Convergence and correctness of belief propagation for weighted min–max flow

In this paper, we investigate the performance of message-passing algorithms for the weighted min–max flow (WMMF) problem which was introduced by Ichimori et al. (1980). WMMF was well studied in combinational optimization, as it provides important applications in time transportation problem and the s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete Applied Mathematics Ročník 354; s. 122 - 130
Hlavní autori: Dai, Guowei, Guo, Longkun, Gutin, Gregory, Zhang, Xiaoyan, Zhang, Zan-Bo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.09.2024
Predmet:
ISSN:0166-218X, 1872-6771
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we investigate the performance of message-passing algorithms for the weighted min–max flow (WMMF) problem which was introduced by Ichimori et al. (1980). WMMF was well studied in combinational optimization, as it provides important applications in time transportation problem and the storage management problem. We develop a message-passing algorithm called min–max belief propagation (BP) for determining the optimal solution of WMMF. As the main result of this paper, we prove that for a digraph of size n, BP converges to the optimal solution within O(n3) time after O(n) iterations if the optimal solution of the underlying min–max flow problem instance is unique. To the best of our knowledge, the fastest polynomial time algorithm for WMMF runs in essentially O(n6) time among the known algorithms, where n is the number of vertices. On the other hand, it is one of a very few instances where BP is proved correct with fully-polynomial running time.
AbstractList In this paper, we investigate the performance of message-passing algorithms for the weighted min–max flow (WMMF) problem which was introduced by Ichimori et al. (1980). WMMF was well studied in combinational optimization, as it provides important applications in time transportation problem and the storage management problem. We develop a message-passing algorithm called min–max belief propagation (BP) for determining the optimal solution of WMMF. As the main result of this paper, we prove that for a digraph of size n, BP converges to the optimal solution within O(n3) time after O(n) iterations if the optimal solution of the underlying min–max flow problem instance is unique. To the best of our knowledge, the fastest polynomial time algorithm for WMMF runs in essentially O(n6) time among the known algorithms, where n is the number of vertices. On the other hand, it is one of a very few instances where BP is proved correct with fully-polynomial running time.
Author Zhang, Zan-Bo
Gutin, Gregory
Guo, Longkun
Zhang, Xiaoyan
Dai, Guowei
Author_xml – sequence: 1
  givenname: Guowei
  surname: Dai
  fullname: Dai, Guowei
  email: guoweidai@njnu.edu.cn
  organization: School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing, China
– sequence: 2
  givenname: Longkun
  surname: Guo
  fullname: Guo, Longkun
  email: longkun.guo@qlu.edu.cn
  organization: Department of Computer Science, Qilu University of Technology, Jinan, China
– sequence: 3
  givenname: Gregory
  surname: Gutin
  fullname: Gutin, Gregory
  email: gutin@cs.rhul.ac.uk
  organization: Department of Computer Science, Royal Holloway University of London, Egham, UK
– sequence: 4
  givenname: Xiaoyan
  orcidid: 0000-0001-8563-4958
  surname: Zhang
  fullname: Zhang, Xiaoyan
  email: zhangxiaoyan@njnu.edu.cn
  organization: School of Mathematical Science & Institute of Mathematics, Nanjing Normal University, Nanjing, China
– sequence: 5
  givenname: Zan-Bo
  orcidid: 0000-0002-0851-4984
  surname: Zhang
  fullname: Zhang, Zan-Bo
  email: zanbozhang@gdufe.edu.cn
  organization: School of Statistics & Mathematics, and Institute of Artificial Intelligence & Deep Learning, Guangdong University of Finance & Economics, Guangzhou, China
BookMark eNp9kE1OwzAQRi1UJNrCAdj5AgkeJ7VTsUIVf1IRG5DYWY4zLo4au7KjFnbcgRtyEhKVNavRSPM-zfdmZOKDR0IugeXAQFy1eaO7nDMOOfCc8cUJmUIleSakhAmZDjci41C9nZFZSi1jDIZtSp5Wwe8xbtAbpNo31IQY0fQeU6LB0hq3Di3dxbDTG9274KkNkR7Qbd57bGjn_M_Xd6c_qN2Gwzk5tXqb8OJvzsnr3e3L6iFbP98_rm7WmeHlss-gKisrRY1aoxSMLc3C8roQYKui0EZoLoUsjWFGo142nNeN5MyUiFDVwrJiTuCYa2JIKaJVu-g6HT8VMDX6UK0afKjRhwKuBh8Dc31kcHhs7zCqZNxYu3FjYdUE9w_9CyFVbHk
Cites_doi 10.1287/opre.1110.1025
10.1126/science.1086309
10.1109/TIT.2011.2110170
10.1016/0012-365X(78)90055-9
10.1109/18.910577
10.1126/science.1073287
10.1137/090753115
10.1109/TIT.2005.850085
10.1287/trsc.25.4.314
10.1109/TIT.2007.915695
10.1109/TIT.2009.2030448
10.1002/net.3230090405
10.1016/0167-6377(86)90079-9
10.1007/s10898-019-00749-2
10.1109/18.910585
10.1126/science.1136800
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.dam.2021.12.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 130
ExternalDocumentID 10_1016_j_dam_2021_12_025
S0166218X21005114
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
ID FETCH-LOGICAL-c249t-1848f76beaae76009c5f2b361f833ac6a27674cc0caea9d22bd720c4ee18b6f03
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001249481000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Sat Nov 29 02:59:45 EST 2025
Tue Jun 18 08:51:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Min–max BP algorithm
Message-passing algorithm
Belief propagation
Min–max flow
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-1848f76beaae76009c5f2b361f833ac6a27674cc0caea9d22bd720c4ee18b6f03
ORCID 0000-0001-8563-4958
0000-0002-0851-4984
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_dam_2021_12_025
elsevier_sciencedirect_doi_10_1016_j_dam_2021_12_025
PublicationCentury 2000
PublicationDate 2024-09-15
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Discrete Applied Mathematics
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Frey, Dueck (b9) 2007; 315
Weiss, Freeman (b22) 2001; 47
Ichimori, Murata, Ishii, Nishida (b14) 1980; 30
Cheng, Neely, Chugg (b6) 2006
Pearl (b17) 1988
Stanat, Magó (b21) 1979; 9
Bayati, Shah, Sharma (b3) 2008; 54
Sanghavi, Shah, Willsky (b20) 2009; 55
Mézard, Parisi, Zecchina (b16) 2002; 297
Burkard (b5) 1978; 22
Sanghavi, Malioutov, Willsky (b19) 2011; 54
Eiselt, Gendreau (b8) 1991; 25
Ichimori, Ishii, Nishida (b12) 1980; 23
Bayati, Borgs, Chayes, Zecchina (b2) 2011; 25
Mézard (b15) 2003; 301
Yedidia, Freeman, Weiss (b23) 2005; 51
Achlioptas, Ricci-Tersenghi (b1) 2006
Dai, Li, Sun, Xu, Zhang (b7) 2019; 75
Brunsch, Cornelissen, Manthey, Röglin (b4) 2012
Gamarnik, Shah, Wei (b11) 2012; 60
Fujishige, Nakayama, Cui (b10) 1986; 5
Ichimori, Ishii, Nishida (b13) 1981; 24
Richardson, Urbanke (b18) 2001; 47
Weiss (10.1016/j.dam.2021.12.025_b22) 2001; 47
Sanghavi (10.1016/j.dam.2021.12.025_b19) 2011; 54
Ichimori (10.1016/j.dam.2021.12.025_b13) 1981; 24
Frey (10.1016/j.dam.2021.12.025_b9) 2007; 315
Bayati (10.1016/j.dam.2021.12.025_b2) 2011; 25
Sanghavi (10.1016/j.dam.2021.12.025_b20) 2009; 55
Ichimori (10.1016/j.dam.2021.12.025_b14) 1980; 30
Yedidia (10.1016/j.dam.2021.12.025_b23) 2005; 51
Eiselt (10.1016/j.dam.2021.12.025_b8) 1991; 25
Gamarnik (10.1016/j.dam.2021.12.025_b11) 2012; 60
Ichimori (10.1016/j.dam.2021.12.025_b12) 1980; 23
Richardson (10.1016/j.dam.2021.12.025_b18) 2001; 47
Brunsch (10.1016/j.dam.2021.12.025_b4) 2012
Pearl (10.1016/j.dam.2021.12.025_b17) 1988
Achlioptas (10.1016/j.dam.2021.12.025_b1) 2006
Mézard (10.1016/j.dam.2021.12.025_b16) 2002; 297
Burkard (10.1016/j.dam.2021.12.025_b5) 1978; 22
Cheng (10.1016/j.dam.2021.12.025_b6) 2006
Bayati (10.1016/j.dam.2021.12.025_b3) 2008; 54
Stanat (10.1016/j.dam.2021.12.025_b21) 1979; 9
Dai (10.1016/j.dam.2021.12.025_b7) 2019; 75
Fujishige (10.1016/j.dam.2021.12.025_b10) 1986; 5
Mézard (10.1016/j.dam.2021.12.025_b15) 2003; 301
References_xml – volume: 60
  start-page: 410
  year: 2012
  end-page: 428
  ident: b11
  article-title: Belief propagation for min-cost network flow: convergence & correctness
  publication-title: Oper. Res.
– volume: 75
  start-page: 813
  year: 2019
  end-page: 831
  ident: b7
  article-title: Convergence and correctness of belief propagation for the Chinese postman problem
  publication-title: J. Global Optim.
– volume: 5
  start-page: 207
  year: 1986
  end-page: 209
  ident: b10
  article-title: On the equivalence of the maximum balanced flow problem and the weighted minimax flow problem
  publication-title: Oper. Res. Lett.
– volume: 9
  start-page: 333
  year: 1979
  end-page: 361
  ident: b21
  article-title: Minimizing maximum flows in linear graphs
  publication-title: Networks
– volume: 22
  start-page: 219
  year: 1978
  end-page: 232
  ident: b5
  article-title: A general hungarian method for the algebraie transpertation problem
  publication-title: Discrete Math.
– start-page: 182
  year: 2012
  end-page: 193
  ident: b4
  article-title: Smoothed analysis of belief propagation for minimum-cost flow and matching
  publication-title: WALCOM: Algorithms and Computation
– volume: 25
  start-page: 314
  year: 1991
  end-page: 316
  ident: b8
  article-title: An optimal algorithm for weighted minimax flow centers on trees
  publication-title: Transp. Sci.
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: b9
  article-title: Clustering by passing messages between data points
  publication-title: Science
– volume: 30
  start-page: 39
  year: 1980
  end-page: 44
  ident: b14
  article-title: Minimax cost flow problem
  publication-title: Technol. Repts. Osaka Univ.
– volume: 51
  start-page: 2282
  year: 2005
  end-page: 2312
  ident: b23
  article-title: Constructing free-energy approximations and generalized belief propagation algorithms
  publication-title: IEEE Trans. Inform. Theory
– volume: 54
  start-page: 2203
  year: 2011
  end-page: 2212
  ident: b19
  article-title: Belief propagation and LP relaxation for weighted matching in general graphs
  publication-title: IEEE Trans. Inform. Theory
– start-page: 1934
  year: 2006
  end-page: 1938
  ident: b6
  article-title: Iterative message passing algorithm for bipartite maximum weighted matching
  publication-title: Proceedings of IEEE International Symposium Information Theory
– volume: 54
  start-page: 1241
  year: 2008
  end-page: 1251
  ident: b3
  article-title: Max-product for maximum weight matching: convergence, correctness, and LP duality
  publication-title: IEEE Trans. Inform. Theory
– volume: 55
  start-page: 4822
  year: 2009
  end-page: 4834
  ident: b20
  article-title: Message passing for maximum weight independent set
  publication-title: IEEE Trans. Inform. Theory
– volume: 23
  start-page: 268
  year: 1980
  end-page: 271
  ident: b12
  article-title: Finding the weighted minimax flow in a polynomial time
  publication-title: J. Oper. Res. Soc. Japan
– volume: 47
  start-page: 599
  year: 2001
  end-page: 618
  ident: b18
  article-title: The capacity of low-density parity check codes under message-passing decoding
  publication-title: IEEE Trans. Inform. Theory
– volume: 301
  start-page: 1685
  year: 2003
  end-page: 1686
  ident: b15
  article-title: Passing messages between disciplines
  publication-title: Science
– volume: 24
  start-page: 52
  year: 1981
  end-page: 59
  ident: b13
  article-title: Weighted minimax real-valued flows
  publication-title: J. Oper. Res. Soc. Japan
– start-page: 130
  year: 2006
  end-page: 139
  ident: b1
  article-title: On the solution-space geometry of random constraint satisfaction problems
  publication-title: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing
– volume: 297
  start-page: 812
  year: 2002
  end-page: 815
  ident: b16
  article-title: Analytic and algorithmic solution of random satisfiability problems
  publication-title: Science
– year: 1988
  ident: b17
  article-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Reasoning
– volume: 25
  start-page: 989
  year: 2011
  end-page: 1011
  ident: b2
  article-title: Belief propagation for weighted b-matchings on arbitrary graphs and its relation to linear programs with integer solutions
  publication-title: SIAM J. Discrete Math.
– volume: 47
  start-page: 736
  year: 2001
  end-page: 744
  ident: b22
  article-title: On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs
  publication-title: IEEE Trans. Inform. Theory
– volume: 60
  start-page: 410
  year: 2012
  ident: 10.1016/j.dam.2021.12.025_b11
  article-title: Belief propagation for min-cost network flow: convergence & correctness
  publication-title: Oper. Res.
  doi: 10.1287/opre.1110.1025
– volume: 301
  start-page: 1685
  year: 2003
  ident: 10.1016/j.dam.2021.12.025_b15
  article-title: Passing messages between disciplines
  publication-title: Science
  doi: 10.1126/science.1086309
– volume: 24
  start-page: 52
  year: 1981
  ident: 10.1016/j.dam.2021.12.025_b13
  article-title: Weighted minimax real-valued flows
  publication-title: J. Oper. Res. Soc. Japan
– volume: 54
  start-page: 2203
  year: 2011
  ident: 10.1016/j.dam.2021.12.025_b19
  article-title: Belief propagation and LP relaxation for weighted matching in general graphs
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2011.2110170
– volume: 22
  start-page: 219
  year: 1978
  ident: 10.1016/j.dam.2021.12.025_b5
  article-title: A general hungarian method for the algebraie transpertation problem
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(78)90055-9
– volume: 47
  start-page: 599
  year: 2001
  ident: 10.1016/j.dam.2021.12.025_b18
  article-title: The capacity of low-density parity check codes under message-passing decoding
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.910577
– volume: 297
  start-page: 812
  year: 2002
  ident: 10.1016/j.dam.2021.12.025_b16
  article-title: Analytic and algorithmic solution of random satisfiability problems
  publication-title: Science
  doi: 10.1126/science.1073287
– volume: 25
  start-page: 989
  year: 2011
  ident: 10.1016/j.dam.2021.12.025_b2
  article-title: Belief propagation for weighted b-matchings on arbitrary graphs and its relation to linear programs with integer solutions
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/090753115
– start-page: 1934
  year: 2006
  ident: 10.1016/j.dam.2021.12.025_b6
  article-title: Iterative message passing algorithm for bipartite maximum weighted matching
– volume: 51
  start-page: 2282
  year: 2005
  ident: 10.1016/j.dam.2021.12.025_b23
  article-title: Constructing free-energy approximations and generalized belief propagation algorithms
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2005.850085
– start-page: 130
  year: 2006
  ident: 10.1016/j.dam.2021.12.025_b1
  article-title: On the solution-space geometry of random constraint satisfaction problems
– volume: 25
  start-page: 314
  year: 1991
  ident: 10.1016/j.dam.2021.12.025_b8
  article-title: An optimal algorithm for weighted minimax flow centers on trees
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.25.4.314
– volume: 54
  start-page: 1241
  year: 2008
  ident: 10.1016/j.dam.2021.12.025_b3
  article-title: Max-product for maximum weight matching: convergence, correctness, and LP duality
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2007.915695
– start-page: 182
  year: 2012
  ident: 10.1016/j.dam.2021.12.025_b4
  article-title: Smoothed analysis of belief propagation for minimum-cost flow and matching
– year: 1988
  ident: 10.1016/j.dam.2021.12.025_b17
– volume: 55
  start-page: 4822
  year: 2009
  ident: 10.1016/j.dam.2021.12.025_b20
  article-title: Message passing for maximum weight independent set
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2009.2030448
– volume: 9
  start-page: 333
  year: 1979
  ident: 10.1016/j.dam.2021.12.025_b21
  article-title: Minimizing maximum flows in linear graphs
  publication-title: Networks
  doi: 10.1002/net.3230090405
– volume: 5
  start-page: 207
  year: 1986
  ident: 10.1016/j.dam.2021.12.025_b10
  article-title: On the equivalence of the maximum balanced flow problem and the weighted minimax flow problem
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(86)90079-9
– volume: 75
  start-page: 813
  year: 2019
  ident: 10.1016/j.dam.2021.12.025_b7
  article-title: Convergence and correctness of belief propagation for the Chinese postman problem
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-019-00749-2
– volume: 23
  start-page: 268
  year: 1980
  ident: 10.1016/j.dam.2021.12.025_b12
  article-title: Finding the weighted minimax flow in a polynomial time
  publication-title: J. Oper. Res. Soc. Japan
– volume: 30
  start-page: 39
  year: 1980
  ident: 10.1016/j.dam.2021.12.025_b14
  article-title: Minimax cost flow problem
  publication-title: Technol. Repts. Osaka Univ.
– volume: 47
  start-page: 736
  year: 2001
  ident: 10.1016/j.dam.2021.12.025_b22
  article-title: On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.910585
– volume: 315
  start-page: 972
  year: 2007
  ident: 10.1016/j.dam.2021.12.025_b9
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.4073858
Snippet In this paper, we investigate the performance of message-passing algorithms for the weighted min–max flow (WMMF) problem which was introduced by Ichimori...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 122
SubjectTerms Belief propagation
Message-passing algorithm
Min–max BP algorithm
Min–max flow
Title Convergence and correctness of belief propagation for weighted min–max flow
URI https://dx.doi.org/10.1016/j.dam.2021.12.025
Volume 354
WOSCitedRecordID wos001249481000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20211212
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20220331
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELWWhQM9VG0BAW2RD5yKIm2cxHGOiNKWChAHWuUWOY6Nlo8EbXdhUS_9D_2H_BLGsZ11t0UqBy7RytJOPuZl_DyeeUFoO6RlopQSAaWpCoD_x_qV4sGAq0pKjZo2p_v9MD0-ZnmenfR6P10vzM1lWtdsOs2un9XVMAbO1q2zT3B3ZxQG4Dc4HY7gdjj-l-P3dB35yGhsmqa1kY5qbUgDZlhKYJ1K12VBKJlVGt62KVJgn1fD2hVARFd8uqMum1ufwX4cQqABpt3x16NO-NX7Rn1bI_B50oDZrsJn0mZlD5v67GJSz0atioFrlplPZOdD3txZCNvsBIl1KYXpz3QJS0oDoBG5H3GjJPZiZmgak-30G5ptmr8iu0kynMOZtH4ACdskrumZ_lNFe25262oOXTnbeQEmCm2iCEkBJhbQIkmTjPXR4u7Bfv7VUx_T0nrLLl83254CmhZb0Xhzc267vC0cnLvCfxMej8ScvkIv7eoD7xrUvEY9Wb9BLzwPrqAjDz8Y8IM9_OBGYYMf7OEHA36www8G_Nz_-g3IwRo5q-jbp_3TvS-B_eZGIGAhPg5gwc9USkvJudR7tplIFCkjGioWRVxQTrT6kxADwSXPKkLKKiUDEUsZspKqQbSG-nVTy3WES5WwMoEJQykW6zSMSLSYYVURTnmVsg30wT2Y4tpIqxSPOmkDxe7RFZYbGs5XAEAe_9vmU87xFi3PIPwO9cejiXyPlsTNePhjtGXR8QDD8oK2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+and+correctness+of+belief+propagation+for+weighted+min%E2%80%93max+flow&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Dai%2C+Guowei&rft.au=Guo%2C+Longkun&rft.au=Gutin%2C+Gregory&rft.au=Zhang%2C+Xiaoyan&rft.date=2024-09-15&rft.issn=0166-218X&rft.volume=354&rft.spage=122&rft.epage=130&rft_id=info:doi/10.1016%2Fj.dam.2021.12.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dam_2021_12_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon