An improved ant colony algorithm for TSP application
Aiming at the problems of slow convergence speed and easy to fall into the optimal solution of ant colony algorithm, genetic algorithm and nonlinear optimization are used to optimize ant colony algorithm. After the initial iteration of the ant colony, the solution formed by all paths is the initial...
Gespeichert in:
| Veröffentlicht in: | Journal of physics. Conference series Jg. 1802; H. 3; S. 32067 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bristol
IOP Publishing
01.03.2021
|
| Schlagworte: | |
| ISSN: | 1742-6588, 1742-6596 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Aiming at the problems of slow convergence speed and easy to fall into the optimal solution of ant colony algorithm, genetic algorithm and nonlinear optimization are used to optimize ant colony algorithm. After the initial iteration of the ant colony, the solution formed by all paths is the initial population, and then the genetic algorithm is used for selection, crossover and mutation to improve the ability of global search. Finally, the nonlinear optimization algorithm is used to increase the ability of local search of the algorithm. Through this improvement, the convergence speed of the ant colony algorithm is improved and the problem of easy to fall into the optimal solution is solved, which is applied to the traveling salesman problem. |
|---|---|
| Bibliographie: | ObjectType-Conference Proceeding-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1742-6588 1742-6596 |
| DOI: | 10.1088/1742-6596/1802/3/032067 |