Direct heuristic dynamic programming based on an improved PID neural network

In this paper, an improved PID-neural network (IPIDNN) structure is proposed and applied to the critic and action networks of direct heuristic dynamic programming (DHDP). As one of online learning algorithm of approximate dynamic programming (ADP), DHDP has demonstrated its applicability to large st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of control theory and applications Ročník 10; číslo 4; s. 497 - 503
Hlavní autoři: Sun, Jian, Liu, Feng, Si, Jennie, Mei, Shengwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg South China University of Technology and Academy of Mathematics and Systems Science, CAS 01.11.2012
Department of Electrical Engineering, Tsinghua University, Beijing 100084, China%Department of Electrical Engineering, Arizona State University, Tempe AZ 85287-5706, USA
Témata:
ISSN:1672-6340, 1993-0623
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, an improved PID-neural network (IPIDNN) structure is proposed and applied to the critic and action networks of direct heuristic dynamic programming (DHDP). As one of online learning algorithm of approximate dynamic programming (ADP), DHDP has demonstrated its applicability to large state and control problems. Theoretically, the DHDP algorithm requires access to full state feedback in order to obtain solutions to the Bellman optimality equation. Unfortunately, it is not always possible to access all the states in a real system. This paper proposes a solution by suggesting an IPIDNN configuration to construct the critic and action networks to achieve an output feedback control. Since this structure can estimate the integrals and derivatives of measurable outputs, more system states are utilized and thus better control performance are expected. Compared with traditional PIDNN, this configuration is flexible and easy to expand. Based on this structure, a gradient decent algorithm for this IPIDNN-based DHDP is presented. Convergence issues are addressed within a single learning time step and for the entire learning process. Some important insights are provided to guide the implementation of the algorithm. The proposed learning controller has been applied to a cart-pole system to validate the effectiveness of the structure and the algorithm.
AbstractList In this paper, an improved PID-neural network (IPIDNN) structure is proposed and applied to the critic and action networks of direct heuristic dynamic programming (DHDP). As one of online learning algorithm of approximate dynamic programming (ADP), DHDP has demonstrated its applicability to large state and control problems. Theoretically, the DHDP algorithm requires access to full state feedback in order to obtain solutions to the Bellman optimality equation. Unfortunately, it is not always possible to access all the states in a real system. This paper proposes a solution by suggesting an IPIDNN configuration to construct the critic and action networks to achieve an output feedback control. Since this structure can estimate the integrals and derivatives of measurable outputs, more system states are utilized and thus better control performance are expected. Compared with traditional PIDNN, this configuration is flexible and easy to expand. Based on this structure, a gradient decent algorithm for this IPIDNN-based DHDP is presented. Convergence issues are addressed within a single learning time step and for the entire learning process. Some important insights are provided to guide the implementation of the algorithm. The proposed learning controller has been applied to a cart-pole system to validate the effectiveness of the structure and the algorithm.
In this paper, an improved PID-neural network (IPIDNN) structure is proposed and applied to the critic and action networks of direct heuristic dynamic programming (DHDP). As one of online learning algorithm of approximate dynamic programming (ADP), DHDP has demonstrated its applicability to large state and control problems. Theoretically, the DHDP algorithm requires access to full state feedback in order to obtain solutions to the Bellman optimality equation. Unfortunately, it is not always possible to access all the states in a real system. This paper proposes a solution by suggesting an IPIDNN configuration to construct the critic and action networks to achieve an output feedback control. Since this structure can estimate the integrals and derivatives of measurable outputs, more system states are utilized and thus better control performance are expected. Compared with traditional PIDNN, this configuration is flexible and easy to expand. Based on this structure, a gradient decent algorithm for this IPIDNN-based DHDP is presented. Convergence issues are addressed within a single learning time step and for the entire learning process. Some important insights are provided to guide the implementation of the algorithm. The proposed learning controller has been applied to a cart-pole system to validate the effectiveness of the structure and the algorithm.
TL361; In this paper,an improved PID-neural network (IPIDNN) structure is proposed and applied to the critic and action networks of direct heuristic dynamic programming (DHDP).As one of online learning algorithm of approximate dynamic programming (ADP),DHDP has demonstrated its applicability to large state and control problems.Theoretically,the DHDP algorithm requires access to full state feedback in order to obtain solutions to the Bellman optimality equation.Unfortunately,it is not always possible to access all the states in a real system.This paper proposes a solution by suggesting an IPIDNN configuration to construct the critic and action networks to achieve an output feedback control.Since this structure can estimate the integrals and derivatives of measurable outputs,more system states are utihzed and thus better control performance are expected.Compared with traditional PIDNN,this configuration is flexible and easy to expand.Based on this structure,a gradient decent algorithm for this IPIDNN-based DHDP is presented.Convergence issues are addressed within a single learning time step and for the entire learning process.Some important insights are provided to guide the implementation of the algorithm.The proposed learning controller has been applied to a cart-pole system to validate the effectiveness of the structure and the algorithm.
Author Jian SUN Feng LIU Jennie SI Shengwei MEI
AuthorAffiliation Department of Electrical Engineering, Tsinghua University, Beijing 100084, China Department of Electrical Engineering, Arizona State University, Tempe AZ 85287-5706, USA
AuthorAffiliation_xml – name: Department of Electrical Engineering, Tsinghua University, Beijing 100084, China%Department of Electrical Engineering, Arizona State University, Tempe AZ 85287-5706, USA
Author_xml – sequence: 1
  givenname: Jian
  surname: Sun
  fullname: Sun, Jian
  email: sunjian04@mails.tsinghua.edu.cn
  organization: Department of Electrical Engineering, Tsinghua University
– sequence: 2
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  organization: Department of Electrical Engineering, Tsinghua University
– sequence: 3
  givenname: Jennie
  surname: Si
  fullname: Si, Jennie
  organization: Department of Electrical Engineering, Arizona State University
– sequence: 4
  givenname: Shengwei
  surname: Mei
  fullname: Mei, Shengwei
  organization: Department of Electrical Engineering, Tsinghua University
BookMark eNp9UMtOwzAQtFCRaAsfwC3cEFLAr7yOqOVRqRIc4GxtEidNmzit3VCFr2erVHDj4BlbntlZzYSMTGs0IdeM3jNKowfHWBTGPmUczxHOyJglifBpyMUI72HE_VBIekEmzq0pDaSM4jFZziurs7230p2t3L7KvLw30CBvbVtaaJrKlF4KTudeazwwXtXgzxc-3xdzz6ANaqT9obWbS3JeQO301Ymn5PP56WP26i_fXhazx6WfcZlwH4oEeC4DyHkQBzSNuRRxKqI0zCHQUoQsFQUkMgkQCtA6iGTKUypzCjoDIabkbph7AFOAKdW67azBRLX5ruu-75Xm2ASVCCi-HcS49q7Tbq-aymW6rsHotnOK8ViEgRQ0QSkbpJltnbO6UFtbNWB7xag61qyGmhXOVceaFUUPHzwOtabU9m-Z_0w3p6BVa8od-n6TpEiEEJSJHyitjHM
Cites_doi 10.1109/MCI.2009.932261
10.1109/TNN.2003.813839
10.1214/aoms/1177729586
10.1109/MCAS.2009.933854
10.1016/S0098-1354(00)00340-9
10.1109/TSMC.1983.6313077
10.1515/9781400874651
10.2514/2.4870
10.1109/TSMCB.2008.926599
10.1006/jeth.1997.2319
10.1109/72.914523
10.1109/9780470544785
10.1109/TSMCB.2008.924140
10.1109/TSMCB.2008.920269
10.1016/0895-7177(95)00226-X
ClassificationCodes TL361
ContentType Journal Article
Copyright South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SP
8FD
L7M
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11768-012-0112-0
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList

Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Direct heuristic dynamic programming based on an improved PID neural network
EISSN 1993-0623
EndPage 503
ExternalDocumentID kzllyyy_e201204012
10_1007_s11768_012_0112_0
43933301
GrantInformation_xml – fundername: the National Natural Science Foundation of China under Cooperative Research Funds; the third author is also supported by the U.S.Natural Science Foundation
  funderid: (50828701); (ECCS-0702057)
GroupedDBID -59
-5G
-BR
-Y2
06D
0R~
0VY
188
1N0
2J2
2JY
2LR
2RA
2VQ
2~H
30V
4.4
408
40D
5VS
6NX
8RM
8TC
92L
95.
95~
96X
AARTL
AAWCG
ABFTV
ABJNI
ABJOX
ABKCH
ABMNI
ABTMW
ACGFS
ACOMO
ADURQ
ADYFF
AEGAL
AEGNC
AEOHA
AEXYK
AFGCZ
AFWTZ
AGDGC
AGQMX
AGWIL
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BA0
BGNMA
CAG
COF
CQIGP
CS3
CW9
DPUIP
DU5
EBS
EJD
FNLPD
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
I~X
I~Z
J9A
JBSCW
M4Y
NQJWS
NU0
O9-
P9O
PF0
QOS
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SCL
SCO
SDH
SHX
SNX
SOJ
SZN
T13
TUC
U2A
UG4
UGNYK
UZ4
VC2
W92
WK8
~A9
~WA
AAYXX
CITATION
7SP
8FD
L7M
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c2492-af9a2d45ad25850b82438b37b6da5e4361b3fa9495a94faee574b2b04d0aeca33
IEDL.DBID RSV
ISSN 1672-6340
IngestDate Thu May 29 04:08:31 EDT 2025
Thu Jul 10 23:58:02 EDT 2025
Sat Nov 29 03:28:57 EST 2025
Fri Feb 21 02:28:01 EST 2025
Wed Feb 14 10:44:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Approximate dynamic programming (ADP)
Direct heuristic dynamic programming (DHDP)
Improved PID neural network (IPIDNN)
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2492-af9a2d45ad25850b82438b37b6da5e4361b3fa9495a94faee574b2b04d0aeca33
Notes Approximate dynamic programming (ADP); Direct heuristic dynamic programming (DHDP); ImprovedPID neural network (IPIDNN)
In this paper, an improved PID-neural network (IPIDNN) structure is proposed and applied to the critic and action networks of direct heuristic dynamic programming (DHDP). As one of online learning algorithm of approximate dynamic programming (ADP), DHDP has demonstrated its applicability to large state and control problems. Theoretically, the DHDP algorithm requires access to full state feedback in order to obtain solutions to the Bellman optimality equation. Unfortunately, it is not always possible to access all the states in a real system. This paper proposes a solution by suggesting an IPIDNN configuration to construct the critic and action networks to achieve an output feedback control. Since this structure can estimate the integrals and derivatives of measurable outputs, more system states are utilized and thus better control performance are expected. Compared with traditional PIDNN, this configuration is flexible and easy to expand. Based on this structure, a gradient decent algorithm for this IPIDNN-based DHDP is presented. Convergence issues are addressed within a single learning time step and for the entire learning process. Some important insights are provided to guide the implementation of the algorithm. The proposed learning controller has been applied to a cart-pole system to validate the effectiveness of the structure and the algorithm.
44-1600/TP
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1283654309
PQPubID 23500
PageCount 7
ParticipantIDs wanfang_journals_kzllyyy_e201204012
proquest_miscellaneous_1283654309
crossref_primary_10_1007_s11768_012_0112_0
springer_journals_10_1007_s11768_012_0112_0
chongqing_primary_43933301
PublicationCentury 2000
PublicationDate 20121100
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 20121100
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Journal of control theory and applications
PublicationTitleAbbrev J. Control Theory Appl
PublicationTitleAlternate Journal of Control Theory and Applications
PublicationTitle_FL Journal of Control Theory and Applications
PublicationYear 2012
Publisher South China University of Technology and Academy of Mathematics and Systems Science, CAS
Department of Electrical Engineering, Tsinghua University, Beijing 100084, China%Department of Electrical Engineering, Arizona State University, Tempe AZ 85287-5706, USA
Publisher_xml – name: South China University of Technology and Academy of Mathematics and Systems Science, CAS
– name: Department of Electrical Engineering, Tsinghua University, Beijing 100084, China%Department of Electrical Engineering, Arizona State University, Tempe AZ 85287-5706, USA
References EnnsR.SiJ.Apache helicopter stabilization using neuro-dynamic programmingAIAA Journal of Guidance, Control, and Dynamics2002251192510.2514/2.4870
C. Lu, J. Si, X. Xie. Direct heuristic dynamic programming method for power system stability enhancement. IEEE Transactions on System, Man and Cybernetics, Part B, 2008 (8): 1008–1013.
YangL.Understanding and analyzing approximate dynamic programming with gradient-based framework and direct heuristic dynamic programmingA Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy2008Tempe, USAArizona State University6293
RobbinsH.MonroS.LA stochastic approximation methodThe Annals of Mathematical Statistics1951223400407426680054.0590110.1214/aoms/1177729586
ShuH.Study on the neural PID network cascade control systemAutomation & Instrumentation19975157
H. Shu, Y. Pi. PID neural networks for time-delay systems. Proceedings of the 7th International Symposium on Process Systems Engineering. Keystone, Colorado, USA, 2000: 859–862.
HuangY.Functional Analysis: An Introduction2009BeijingScience Press
EnnsR.SiJ.Helicopter trimming and tracking control using direct neural dynamic programmingIEEE Transactions on Neural Networks200314492993910.1109/TNN.2003.813839
DaltonJ.BalakrishnanS. N.Learning through reinforcement and replicator dynamics: A neighboring optimal adaptive critic for missile guidanceMathmatics Computer Modeling199623117518810.1016/0895-7177(95)00226-X
LewisF. L.VrabieD.Reinforcement learning and adaptive dynamic programming for feedback controlIEEE Transactions on Circuits and Systems Magazine2009933250283400110.1109/MCAS.2009.933854
SiJ.WangY.Reinforcement learning and adaptive dynamic programming for feedback controlIEEE Transactions on Neural Networks2001122264276185932110.1109/72.914523
BellmanR.DreyfusS.Applied Dynamic Programming1962Princeton, N JPrinceton University Press0106.34901
KirkD.Optimal Control Theory: An Introduction1970Englewood Cliffs, NJPrentice-Hall
BartoA. G.SuttonR. S.AndersonC. W.Neuron like adaptive elements that can solve difficult learning control problemsIEEE Transactions on System, Man and Cybernetics198313583484710.1109/TSMC.1983.6313077
BalakrishnanS. N.DingJ.LewisF. L.Issues on stability of adp feedback controllers for dynamical systemsIEEE Transactions on Systems, Man and Cybernetics200838491391710.1109/TSMCB.2008.926599
BorgersT.SarinR.Learning through reinforcement and replicator dynamicsEconomic Theory1997771117148429110.1006/jeth.1997.2319
WerbosP.Advanced forecasting methods for global crisis warning and models of intelligenceGeneral System Yearbook19772222538
ZhangH.WeiQ.LuoY.A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithmIEEE Transactions on System, Man and Cybernetics200838493794210.1109/TSMCB.2008.920269
FerrariS.SteckJ. E.ChandramohanR.Adaptive feedback control by constrained approximate dynamic programmingIEEE Transactions on System, Man and Cybernetics200838498298710.1109/TSMCB.2008.924140
WangF.ZhangH.LiuD.Adaptive dynamic programming: an introductionIEEE Transactions on Computational Intelligence Magazine200942394710.1109/MCI.2009.932261
SiJ.BartoA. G.PowellW. B.Handbook of Learning and Approximate Dynamic ProgrammingScaling up to the Real World2004New YorkJohn Wiley & Sons10.1109/9780470544785
ShuH.PID neural network control for complex systemsProceedings of the International Conference on Computational Intelligence for Modeling, Control and Automation1999AmsterdamIOS Press166171
L. Yang (112_CR19) 2008
R. Bellman (112_CR1) 1962
T. Borgers (112_CR2) 1997; 77
112_CR12
H. Zhang (112_CR14) 2008; 38
S. Ferrari (112_CR15) 2008; 38
R. Enns (112_CR11) 2003; 14
S. N. Balakrishnan (112_CR7) 2008; 38
D. Kirk (112_CR5) 1970
H. Robbins (112_CR21) 1951; 22
J. Si (112_CR6) 2004
P. Werbos (112_CR4) 1977; 22
112_CR18
Y. Huang (112_CR20) 2009
H. Shu (112_CR17) 1999
A. G. Barto (112_CR22) 1983; 13
F. L. Lewis (112_CR8) 2009; 9
J. Si (112_CR9) 2001; 12
J. Dalton (112_CR3) 1996; 23
F. Wang (112_CR13) 2009; 4
H. Shu (112_CR16) 1997; 5
R. Enns (112_CR10) 2002; 25
References_xml – reference: YangL.Understanding and analyzing approximate dynamic programming with gradient-based framework and direct heuristic dynamic programmingA Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy2008Tempe, USAArizona State University6293
– reference: FerrariS.SteckJ. E.ChandramohanR.Adaptive feedback control by constrained approximate dynamic programmingIEEE Transactions on System, Man and Cybernetics200838498298710.1109/TSMCB.2008.924140
– reference: KirkD.Optimal Control Theory: An Introduction1970Englewood Cliffs, NJPrentice-Hall
– reference: H. Shu, Y. Pi. PID neural networks for time-delay systems. Proceedings of the 7th International Symposium on Process Systems Engineering. Keystone, Colorado, USA, 2000: 859–862.
– reference: RobbinsH.MonroS.LA stochastic approximation methodThe Annals of Mathematical Statistics1951223400407426680054.0590110.1214/aoms/1177729586
– reference: LewisF. L.VrabieD.Reinforcement learning and adaptive dynamic programming for feedback controlIEEE Transactions on Circuits and Systems Magazine2009933250283400110.1109/MCAS.2009.933854
– reference: SiJ.WangY.Reinforcement learning and adaptive dynamic programming for feedback controlIEEE Transactions on Neural Networks2001122264276185932110.1109/72.914523
– reference: BellmanR.DreyfusS.Applied Dynamic Programming1962Princeton, N JPrinceton University Press0106.34901
– reference: BorgersT.SarinR.Learning through reinforcement and replicator dynamicsEconomic Theory1997771117148429110.1006/jeth.1997.2319
– reference: EnnsR.SiJ.Apache helicopter stabilization using neuro-dynamic programmingAIAA Journal of Guidance, Control, and Dynamics2002251192510.2514/2.4870
– reference: ZhangH.WeiQ.LuoY.A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithmIEEE Transactions on System, Man and Cybernetics200838493794210.1109/TSMCB.2008.920269
– reference: SiJ.BartoA. G.PowellW. B.Handbook of Learning and Approximate Dynamic ProgrammingScaling up to the Real World2004New YorkJohn Wiley & Sons10.1109/9780470544785
– reference: BalakrishnanS. N.DingJ.LewisF. L.Issues on stability of adp feedback controllers for dynamical systemsIEEE Transactions on Systems, Man and Cybernetics200838491391710.1109/TSMCB.2008.926599
– reference: ShuH.Study on the neural PID network cascade control systemAutomation & Instrumentation19975157
– reference: ShuH.PID neural network control for complex systemsProceedings of the International Conference on Computational Intelligence for Modeling, Control and Automation1999AmsterdamIOS Press166171
– reference: HuangY.Functional Analysis: An Introduction2009BeijingScience Press
– reference: C. Lu, J. Si, X. Xie. Direct heuristic dynamic programming method for power system stability enhancement. IEEE Transactions on System, Man and Cybernetics, Part B, 2008 (8): 1008–1013.
– reference: WangF.ZhangH.LiuD.Adaptive dynamic programming: an introductionIEEE Transactions on Computational Intelligence Magazine200942394710.1109/MCI.2009.932261
– reference: WerbosP.Advanced forecasting methods for global crisis warning and models of intelligenceGeneral System Yearbook19772222538
– reference: EnnsR.SiJ.Helicopter trimming and tracking control using direct neural dynamic programmingIEEE Transactions on Neural Networks200314492993910.1109/TNN.2003.813839
– reference: BartoA. G.SuttonR. S.AndersonC. W.Neuron like adaptive elements that can solve difficult learning control problemsIEEE Transactions on System, Man and Cybernetics198313583484710.1109/TSMC.1983.6313077
– reference: DaltonJ.BalakrishnanS. N.Learning through reinforcement and replicator dynamics: A neighboring optimal adaptive critic for missile guidanceMathmatics Computer Modeling199623117518810.1016/0895-7177(95)00226-X
– volume: 22
  start-page: 25
  issue: 2
  year: 1977
  ident: 112_CR4
  publication-title: General System Yearbook
– volume: 4
  start-page: 39
  issue: 2
  year: 2009
  ident: 112_CR13
  publication-title: IEEE Transactions on Computational Intelligence Magazine
  doi: 10.1109/MCI.2009.932261
– volume: 14
  start-page: 929
  issue: 4
  year: 2003
  ident: 112_CR11
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2003.813839
– volume: 22
  start-page: 400
  issue: 3
  year: 1951
  ident: 112_CR21
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177729586
– volume: 9
  start-page: 32
  issue: 3
  year: 2009
  ident: 112_CR8
  publication-title: IEEE Transactions on Circuits and Systems Magazine
  doi: 10.1109/MCAS.2009.933854
– volume-title: Functional Analysis: An Introduction
  year: 2009
  ident: 112_CR20
– ident: 112_CR18
  doi: 10.1016/S0098-1354(00)00340-9
– volume: 13
  start-page: 834
  issue: 5
  year: 1983
  ident: 112_CR22
  publication-title: IEEE Transactions on System, Man and Cybernetics
  doi: 10.1109/TSMC.1983.6313077
– start-page: 62
  volume-title: A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy
  year: 2008
  ident: 112_CR19
– volume: 5
  start-page: 5
  issue: 1
  year: 1997
  ident: 112_CR16
  publication-title: Automation & Instrumentation
– volume-title: Applied Dynamic Programming
  year: 1962
  ident: 112_CR1
  doi: 10.1515/9781400874651
– volume: 25
  start-page: 19
  issue: 1
  year: 2002
  ident: 112_CR10
  publication-title: AIAA Journal of Guidance, Control, and Dynamics
  doi: 10.2514/2.4870
– volume: 38
  start-page: 913
  issue: 4
  year: 2008
  ident: 112_CR7
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMCB.2008.926599
– ident: 112_CR12
– volume: 77
  start-page: 1
  issue: 1
  year: 1997
  ident: 112_CR2
  publication-title: Economic Theory
  doi: 10.1006/jeth.1997.2319
– volume: 12
  start-page: 264
  issue: 2
  year: 2001
  ident: 112_CR9
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.914523
– volume-title: Optimal Control Theory: An Introduction
  year: 1970
  ident: 112_CR5
– volume-title: Handbook of Learning and Approximate Dynamic ProgrammingScaling up to the Real World
  year: 2004
  ident: 112_CR6
  doi: 10.1109/9780470544785
– volume: 38
  start-page: 982
  issue: 4
  year: 2008
  ident: 112_CR15
  publication-title: IEEE Transactions on System, Man and Cybernetics
  doi: 10.1109/TSMCB.2008.924140
– start-page: 166
  volume-title: Proceedings of the International Conference on Computational Intelligence for Modeling, Control and Automation
  year: 1999
  ident: 112_CR17
– volume: 38
  start-page: 937
  issue: 4
  year: 2008
  ident: 112_CR14
  publication-title: IEEE Transactions on System, Man and Cybernetics
  doi: 10.1109/TSMCB.2008.920269
– volume: 23
  start-page: 175
  issue: 1
  year: 1996
  ident: 112_CR3
  publication-title: Mathmatics Computer Modeling
  doi: 10.1016/0895-7177(95)00226-X
SSID ssj0054478
Score 1.8929292
Snippet In this paper, an improved PID-neural network (IPIDNN) structure is proposed and applied to the critic and action networks of direct heuristic dynamic...
In this paper, an improved PID-neural network (IPIDNN) structure is proposed and applied to the critic and action networks of direct heuristic dynamic...
TL361; In this paper,an improved PID-neural network (IPIDNN) structure is proposed and applied to the critic and action networks of direct heuristic dynamic...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 497
SubjectTerms Algorithms
Brief Paper
Complexity
Computational Intelligence
Control
Control and Systems Theory
Control systems
Dynamic programming
Engineering
Heuristic
Learning
Mathematical analysis
Mechatronics
Networks
Neural networks
Optimization
PID神经网络
Robotics
Systems Theory
启发式动态规划
在线学习算法
基础
最优性方程
状态反馈
系统验证
输出反馈控制
Title Direct heuristic dynamic programming based on an improved PID neural network
URI http://lib.cqvip.com/qk/87672X/201204/43933301.html
https://link.springer.com/article/10.1007/s11768-012-0112-0
https://www.proquest.com/docview/1283654309
https://d.wanfangdata.com.cn/periodical/kzllyyy-e201204012
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1993-0623
  dateEnd: 20131231
  omitProxy: false
  ssIdentifier: ssj0054478
  issn: 1672-6340
  databaseCode: RSV
  dateStart: 20031101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68HvTBW9z1IKJPSqFt0nb7KB4oiIgXvoWkSVdxzep2V1h_vZOeCiLoS6AkTcpMMkdn5gvAnkzRKRFJ4qDqog4TynfihAlHoSHHJG5omeaQ-RfR5WXn4SG-Kuu4syrbvQpJ5pK6KXbz0DRG19emEthmEqZR23XsfQ3XN_eV-A0Yy8WvF0a-E1JWhzJ_msICKjz2TfcNl_uumBprsw6Q5mU9JhWm-0UDnS7869sXYb40OMlhsUOWYEKbZZj7AkO4AheF3COPelTgNhNV3FNPyuytFxxGrL5TpG-IMOQp_xWBj1fnx8RCYuIKpkgoX4W705PbozOnvGXBSSxaoCPSWPiKBcgmdB1c2fEZ7UgayVCJQDMaepKmIkZHCptUaB1ETPrSZcoVOhGUrsGU6Ru9DiRQ2B0xrdHoZL7wJKMKLQKNbonyQqlb0K7JzV8LNA2OFhGlKGZasF_Rv-5rMJUt_TjSj1v6cbcFOxWHOJ4HG-QQRvdHGUd9S229rBu34KBiBi8PZvbbjLsld5vBzx-93ng85tq3JcboifrtP825AbP2zaJ0cROmhoOR3oKZ5H34lA228237CTvr5qQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS8MwED98gfrBtzifEf2kFNombdeP4oMN5xBf7FtImnSKmqlzwvzrvfSxTRBBvxRKwqXcJffo3f0CsC9TDEpEkjhouqjDhPKdOGHCUejIMYkbWqYZZH4jajarrVZ8WfRxd8tq9zIlmWnqYbObh64xhr62lMA-xmGSocGygPlX13el-g0Yy9SvF0a-E1I2SGX-RMICKtx3TPsVl_tumIbe5iBBmrX1mFSY9ogFOpv_17cvwFzhcJKjfIcswpg2SzA7AkO4DI1c75F73ctxm4nK76knRfXWM04j1t4p0jFEGPKQ_YrA18v6CbGQmLiCyQvKV-D27PTmuOYUtyw4iUULdEQaC1-xAMWEoYMrqz6jVUkjGSoRaEZDT9JUxBhI4SMVWgcRk750mXKFTgSlqzBhOkavAQkUDkdMa3Q6mS88yahCj0BjWKK8UOoKrA_YzV9yNA2OHhGlqGYqcFDyfzA2xFS2_OPIP275x90K7JYS4ngebJJDGN3pdTnaW2r7Zd24AoelMHhxMLu_UdwrpDuc_Pj59NTv97n2bYsxRqL--p9o7sB07eaiwRv15vkGzFgqeRvjJky8v_X0FkwlH-8P3bftbAt_ARQL6Yg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EH3wFtczok9KsW3Sdvso6qK4LAse-BaSJl1Fza57COuvd9JjV0EE8aVQEiZ0JpmjM_MF4FCmGJSIJHHQdFGHCeU7ccKEo9CRYxI3tEwzyPx61GhUHx7iZnHPaa-sdi9TknlPg0VpMv2TjkpPxo1vHrrJGAbbsgL7mIRpZuvobbh-c1-q4oCxTBV7YeQ7IWWjtOZPJCy4wmPbtN5w6e9Gaux5jpKlWYuPSYVpfbFGtcV_f8cSLBSOKDnNd84yTGizAvNf4AlXoZ7rQ_KoBzmeM1H5_fWkqOp6xWnE2kFF2oYIQ56yXxT42rw6JxYqE1cweaH5GtzVLm7PLp3i9gUnsSiCjkhj4SsWoPgwpHBl1We0KmkkQyUCzWjoSZqKGAMsfKRC6yBi0pcuU67QiaB0HaZM2-gNIIHC4Yhpjc4o84UnGVXoKWgMV5QXSl2BzRHreSdH2eDoKVGK6qcCR6UsRmNjrGXLP47845Z_3K3AfiktjufEJj-E0e1Bj6MdpraP1o0rcFwKhhcHtvcbxYNC0uPJzx8vL8PhkGvfth5jhOpv_onmHsw2z2u8ftW43oI5SyTvbtyGqX53oHdgJnnvP_W6u9lu_gRhR_Js
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+heuristic+dynamic+programming+based+on+an+improved+PID+neural+network&rft.jtitle=Journal+of+control+theory+and+applications&rft.au=Sun%2C+Jian&rft.au=Liu%2C+Feng&rft.au=Si%2C+Jennie&rft.au=Mei%2C+Shengwei&rft.date=2012-11-01&rft.issn=1672-6340&rft.volume=10&rft.issue=4&rft.spage=497&rft.epage=503&rft_id=info:doi/10.1007%2Fs11768-012-0112-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87672X%2F87672X.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy-e%2Fkzllyyy-e.jpg