On the complexity of and solutions to the minimum stopping and trapping set problems

In this paper, we discuss the problems of finding minimum stopping sets and trapping sets in Tanner graphs, using integer linear programming. These problems are important for establishing reliable communication across noisy channels. Indeed, stopping sets and trapping sets correspond to combinatoria...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 915; s. 26 - 44
Hlavní autori: Velasquez, Alvaro, Subramani, K., Wojciechowski, Piotr
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 14.05.2022
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we discuss the problems of finding minimum stopping sets and trapping sets in Tanner graphs, using integer linear programming. These problems are important for establishing reliable communication across noisy channels. Indeed, stopping sets and trapping sets correspond to combinatorial structures in information-theoretic codes, which lead to errors in decoding once a message is received. In particular, these sets correspond to variables that are not eventually corrected by the decoder, thus causing failures in decoding when using iterative algorithms. We present integer linear programs (ILPs) for finding stopping sets and several trapping set variants. Furthermore, we prove that two of these trapping set problem variants are NP-hard for the first time. Additionally, we analyze these variants from the parameterized perspective. Finally, we model stopping set and trapping set problems as Integer Linear Programs (ILPs). The effectiveness of our approach is demonstrated by finding stopping sets of size up to 48 in the (4896,2474) Margulis code. This compares favorably to the current state-of-the-art, which finds stopping sets of size up to 26. For the trapping set problems, we show for which cases an ILP produces solutions efficiently and for which cases it performs poorly. The proposed approach is applicable to codes represented by regular and irregular graphs alike.1
AbstractList In this paper, we discuss the problems of finding minimum stopping sets and trapping sets in Tanner graphs, using integer linear programming. These problems are important for establishing reliable communication across noisy channels. Indeed, stopping sets and trapping sets correspond to combinatorial structures in information-theoretic codes, which lead to errors in decoding once a message is received. In particular, these sets correspond to variables that are not eventually corrected by the decoder, thus causing failures in decoding when using iterative algorithms. We present integer linear programs (ILPs) for finding stopping sets and several trapping set variants. Furthermore, we prove that two of these trapping set problem variants are NP-hard for the first time. Additionally, we analyze these variants from the parameterized perspective. Finally, we model stopping set and trapping set problems as Integer Linear Programs (ILPs). The effectiveness of our approach is demonstrated by finding stopping sets of size up to 48 in the (4896,2474) Margulis code. This compares favorably to the current state-of-the-art, which finds stopping sets of size up to 26. For the trapping set problems, we show for which cases an ILP produces solutions efficiently and for which cases it performs poorly. The proposed approach is applicable to codes represented by regular and irregular graphs alike.1
Author Wojciechowski, Piotr
Subramani, K.
Velasquez, Alvaro
Author_xml – sequence: 1
  givenname: Alvaro
  surname: Velasquez
  fullname: Velasquez, Alvaro
  email: alvaro.velasquez.1@us.af.mil
  organization: Information Directorate, Air-Force Research Laboratory, Rome, NY, United States of America
– sequence: 2
  givenname: K.
  surname: Subramani
  fullname: Subramani, K.
  email: k.subramani@mail.wvu.edu
  organization: LCSEE, West Virginia University, Morgantown, WV, United States of America
– sequence: 3
  givenname: Piotr
  surname: Wojciechowski
  fullname: Wojciechowski, Piotr
  email: pwojciec@mail.wvu.edu
  organization: LCSEE, West Virginia University, Morgantown, WV, United States of America
BookMark eNp9kM1qwzAQhEVJoUnaB-hNL2BXkh3LpqcS-geBXNKzkORVq2BLRlJK8_a14567DCwLM8vwrdDCeQcI3VOSU0Krh2OedMwZYSwnk-ortKQ1bzLGmnKBlqQgZVY0fHODVjEeyTgbXi3RYe9w-gKsfT908GPTGXuDpWtx9N0pWe8iTv5i6a2z_anHMflhsO7z4kpBzkeEhIfgVQd9vEXXRnYR7v72Gn28PB-2b9lu__q-fdplmpVNyigtgKuyLWqQRilNqOKsAbOpipKT1jDJtCy5VIwoo2lhuFIVNbomspaMN8Ua0fmvDj7GAEYMwfYynAUlYsIijmLEIiYsgkyqx8zjnIGx2LeFIKK24DS0NoBOovX2n_Qv8_VurQ
Cites_doi 10.1109/LCOMM.2017.2707553
10.1016/S0304-3975(98)00158-3
10.1109/TCOMM.2004.833048
10.1109/TIT.2019.2904988
10.1109/TIT.2002.1003839
10.1109/TIT.2014.2363832
10.1109/TIT.2012.2191697
10.1109/TIT.2011.2171531
10.1016/j.ipl.2010.04.010
10.1109/TIT.2009.2025573
10.1109/TIT.2014.2334657
10.1109/TCOMM.2007.910589
10.1109/18.641542
10.1109/TIT.2010.2040941
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2022.02.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 44
ExternalDocumentID 10_1016_j_tcs_2022_02_028
S030439752200127X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SEW
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c249t-113e7b4d38eafbbc01b729ef563470df2a2ca47ab20bfc13f7bb61fc80a8a2793
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795611200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sat Nov 29 07:18:37 EST 2025
Fri Feb 23 02:40:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Trapping set
Exact exponential algorithm
Stopping set
NP-complete
Parameterized algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c249t-113e7b4d38eafbbc01b729ef563470df2a2ca47ab20bfc13f7bb61fc80a8a2793
PageCount 19
ParticipantIDs crossref_primary_10_1016_j_tcs_2022_02_028
elsevier_sciencedirect_doi_10_1016_j_tcs_2022_02_028
PublicationCentury 2000
PublicationDate 2022-05-14
PublicationDateYYYYMMDD 2022-05-14
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-14
  day: 14
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tanatmis, Ruzika, Punekar, Kienle (br0200) 2010
Punekar, Kienle, Wehn, Tanatmis, Ruzika, Hamacher (br0210) 2010
Koetter, Vontobel (br0270) 2003
Alimonti, Kann (br0320) 2000; 237
Klotz, Newman (br0350) 2013; 18
Crowston, Gutin, Jones (br0310) 2010; 110
Murali Krishnan, Shankar (br0050) 2006
Helmling, Ruzika, Tanatmis (br0220) 2012; 58
J. Rosenthal, P.O. Vontobel, Construction of ldpc codes based on ramanujan graphs and ideas from margulis, in: Proc. 38th Annual Allerton Conf. on Communication, Computing and Control, pp. 248–257.
Karimi, Banihashemi (br0260) 2011
McGregor, Milenkovic (br0120) 2010; 56
Rosnes, Ytrehus, Ambroze, Tomlinson (br0180) 2012; 58
Wang (br0250) 2007
Karimi, Banihashemi (br0130) 2014; 60
Hashemi, Banihashemi (br0140) 2017
(br0340) 2014
Richardson (br0020) 1998
Murali Krishnan, Sunil Chandran (br0290) 2006
Hu, Eleftheriou (br0070) 2006
Rosnes, Ytrehus (br0090) 2009; 55
Helmling, Rosnes, Ruzika, Scholl (br0230) 2014
Di, Proietti, Emre Telatar, Richardson, Urbanke (br0040) 2002; 48
Wang, Kulkarni, Poor (br0160) 2006
Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Michal, Saurabh (br0330) 2015
Tian, Jones, Villasenor, Wesel (br0280) 2004; 52
Butler, Siegel (br0060) 2014; 60
Dehghan, Banihashemi (br0300) 2019; 65
MacKay (br0150) 2005
Hirotomo, Konishi, Morii (br0080) 2008
Vardy (br0240) 1997; 43
Velasquez, Subramani, Drager (br0010) 2018
Tanatmis, Ruzika, Hamacher, Punekar, Kienle, Wehn (br0190) 2009
Kyung, Wang (br0100) 2010
Xiao, Banihashemi (br0030) 2007; 55
Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor, Exhausting error-prone patterns in ldpc codes, arXiv preprint cs/0609046, 2006.
Kyung (10.1016/j.tcs.2022.02.028_br0100) 2010
McGregor (10.1016/j.tcs.2022.02.028_br0120) 2010; 56
Butler (10.1016/j.tcs.2022.02.028_br0060) 2014; 60
Murali Krishnan (10.1016/j.tcs.2022.02.028_br0050) 2006
Wang (10.1016/j.tcs.2022.02.028_br0160) 2006
Wang (10.1016/j.tcs.2022.02.028_br0250) 2007
Rosnes (10.1016/j.tcs.2022.02.028_br0180) 2012; 58
Dehghan (10.1016/j.tcs.2022.02.028_br0300) 2019; 65
Hirotomo (10.1016/j.tcs.2022.02.028_br0080) 2008
Karimi (10.1016/j.tcs.2022.02.028_br0260) 2011
Tanatmis (10.1016/j.tcs.2022.02.028_br0200) 2010
Hu (10.1016/j.tcs.2022.02.028_br0070) 2006
Alimonti (10.1016/j.tcs.2022.02.028_br0320) 2000; 237
Punekar (10.1016/j.tcs.2022.02.028_br0210) 2010
Helmling (10.1016/j.tcs.2022.02.028_br0230) 2014
Murali Krishnan (10.1016/j.tcs.2022.02.028_br0290) 2006
Vardy (10.1016/j.tcs.2022.02.028_br0240) 1997; 43
Di (10.1016/j.tcs.2022.02.028_br0040) 2002; 48
Xiao (10.1016/j.tcs.2022.02.028_br0030) 2007; 55
Rosnes (10.1016/j.tcs.2022.02.028_br0090) 2009; 55
Velasquez (10.1016/j.tcs.2022.02.028_br0010) 2018
10.1016/j.tcs.2022.02.028_br0170
Hashemi (10.1016/j.tcs.2022.02.028_br0140) 2017
MacKay (10.1016/j.tcs.2022.02.028_br0150) 2005
10.1016/j.tcs.2022.02.028_br0110
Karimi (10.1016/j.tcs.2022.02.028_br0130) 2014; 60
Helmling (10.1016/j.tcs.2022.02.028_br0220) 2012; 58
Cygan (10.1016/j.tcs.2022.02.028_br0330) 2015
Klotz (10.1016/j.tcs.2022.02.028_br0350) 2013; 18
Richardson (10.1016/j.tcs.2022.02.028_br0020) 1998
Koetter (10.1016/j.tcs.2022.02.028_br0270) 2003
Crowston (10.1016/j.tcs.2022.02.028_br0310) 2010; 110
Tanatmis (10.1016/j.tcs.2022.02.028_br0190) 2009
Tian (10.1016/j.tcs.2022.02.028_br0280) 2004; 52
References_xml – volume: 60
  start-page: 7416
  year: 2014
  end-page: 7441
  ident: br0060
  article-title: Error floor approximation for ldpc codes in the awgn channel
  publication-title: IEEE Trans. Inf. Theory
– start-page: 411
  year: 2006
  end-page: 415
  ident: br0160
  article-title: Upper bounding the performance of arbitrary finite ldpc codes on binary erasure channels
  publication-title: Information Theory, 2006 IEEE International Symposium on
– volume: 55
  start-page: 2234
  year: 2007
  end-page: 2239
  ident: br0030
  article-title: Estimation of bit and frame error rates of finite-length low-density parity-check codes on binary symmetric channels
  publication-title: IEEE Trans. Commun.
– start-page: 2589
  year: 2014
  end-page: 2593
  ident: br0230
  article-title: Efficient maximum-likelihood decoding of linear block codes on binary memoryless channels
  publication-title: 2014 IEEE International Symposium on Information Theory
– volume: 56
  start-page: 1640
  year: 2010
  end-page: 1650
  ident: br0120
  article-title: On the hardness of approximating stopping and trapping sets
  publication-title: IEEE Trans. Inf. Theory
– start-page: 295
  year: 2008
  end-page: 299
  ident: br0080
  article-title: On the probabilistic computation algorithm for the minimum-size stopping sets of ldpc codes
  publication-title: Information Theory, 2008. ISIT 2008. IEEE International Symposium on
– start-page: 2216
  year: 2009
  end-page: 2220
  ident: br0190
  article-title: Valid inequalities for binary linear codes
  publication-title: 2009 IEEE International Symposium on Information Theory
– volume: 110
  start-page: 451
  year: 2010
  end-page: 454
  ident: br0310
  article-title: Note on max lin-2 above average
  publication-title: Inf. Process. Lett.
– start-page: 1426
  year: 1998
  end-page: 1435
  ident: br0020
  article-title: Error Floors of ldpc Codes
  publication-title: Proceedings of the Annual Allerton Conference on Communication Control and Computing, Vol. 41
– reference: Chih-Chun Wang, Sanjeev R. Kulkarni, H. Vincent Poor, Exhausting error-prone patterns in ldpc codes, arXiv preprint cs/0609046, 2006.
– start-page: 1
  year: 2003
  end-page: 5
  ident: br0270
  article-title: Graph-covers and iterative decoding of finite length codes
  publication-title: Proc. 3rd Intern. Symp. on Turbo Codes and Related Topics
– volume: 58
  start-page: 164
  year: 2012
  end-page: 171
  ident: br0180
  article-title: Addendum to ?an efficient algorithm to find all small-size stopping sets of low-density parity-check matrices?
  publication-title: IEEE Trans. Inf. Theory
– year: 2018
  ident: br0010
  article-title: Finding minimum stopping and trapping sets: an integer linear programming approach
  publication-title: International Symposium on Combinatorial Optimization (ISCO), 2018, Marrakesh, Morocco, April 11-13, 2018, Proceedings
– start-page: 2271
  year: 2007
  end-page: 2275
  ident: br0250
  article-title: On the exhaustion and elimination of trapping sets: algorithms & the suppressing effect
  publication-title: Information Theory, 2007. ISIT 2007. IEEE International Symposium on
– start-page: 69
  year: 2006
  end-page: 80
  ident: br0290
  article-title: Hardness of approximation results for the problem of finding the stopping distance in tanner graphs
  publication-title: International Conference on Foundations of Software Technology and Theoretical Computer Science
– start-page: 157
  year: 2006
  end-page: 158
  ident: br0050
  article-title: On the complexity of finding stopping set size in tanner graphs
  publication-title: 40th Annual Conference on Information Sciences and Systems
– start-page: 739
  year: 2010
  end-page: 743
  ident: br0100
  article-title: Exhaustive search for small fully absorbing sets and the corresponding low error-floor decoder
  publication-title: Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on
– start-page: 1091
  year: 2011
  end-page: 1095
  ident: br0260
  article-title: An efficient algorithm for finding dominant trapping sets of irregular ldpc codes
  publication-title: Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
– start-page: 1
  year: 2006
  end-page: 6
  ident: br0070
  article-title: A probabilistic subspace approach to the minimal stopping set problem
  publication-title: Turbo Codes&Related Topics; 6th International ITG-Conference on Source and Channel Coding (TURBOCODING), 2006 4th International Symposium on
– volume: 55
  start-page: 4167
  year: 2009
  end-page: 4178
  ident: br0090
  article-title: An efficient algorithm to find all small-size stopping sets of low-density parity-check matrices
  publication-title: IEEE Trans. Inf. Theory
– year: 2017
  ident: br0140
  article-title: Lower bounds on the size of smallest elementary and non-elementary trapping sets in variable-regular ldpc codes
  publication-title: IEEE Commun. Lett.
– year: 2014
  ident: br0340
– volume: 60
  start-page: 5188
  year: 2014
  end-page: 5203
  ident: br0130
  article-title: On characterization of elementary trapping sets of variable-regular ldpc codes
  publication-title: IEEE Trans. Inf. Theory
– volume: 65
  start-page: 4307
  year: 2019
  end-page: 4315
  ident: br0300
  article-title: Hardness results on finding leafless elementary trapping sets and elementary absorbing sets of ldpc codes
  publication-title: IEEE Trans. Inf. Theory
– reference: J. Rosenthal, P.O. Vontobel, Construction of ldpc codes based on ramanujan graphs and ideas from margulis, in: Proc. 38th Annual Allerton Conf. on Communication, Computing and Control, pp. 248–257.
– year: 2005
  ident: br0150
  article-title: Encyclopedia of Sparse Graph Codes
– volume: 48
  start-page: 1570
  year: 2002
  end-page: 1579
  ident: br0040
  article-title: Finite-length analysis of low-density parity-check codes on the binary erasure channel
  publication-title: IEEE Trans. Inf. Theory
– start-page: 329
  year: 2010
  end-page: 333
  ident: br0210
  article-title: Calculating the minimum distance of linear block codes via integer programming
  publication-title: 2010 6th International Symposium on Turbo Codes & Iterative Information Processing
– volume: 43
  start-page: 1757
  year: 1997
  end-page: 1766
  ident: br0240
  article-title: The intractability of computing the minimum distance of a code
  publication-title: IEEE Trans. Inf. Theory
– volume: 18
  start-page: 18
  year: 2013
  end-page: 32
  ident: br0350
  article-title: Practical guidelines for solving difficult mixed integer linear programs
  publication-title: Surv. Oper. Res. Manag. Sci.
– start-page: 1
  year: 2010
  end-page: 5
  ident: br0200
  article-title: Numerical comparison of ip formulations as ml decoders
  publication-title: 2010 IEEE International Conference on Communications
– year: 2015
  ident: br0330
  article-title: Parameterized Algorithms
– volume: 237
  start-page: 123
  year: 2000
  end-page: 134
  ident: br0320
  article-title: Some apx-completeness results for cubic graphs
  publication-title: Theor. Comput. Sci.
– volume: 52
  start-page: 1242
  year: 2004
  end-page: 1247
  ident: br0280
  article-title: Selective avoidance of cycles in irregular ldpc code construction
  publication-title: IEEE Trans. Commun.
– volume: 58
  start-page: 4753
  year: 2012
  end-page: 4769
  ident: br0220
  article-title: Mathematical programming decoding of binary linear codes: theory and algorithms
  publication-title: IEEE Trans. Inf. Theory
– year: 2017
  ident: 10.1016/j.tcs.2022.02.028_br0140
  article-title: Lower bounds on the size of smallest elementary and non-elementary trapping sets in variable-regular ldpc codes
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2017.2707553
– start-page: 69
  year: 2006
  ident: 10.1016/j.tcs.2022.02.028_br0290
  article-title: Hardness of approximation results for the problem of finding the stopping distance in tanner graphs
– start-page: 2589
  year: 2014
  ident: 10.1016/j.tcs.2022.02.028_br0230
  article-title: Efficient maximum-likelihood decoding of linear block codes on binary memoryless channels
– volume: 237
  start-page: 123
  issue: 1–2
  year: 2000
  ident: 10.1016/j.tcs.2022.02.028_br0320
  article-title: Some apx-completeness results for cubic graphs
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(98)00158-3
– volume: 52
  start-page: 1242
  issue: 8
  year: 2004
  ident: 10.1016/j.tcs.2022.02.028_br0280
  article-title: Selective avoidance of cycles in irregular ldpc code construction
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2004.833048
– start-page: 157
  year: 2006
  ident: 10.1016/j.tcs.2022.02.028_br0050
  article-title: On the complexity of finding stopping set size in tanner graphs
– volume: 65
  start-page: 4307
  issue: 7
  year: 2019
  ident: 10.1016/j.tcs.2022.02.028_br0300
  article-title: Hardness results on finding leafless elementary trapping sets and elementary absorbing sets of ldpc codes
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2019.2904988
– start-page: 1
  year: 2010
  ident: 10.1016/j.tcs.2022.02.028_br0200
  article-title: Numerical comparison of ip formulations as ml decoders
– start-page: 2271
  year: 2007
  ident: 10.1016/j.tcs.2022.02.028_br0250
  article-title: On the exhaustion and elimination of trapping sets: algorithms & the suppressing effect
– start-page: 411
  year: 2006
  ident: 10.1016/j.tcs.2022.02.028_br0160
  article-title: Upper bounding the performance of arbitrary finite ldpc codes on binary erasure channels
– volume: 48
  start-page: 1570
  issue: 6
  year: 2002
  ident: 10.1016/j.tcs.2022.02.028_br0040
  article-title: Finite-length analysis of low-density parity-check codes on the binary erasure channel
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2002.1003839
– ident: 10.1016/j.tcs.2022.02.028_br0170
– start-page: 295
  year: 2008
  ident: 10.1016/j.tcs.2022.02.028_br0080
  article-title: On the probabilistic computation algorithm for the minimum-size stopping sets of ldpc codes
– volume: 60
  start-page: 7416
  issue: 12
  year: 2014
  ident: 10.1016/j.tcs.2022.02.028_br0060
  article-title: Error floor approximation for ldpc codes in the awgn channel
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2014.2363832
– volume: 58
  start-page: 4753
  issue: 7
  year: 2012
  ident: 10.1016/j.tcs.2022.02.028_br0220
  article-title: Mathematical programming decoding of binary linear codes: theory and algorithms
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2012.2191697
– volume: 58
  start-page: 164
  issue: 1
  year: 2012
  ident: 10.1016/j.tcs.2022.02.028_br0180
  article-title: Addendum to ?an efficient algorithm to find all small-size stopping sets of low-density parity-check matrices?
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2171531
– year: 2018
  ident: 10.1016/j.tcs.2022.02.028_br0010
  article-title: Finding minimum stopping and trapping sets: an integer linear programming approach
– volume: 110
  start-page: 451
  issue: 11
  year: 2010
  ident: 10.1016/j.tcs.2022.02.028_br0310
  article-title: Note on max lin-2 above average
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2010.04.010
– start-page: 1
  year: 2006
  ident: 10.1016/j.tcs.2022.02.028_br0070
  article-title: A probabilistic subspace approach to the minimal stopping set problem
– year: 2015
  ident: 10.1016/j.tcs.2022.02.028_br0330
– year: 2005
  ident: 10.1016/j.tcs.2022.02.028_br0150
– volume: 55
  start-page: 4167
  issue: 9
  year: 2009
  ident: 10.1016/j.tcs.2022.02.028_br0090
  article-title: An efficient algorithm to find all small-size stopping sets of low-density parity-check matrices
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2025573
– start-page: 329
  year: 2010
  ident: 10.1016/j.tcs.2022.02.028_br0210
  article-title: Calculating the minimum distance of linear block codes via integer programming
– volume: 60
  start-page: 5188
  issue: 9
  year: 2014
  ident: 10.1016/j.tcs.2022.02.028_br0130
  article-title: On characterization of elementary trapping sets of variable-regular ldpc codes
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2014.2334657
– start-page: 2216
  year: 2009
  ident: 10.1016/j.tcs.2022.02.028_br0190
  article-title: Valid inequalities for binary linear codes
– start-page: 1091
  year: 2011
  ident: 10.1016/j.tcs.2022.02.028_br0260
  article-title: An efficient algorithm for finding dominant trapping sets of irregular ldpc codes
– start-page: 1
  year: 2003
  ident: 10.1016/j.tcs.2022.02.028_br0270
  article-title: Graph-covers and iterative decoding of finite length codes
– start-page: 739
  year: 2010
  ident: 10.1016/j.tcs.2022.02.028_br0100
  article-title: Exhaustive search for small fully absorbing sets and the corresponding low error-floor decoder
– volume: 55
  start-page: 2234
  issue: 12
  year: 2007
  ident: 10.1016/j.tcs.2022.02.028_br0030
  article-title: Estimation of bit and frame error rates of finite-length low-density parity-check codes on binary symmetric channels
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2007.910589
– volume: 43
  start-page: 1757
  issue: 6
  year: 1997
  ident: 10.1016/j.tcs.2022.02.028_br0240
  article-title: The intractability of computing the minimum distance of a code
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.641542
– start-page: 1426
  year: 1998
  ident: 10.1016/j.tcs.2022.02.028_br0020
  article-title: Error Floors of ldpc Codes
– ident: 10.1016/j.tcs.2022.02.028_br0110
– volume: 56
  start-page: 1640
  issue: 4
  year: 2010
  ident: 10.1016/j.tcs.2022.02.028_br0120
  article-title: On the hardness of approximating stopping and trapping sets
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2010.2040941
– volume: 18
  start-page: 18
  issue: 1
  year: 2013
  ident: 10.1016/j.tcs.2022.02.028_br0350
  article-title: Practical guidelines for solving difficult mixed integer linear programs
  publication-title: Surv. Oper. Res. Manag. Sci.
SSID ssj0000576
Score 2.361329
Snippet In this paper, we discuss the problems of finding minimum stopping sets and trapping sets in Tanner graphs, using integer linear programming. These problems...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 26
SubjectTerms Exact exponential algorithm
NP-complete
Parameterized algorithm
Stopping set
Trapping set
Title On the complexity of and solutions to the minimum stopping and trapping set problems
URI https://dx.doi.org/10.1016/j.tcs.2022.02.028
Volume 915
WOSCitedRecordID wos000795611200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLf42AEOjBUQZRvyYadVqRInjZMjQkzb0IBDmXqLbMeWqNSkStJS8dfzEttpYCCNA1IVNVHitHm_vA_7vfdD6BuEsWAFReS4lPpOIMPY4Yoqhwap4CJ1Vaw02QS9uoomk_jGpA6VDZ0AzbJotYrn7ypqOAbCrktn3yDudlA4AN9B6LAFscP2vwR_rRMXm1xxuTIZF3p63NzW-pt1W5HZYjaomwvMbbFiVTC9U8pqYOhmyq4LO-6UPgrDCTEwhtSK768EpxwszoOuoVmyIl-vPkF8PtNMUoPLYWsU8ikMAbr43hBp39zlVdGdk4Bwtm5nGnRUl1-vt8SaE8Xq2dgbdTVl2LG5ugXkP9pcTyxMh5WoG6sT0nRXNbXkTzpnP7NobZ6hTWGbJjBEUg-RuPUn2kTbhI5iUIPbZ78uJr_XxntE9fK2-QN2IbxJCXz2O152ZTruyXgf7Zm4Ap9pPHxCGzLroY-WswMbFd5Du3_aPr3lARpfZxh28RosOFcYYIBbsOAqb04xYMEWLM1ZFiwYwIItWA7R7Y-L8flPx_BsOAKC78rxPF9SHqR-JJniXLgeh5BLqlHoB9RNFWFEsIAyTlyuhOcrynnoKRG5LGIEFPwR2sryTB4jDA4poyFl8KYLcE0ZDwj3iYSwWKUUbFkffbePLJnrdirJq0Lqo8A-1MTAWPt5CQDk9ctO3nKPz2hnDeAvaKsqFvIr-iCW1V1ZnBp0PAJkBITn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+complexity+of+and+solutions+to+the+minimum+stopping+and+trapping+set+problems&rft.jtitle=Theoretical+computer+science&rft.au=Velasquez%2C+Alvaro&rft.au=Subramani%2C+K.&rft.au=Wojciechowski%2C+Piotr&rft.date=2022-05-14&rft.issn=0304-3975&rft.volume=915&rft.spage=26&rft.epage=44&rft_id=info:doi/10.1016%2Fj.tcs.2022.02.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2022_02_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon