Multivariate weather anomaly detection using DBSCAN clustering algorithm

Weather is highly influential for human life. Weather anomalies describe conditions that are out of the ordinary and need special attention because they can affect various aspects of human life both socially and economically and also can cause natural disasters. Anomaly detection aims to get rid of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series Jg. 1869; H. 1; S. 12077
Hauptverfasser: Wibisono, S, Anwar, M T, Supriyanto, A, Amin, I H A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.04.2021
Schlagworte:
ISSN:1742-6588, 1742-6596
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Weather is highly influential for human life. Weather anomalies describe conditions that are out of the ordinary and need special attention because they can affect various aspects of human life both socially and economically and also can cause natural disasters. Anomaly detection aims to get rid of unwanted data (noise, erroneous data, or unwanted data) or to study the anomaly phenomenon itself (unusual but interesting). In the absence of an anomaly-labeled dataset, an unsupervised Machine Learning approach can be utilized to detect or label the anomalous data. This research uses the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to separate between normal and anomalous weather data by considering multiple weather variables. Then, PCA is used to visualize the clusters. The experimental result had demonstrated that DBSCAN is capable of identifying peculiar data points that are deviating from the ‘normal’ data distribution.
AbstractList Weather is highly influential for human life. Weather anomalies describe conditions that are out of the ordinary and need special attention because they can affect various aspects of human life both socially and economically and also can cause natural disasters. Anomaly detection aims to get rid of unwanted data (noise, erroneous data, or unwanted data) or to study the anomaly phenomenon itself (unusual but interesting). In the absence of an anomaly-labeled dataset, an unsupervised Machine Learning approach can be utilized to detect or label the anomalous data. This research uses the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to separate between normal and anomalous weather data by considering multiple weather variables. Then, PCA is used to visualize the clusters. The experimental result had demonstrated that DBSCAN is capable of identifying peculiar data points that are deviating from the ‘normal’ data distribution.
Author Anwar, M T
Wibisono, S
Supriyanto, A
Amin, I H A
Author_xml – sequence: 1
  givenname: S
  surname: Wibisono
  fullname: Wibisono, S
– sequence: 2
  givenname: M T
  surname: Anwar
  fullname: Anwar, M T
– sequence: 3
  givenname: A
  surname: Supriyanto
  fullname: Supriyanto, A
– sequence: 4
  givenname: I H A
  surname: Amin
  fullname: Amin, I H A
BookMark eNqFkE9PwzAMxSM0JLbBZ6AS59I4bZr0wGGMP0MacGD3yG3TLVPXjiQF7dvTamgHLvhiy37vWfpNyKhpG03INdBboFJGIBIWpjxLI5BpFkFEgVEhzsj4dBmdZikvyMS5LaVxX2JMFq9d7c0XWoNeB98a_UbbAJt2h_UhKLXXhTdtE3TONOvg4f5jPnsLirpzXtthg_W6tcZvdpfkvMLa6avfPiWrp8fVfBEu359f5rNlWLAkE6HIilhrwCqRnJdlCSlymTMsKgZpzBBznjBkgia0yvNU97Ik4znL05jLWMdTcnOM3dv2s9POq23b2ab_qBgHDoJBDL1KHFWFbZ2zulJ7a3ZoDwqoGqipgYca2KiBmgJ1pNY77_44C-NxQOAtmvpf_w-FcXSH
CitedBy_id crossref_primary_10_1007_s10115_024_02079_6
crossref_primary_10_3390_rs17101729
crossref_primary_10_3233_AIC_230064
crossref_primary_10_3390_electronics12153213
crossref_primary_10_1007_s10584_022_03444_6
crossref_primary_10_1002_spy2_212
crossref_primary_10_1145_3689036
crossref_primary_10_1186_s12982_024_00245_3
crossref_primary_10_3390_computers12120253
crossref_primary_10_1109_ACCESS_2023_3253022
crossref_primary_10_3233_JIFS_201191
crossref_primary_10_3390_s25154757
crossref_primary_10_1145_3639273
crossref_primary_10_1029_2023EA003014
crossref_primary_10_1088_1402_4896_ad351a
crossref_primary_10_3390_app15179391
crossref_primary_10_1002_cpe_6707
Cites_doi 10.1016/j.procs.2015.08.220
10.1186/s40537-017-0077-4
10.1016/j.eij.2015.11.004
10.1016/j.patcog.2017.09.037
10.1145/3068335
10.1088/1757-899X/835/1/012036
10.1186/s12874-019-0737-5
10.1007/s10742-017-0172-1
ContentType Journal Article
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1869/1/012077
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1869_1_012077
Genre Conference Proceeding
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
AAYXX
ABHWH
ACAFW
ACHIP
AEFHF
AEINN
AEJGL
AFFHD
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KQ8
LAP
N5L
N9A
O3W
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJBAE
PQGLB
RIN
RNS
RO9
ROL
SY9
T37
TR2
W28
XSB
~02
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2497-79c3ee1af4855ddd16a58b2acf21632aab542a27040fbb6e485495b2b63583e3
IEDL.DBID BENPR
ISSN 1742-6588
IngestDate Wed Aug 13 06:18:53 EDT 2025
Tue Nov 18 20:49:13 EST 2025
Sat Nov 29 01:48:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2497-79c3ee1af4855ddd16a58b2acf21632aab542a27040fbb6e485495b2b63583e3
Notes ObjectType-Conference Proceeding-1
SourceType-Scholarly Journals-1
content type line 14
OpenAccessLink https://www.proquest.com/docview/2515172131?pq-origsite=%requestingapplication%
PQID 2515172131
PQPubID 4998668
ParticipantIDs proquest_journals_2515172131
crossref_primary_10_1088_1742_6596_1869_1_012077
crossref_citationtrail_10_1088_1742_6596_1869_1_012077
PublicationCentury 2000
PublicationDate 20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 20210401
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Bansal (JPCS_1869_1_012077bib10) 2016
Piruthevi (JPCS_1869_1_012077bib7) 2017
Agrawal (JPCS_1869_1_012077bib3) 2015; 60
Kaur (JPCS_1869_1_012077bib2) 2016; 17
Domingues (JPCS_1869_1_012077bib4) 2018; 74
Sunderland (JPCS_1869_1_012077bib5) 2019; 19
Piruthevi (JPCS_1869_1_012077bib8) 2017
Saneja (JPCS_1869_1_012077bib9) 2018
Winarno (JPCS_1869_1_012077bib15) 2019
Ester (JPCS_1869_1_012077bib16) 1996; 96
Aggarwal (JPCS_1869_1_012077bib1) 2016
Majumdar (JPCS_1869_1_012077bib13) 2017; 4
Anwar (JPCS_1869_1_012077bib11) 2019; 1
Zuliarso (JPCS_1869_1_012077bib14) 2020; 835
Schubert (JPCS_1869_1_012077bib12) 2017; 42
Bauder (JPCS_1869_1_012077bib6) 2017; 17
References_xml – year: 2016
  ident: JPCS_1869_1_012077bib1
– volume: 60
  start-page: 708
  year: 2015
  ident: JPCS_1869_1_012077bib3
  article-title: Survey on anomaly detection using data mining techniques
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.08.220
– start-page: 1
  year: 2017
  ident: JPCS_1869_1_012077bib7
  article-title: Filtering of anomalous weather events and tracing their behavior
– volume: 4
  start-page: 20
  year: 2017
  ident: JPCS_1869_1_012077bib13
  article-title: Analysis of agriculture data using data mining techniques: application of big data
  publication-title: J. Big data
  doi: 10.1186/s40537-017-0077-4
– volume: 17
  start-page: 199
  year: 2016
  ident: JPCS_1869_1_012077bib2
  article-title: A survey of data mining and social network analysis based anomaly detection techniques
  publication-title: Egypt. informatics J.
  doi: 10.1016/j.eij.2015.11.004
– volume: 74
  start-page: 406
  year: 2018
  ident: JPCS_1869_1_012077bib4
  article-title: A comparative evaluation of outlier detection algorithms: Experiments and analyses
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.037
– volume: 42
  start-page: 1
  year: 2017
  ident: JPCS_1869_1_012077bib12
  article-title: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN
  publication-title: ACM Trans. Database Syst.
  doi: 10.1145/3068335
– start-page: 373
  year: 2016
  ident: JPCS_1869_1_012077bib10
  article-title: Outlier detection: applications and techniques in data mining
– start-page: 1
  year: 2017
  ident: JPCS_1869_1_012077bib8
  article-title: Filtering of anomalous weather events over the region of Tamil Nadu
– start-page: 321
  year: 2018
  ident: JPCS_1869_1_012077bib9
  article-title: A Hybrid Approach for Outlier Detection in Weather Sensor Data
– volume: 835
  start-page: 12036
  year: 2020
  ident: JPCS_1869_1_012077bib14
  article-title: Detecting Hoaxes in Indonesian News Using TF/TDM and K Nearest Neighbor
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/835/1/012036
– volume: 96
  start-page: 226
  year: 1996
  ident: JPCS_1869_1_012077bib16
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Kdd
– volume: 19
  start-page: 102
  year: 2019
  ident: JPCS_1869_1_012077bib5
  article-title: The utility of multivariate outlier detection techniques for data quality evaluation in large studies: an application within the ONDRI project
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-019-0737-5
– volume: 17
  start-page: 256
  year: 2017
  ident: JPCS_1869_1_012077bib6
  article-title: Multivariate outlier detection in medicare claims payments applying probabilistic programming methods
  publication-title: Heal. Serv. Outcomes Res. Methodol.
  doi: 10.1007/s10742-017-0172-1
– volume: 1
  year: 2019
  ident: JPCS_1869_1_012077bib11
  article-title: Wildfire Risk Map Based on DBSCAN Clustering and Cluster Density Evaluation
  publication-title: Adv. Sustain. Sci. Eng. Technol.
– start-page: 301
  year: 2019
  ident: JPCS_1869_1_012077bib15
  article-title: Attendance System Based on Face Recognition System Using CNN-PCA Method and Realtime Camera
SSID ssj0033337
Score 2.431235
Snippet Weather is highly influential for human life. Weather anomalies describe conditions that are out of the ordinary and need special attention because they can...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 12077
SubjectTerms Algorithms
Anomalies
Clustering
Data points
Machine learning
Meteorological data
Natural disasters
Physics
Title Multivariate weather anomaly detection using DBSCAN clustering algorithm
URI https://www.proquest.com/docview/2515172131
Volume 1869
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Collection
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BAYmFN6K8lIHVKrGT2JkQT8FAFQEDsFh-FZDaFGgL4t9zThwQCwxkSpxYifLZ97C_uwPYc8m-ya0wJGOWkwTPSa4ZIzplqTDOGk1VVWyCd7vi9jYvwoLbKNAqG5lYCWo7NH6NvIN6OPXuCosPnl-Irxrld1dDCY1pmPGZypIWzByddourRhYzPHgdEkkJ6lrRMLzQ7QttedbxVZk6cceHkXL-Uz_9FM-Vzjlb_O_XLsFCsDajw3p4LMOUK1dgrmJ9mtEqnFfht2_oLqPFGb3X1mCkyuFA9T8i68YVT6uMPDn-ITo5uj4-7EamP_HJFXyL6j_gS8ePgzW4OTu9OT4nobQCMehvccJzw5yLVc_nhrHWxplKBcJiehQNNKqUThOqKMcp3tM6c_gYelKaarRPBHNsHVrlsHQbENlUoYnIdGKtThxjimuuUGow1hOaG9qGrPmf0oS04776RV9W299CSA-E9EBID4SMZQ1EG_a_Oj7XmTf-7rLdoCHDVBzJbyg2f7-9BfPUE1YqWs42tMavE7cDs-Zt_DR63Q0jaxemi_Qer4qLy-LuE5vj1WE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BAmov5VmVlocPcLSW2EnsHCrEU7sCViuxBzhZfi2ttGQpG0D8qP5HxnmAuMCJAzlFSRzF-SbziL-ZAdjy8Y7NnLQ05U7QGPdpZjinJuGJtN5Zw3TZbEL0evLiIutPwf8mFybQKhudWCpqN7bhH3kb7XASwhUe7d78o6FrVFhdbVpoVGJx4h8fMGSb_O4eIr7bjB0fDQ46tO4qQC2GGoKKzHLvIz0MZVGcc1GqE4lPZIcMfROmtUlipplA6R4ak3q8DIMIwwyaZsk9x9tOw0yMsi5bMNPvnvUvG9XPcRNVBiajaNplQyjDKLM-lqXt0ASqHbVD1qoQr83ha2tQmrjj-U_2chbgW-1Lk71K-BdhyudLMFdyWu1kGTplcvG9xk-s8OSh8nWJzsfXevRInC9KFlpOAvX_ihzunx_s9Ygd3YXSEeGIHl3hHIs_1ysw-IhZfIdWPs79DyAu0egAcxM7Z2LPuRZGaNSJnA-lEZatQtrAp2xdVD309hipcnFfShVwVwF3FXBXkapwX4Wd54E3VV2R94esNeCrWtFM1AvyP98-vQlfOoOzU3Xa7Z38gq8sUHNKAtIatIrbO78Os_a--Du53aiFmoD6YEl5AgIDLhk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+weather+anomaly+detection+using+DBSCAN+clustering+algorithm&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Wibisono%2C+S&rft.au=Anwar%2C+M+T&rft.au=Supriyanto%2C+A&rft.au=Amin%2C+I+H+A&rft.date=2021-04-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1869&rft.issue=1&rft.spage=12077&rft_id=info:doi/10.1088%2F1742-6596%2F1869%2F1%2F012077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_1869_1_012077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon