-title: Learning classifiers on positive and unlabeled data with policy gradient
  publication-title: IEEE International Conference on Data Mining
– volume: 53
  start-page: 814
  year: 2017
  end-page: 833
  ident: br0200
  article-title: A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification
  publication-title: Inf. Process. Manag.
– volume: 109
  start-page: 719
  year: 2020
  end-page: 760
  ident: br0010
  article-title: Learning from positive and unlabeled data: a survey
  publication-title: Mach. Learn.
– volume: 112
  start-page: 1
  year: 2021
  end-page: 14
  ident: br0240
  article-title: A multi-objective feature selection approach based on chemical reaction optimization
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 3221
  year: 2014
  end-page: 3245
  ident: br0290
  article-title: Accelerating t-SNE using tree-based algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 43
  start-page: 918
  year: 2021
  end-page: 932
  ident: br0120
  article-title: Loss decomposition and centroid estimation for positive and unlabeled learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 587
  year: 2003
  end-page: 592
  ident: br0150
  article-title: Learning to classify texts using positive and unlabeled data
  publication-title: International Joint Conference on Artificial Intelligence
– start-page: 1386
  year: 2015
  end-page: 1394
  ident: br0100
  article-title: Convex formulation for learning from positive and unlabeled data
  publication-title: International Conference on Machine Learning
– start-page: 448
  year: 2003
  end-page: 455
  ident: br0130
  article-title: Learning with positive and unlabeled examples using weighted logistic regression
  publication-title: International Conference on Machine Learning
– volume: 30
  start-page: 3072
  year: 2019
  end-page: 3083
  ident: br0250
  article-title: A robust AUC maximization framework with simultaneous outlier detection and feature selection for positive-unlabeled classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 101
  year: 2021
  ident: br0230
  article-title: An evolutionary multi-objective approach to learn from positive and unlabeled data
  publication-title: Appl. Soft Comput.
– reference: Xuxi Chen, Wuyang Chen, Tianlong Chen, Ye Yuan, Chen Gong, Kewei Chen, Zhangyang Wang, Self-PU: Self boosted and calibrated positive-unlabeled training, 2020, pp. 1510–1519.
– volume: 25
  start-page: 478
  year: 2021
  end-page: 491
  ident: br0320
  article-title: Safe: scale-adaptive fitness evaluation method for expensive optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 95
  start-page: 1
  year: 2021
  end-page: 13
  ident: br0330
  article-title: An ensemble learning framework for potential mirna-disease association prediction with positive-unlabeled data
  publication-title: Comput. Biol. Chem.
– start-page: 1
  year: 2020
  end-page: 8
  ident: br0380
  article-title: An overlapping community detection based multi-objective evolutionary algorithm for diversified social influence maximization
  publication-title: IEEE Congress on Evolutionary Computation
– start-page: 703
  year: 2014
  end-page: 711
  ident: br0090
  article-title: Analysis of learning from positive and unlabeled data
  publication-title: Advances in Neural Information Processing Systems
– volume: 75
  year: 2022
  ident: br0210
  article-title: A loss matrix-based alternating optimization method for sparse pu learning
  publication-title: Swarm Evol. Comput.
– start-page: 1421
  year: 2011
  ident: 10.1016/j.ins.2024.120992_br0190
  article-title: Positive unlabeled learning for time series classification
– start-page: 587
  year: 2003
  ident: 10.1016/j.ins.2024.120992_br0150
  article-title: Learning to classify texts using positive and unlabeled data
– start-page: 14441
  year: 2022
  ident: 10.1016/j.ins.2024.120992_br0400
  article-title: Dist-PU: positive-unlabeled learning from a label distribution perspective
– volume: 112
  start-page: 1
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0240
  article-title: A multi-objective feature selection approach based on chemical reaction optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107794
– volume: 53
  start-page: 4239
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0300
  article-title: A two-step classification method based on collaborative representation for positive and unlabeled learning
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-021-10590-y
– volume: 36
  start-page: 3767
  issue: 8
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0180
  article-title: Positive unlabeled learning-based anomaly detection in videos
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22437
– volume: 13
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2024.120992_br0350
  article-title: Self-adaptive particle swarm optimization for large-scale feature selection in classification
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3340848
– start-page: 509
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0410
  article-title: Positive-unlabeled learning for cell detection in histopathology images with incomplete annotations
– start-page: 399
  year: 2019
  ident: 10.1016/j.ins.2024.120992_br0140
  article-title: Learning classifiers on positive and unlabeled data with policy gradient
– start-page: 8784
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0170
  article-title: PULNS: positive-unlabeled learning with effective negative sample selector
– start-page: 387
  year: 2002
  ident: 10.1016/j.ins.2024.120992_br0160
  article-title: Partially supervised classification of text documents
– year: 2019
  ident: 10.1016/j.ins.2024.120992_br0340
  article-title: A clustering-based surrogate-assisted multi-objective evolutionary algorithm for shelter location under uncertainty of road networks
  publication-title: IEEE Trans. Ind. Inform.
– volume: 41
  start-page: 2584
  issue: 11
  year: 2018
  ident: 10.1016/j.ins.2024.120992_br0260
  article-title: Efficient training for positive unlabeled learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2860995
– start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2024.120992_br0380
  article-title: An overlapping community detection based multi-objective evolutionary algorithm for diversified social influence maximization
– volume: 111
  start-page: 3549
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0060
  article-title: A network-based positive and unlabeled learning approach for fake news detection
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-06111-6
– volume: 101
  start-page: 1
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0220
  article-title: An evolutionary multi-objective approach to learn from positive and unlabeled data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106986
– volume: 43
  start-page: 918
  issue: 3
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0120
  article-title: Loss decomposition and centroid estimation for positive and unlabeled learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2941684
– volume: 101
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0230
  article-title: An evolutionary multi-objective approach to learn from positive and unlabeled data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106986
– volume: 19
  start-page: 201
  issue: 2
  year: 2014
  ident: 10.1016/j.ins.2024.120992_br0390
  article-title: An efficient approach to nondominated sorting for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2308305
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2024.120992_br0080
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 18
  start-page: 577
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2024.120992_br0070
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 191
  year: 2022
  ident: 10.1016/j.ins.2024.120992_br0310
  article-title: Adaptive multi-task positive-unlabeled learning for joint prediction of multiple chronic diseases using online shopping behaviors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116232
– volume: 53
  start-page: 814
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2024.120992_br0200
  article-title: A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2017.02.008
– volume: 25
  start-page: 478
  issue: 3
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0320
  article-title: Safe: scale-adaptive fitness evaluation method for expensive optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3051608
– start-page: 448
  year: 2003
  ident: 10.1016/j.ins.2024.120992_br0130
  article-title: Learning with positive and unlabeled examples using weighted logistic regression
– start-page: 2995
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0280
  article-title: Positive-unlabeled learning from imbalanced data
– volume: 109
  start-page: 719
  year: 2020
  ident: 10.1016/j.ins.2024.120992_br0010
  article-title: Learning from positive and unlabeled data: a survey
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-020-05877-5
– volume: 8
  start-page: 84
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2024.120992_br0020
  article-title: A survey on network community detection based on evolutionary computation
  publication-title: Int. J. Bio-Inspir. Comput.
  doi: 10.1504/IJBIC.2016.076329
– start-page: 2689
  year: 2018
  ident: 10.1016/j.ins.2024.120992_br0270
  article-title: Positive and unlabeled learning via loss decomposition and centroid estimation
– volume: 15
  start-page: 3221
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2024.120992_br0290
  article-title: Accelerating t-SNE using tree-based algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 1
  issue: 661
  year: 2019
  ident: 10.1016/j.ins.2024.120992_br0420
  article-title: DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions
  publication-title: BMC Bioinform.
– start-page: 4250
  year: 2019
  ident: 10.1016/j.ins.2024.120992_br0370
  article-title: Positive and unlabeled learning with label disambiguation
– start-page: 703
  year: 2014
  ident: 10.1016/j.ins.2024.120992_br0090
  article-title: Analysis of learning from positive and unlabeled data
– volume: 57
  start-page: 4720
  issue: 7
  year: 2019
  ident: 10.1016/j.ins.2024.120992_br0110
  article-title: An optimized deep network representation of multimutation differential evolution and its application in seismic inversion
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2892567
– volume: 580
  start-page: 655
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0030
  article-title: A graph-based approach for positive and unlabeled learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.08.099
– volume: 30
  start-page: 3072
  issue: 10
  year: 2019
  ident: 10.1016/j.ins.2024.120992_br0250
  article-title: A robust AUC maximization framework with simultaneous outlier detection and feature selection for positive-unlabeled classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2870666
– volume: 75
  year: 2022
  ident: 10.1016/j.ins.2024.120992_br0210
  article-title: A loss matrix-based alternating optimization method for sparse pu learning
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101174
– volume: 558
  start-page: 229
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0040
  article-title: Cost-sensitive positive and unlabeled learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.002
– ident: 10.1016/j.ins.2024.120992_br0050
– start-page: 1386
  year: 2015
  ident: 10.1016/j.ins.2024.120992_br0100
  article-title: Convex formulation for learning from positive and unlabeled data
– volume: 32
  start-page: 252
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2024.120992_br0360
  article-title: Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv550
– volume: 95
  start-page: 1
  year: 2021
  ident: 10.1016/j.ins.2024.120992_br0330
  article-title: An ensemble learning framework for potential mirna-disease association prediction with positive-unlabeled data
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2021.107566
SSID ssj0004766
Score 2.4424007
Snippet Positive and unlabeled (PU) learning is to learn a binary classifier with good generalization ability from PU data. A variety of PU learning algorithms with...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 120992
SubjectTerms Dual-coding scheme
Multi-objective evolutionary algorithm
PU sample selection
Robust PU learning
Title A multi-objective evolutionary algorithm for robust positive-unlabeled learning
URI https://dx.doi.org/10.1016/j.ins.2024.120992
Volume 678
WOSCitedRecordID wos001302628900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELZKxwM8IBggBmzyA-KByQg7qR0_VmhoQ9NgYqC-RY5jj1Qjnbqk6s_nHNtp2JgESLxEkVUn1d2X85393R1Cr4xL7eJ6QqQSkqSqNCRLbAbGkJXaUFqo7sT027E4OclmM_l5NPoSc2FWF6Kus_VaXv5XVcMYKNulzv6FuvuHwgDcg9LhCmqH6x8pfupJgmRRzL0x2zer8ELHkFMX54tl1Xz_0REMl4uivWr2PXVrZUhbAypgJSpjO4nzofcacpc6yISls3fJT6u2QwTAzZowrdsR8MbktBqMeL7-5kfHnlKgqnUbwBr2IVjaE63C5lhMkPmFv-m8UeLCFr_ceBubCUY48026ohHmvpHPDYPu9xbmEIW42uosfdvl-rLN6tVzCt2xcxchOVasfMdnd9AWExOZjdHW9Ohg9nGTLiv8EXb8b_Gwu6P9XXvR792VgQty9hA9CLEDnnqdP0IjU2-j-4OKkttoN-Sh4Nd4oCwcLPhj9GmKr6EDD9GBe3RgmIw9OvBNdOCIjifo64eDs_eHJPTUIBoC7YZQrdJEl5ozppSBb9MV_LdpkhRcSsuFdZWrXYuChBWWGktFSbWGGIGBr2qTMnmKxvWiNs8QLgR81FQpcIJYariSWhecKq5LKyeCyh30Joouv_SlU_LIKZznIOfcyTn3ct5BaRRuHgDsfbockHD7tOf_Nu0FureB8Es0bpat2UV39aqprpZ7AS8_AfYdf6A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+evolutionary+algorithm+for+robust+positive-unlabeled+learning&rft.jtitle=Information+sciences&rft.au=Qiu%2C+Jianfeng&rft.au=Tang%2C+Qi&rft.au=Tan%2C+Ming&rft.au=Li%2C+Kaixuan&rft.date=2024-09-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=678&rft_id=info:doi/10.1016%2Fj.ins.2024.120992&rft.externalDocID=S002002552400906X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon