Prediction of strength and analysis in self-compacting concrete using machine learning based regression techniques

•The main objective of this work is to develop regression models for forecasting self-compacting concrete compressive strength that are based on machine learning.•The correctness of the model can be evaluated based on the RMSE value, as well as MSE, MAE, and R2.•The Random forest algorithm also perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in engineering software (1992) Jg. 173; S. 103267
Hauptverfasser: Rajakarunakaran, Surya Abisek, Lourdu, Arun Raja, Muthusamy, Suresh, Panchal, Hitesh, Jawad Alrubaie, Ali, Musa Jaber, Mustafa, Ali, Mohammed Hasan, Tlili, Iskander, Maseleno, Andino, Majdi, Ali, Ali, Shahul Hameed Masthan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2022
Schlagworte:
ISSN:0965-9978
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The main objective of this work is to develop regression models for forecasting self-compacting concrete compressive strength that are based on machine learning.•The correctness of the model can be evaluated based on the RMSE value, as well as MSE, MAE, and R2.•The Random forest algorithm also performs better than the other models found from the analysis. Self-Compacting Concrete (SCC) has congested structural components and an inaccessible position. Mixing concrete multiple times becomes time-consuming and expensive. Due to a lack of competence in mixture design, analyzing appropriate mixture components and their influence on SCC's mechanical behavior might be a real-time concern in the construction sector. The work intends to create machine learning-based regression models to predict SCC compressive strength. A laboratory set of data comprising 99 SCC samples was used for this purpose. SCC's machine-learning regression model has many input and output parameters. Python machine learning was used to compare actual strengths. Linear regression, Lasso regression, Ridge regression, multi-layer perceptron regression, decision tree regression, and random forest regression are machine learning prediction methods. RMSE, MSE, MAE, and R2 measure model accuracy. The Random Forest model can efficiently estimate self-compressing concrete compression strength, according to the results. The RF model forecasts concrete's compressive strength accurately.
AbstractList •The main objective of this work is to develop regression models for forecasting self-compacting concrete compressive strength that are based on machine learning.•The correctness of the model can be evaluated based on the RMSE value, as well as MSE, MAE, and R2.•The Random forest algorithm also performs better than the other models found from the analysis. Self-Compacting Concrete (SCC) has congested structural components and an inaccessible position. Mixing concrete multiple times becomes time-consuming and expensive. Due to a lack of competence in mixture design, analyzing appropriate mixture components and their influence on SCC's mechanical behavior might be a real-time concern in the construction sector. The work intends to create machine learning-based regression models to predict SCC compressive strength. A laboratory set of data comprising 99 SCC samples was used for this purpose. SCC's machine-learning regression model has many input and output parameters. Python machine learning was used to compare actual strengths. Linear regression, Lasso regression, Ridge regression, multi-layer perceptron regression, decision tree regression, and random forest regression are machine learning prediction methods. RMSE, MSE, MAE, and R2 measure model accuracy. The Random Forest model can efficiently estimate self-compressing concrete compression strength, according to the results. The RF model forecasts concrete's compressive strength accurately.
ArticleNumber 103267
Author Muthusamy, Suresh
Panchal, Hitesh
Jawad Alrubaie, Ali
Rajakarunakaran, Surya Abisek
Lourdu, Arun Raja
Majdi, Ali
Maseleno, Andino
Musa Jaber, Mustafa
Tlili, Iskander
Ali, Shahul Hameed Masthan
Ali, Mohammed Hasan
Author_xml – sequence: 1
  givenname: Surya Abisek
  surname: Rajakarunakaran
  fullname: Rajakarunakaran, Surya Abisek
  organization: Department of Civil Engineering, PSR Engineering College (Autonomous), Sivakasi, Tamil Nadu, India
– sequence: 2
  givenname: Arun Raja
  surname: Lourdu
  fullname: Lourdu, Arun Raja
  organization: Department of Civil Engineering, PSR Engineering College (Autonomous), Sivakasi, Tamil Nadu, India
– sequence: 3
  givenname: Suresh
  surname: Muthusamy
  fullname: Muthusamy, Suresh
  email: infostosuresh@gmail.com
  organization: Department of Electronics and Communication Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu, India
– sequence: 4
  givenname: Hitesh
  surname: Panchal
  fullname: Panchal, Hitesh
  organization: Department of Mechanical Engineering, Government Engineering College Patan, Gujarat, India
– sequence: 5
  givenname: Ali
  surname: Jawad Alrubaie
  fullname: Jawad Alrubaie, Ali
  organization: Department of Medical Instrumentation Techniques Engineering, Al- Mustaqbal University College, Hilla 51001, Iraq
– sequence: 6
  givenname: Mustafa
  surname: Musa Jaber
  fullname: Musa Jaber, Mustafa
  organization: Department of Medical Instruments Engineering Techniques, Dijlah University College, Al-Farahidi University, Baghdad 10021, Iraq
– sequence: 7
  givenname: Mohammed Hasan
  surname: Ali
  fullname: Ali, Mohammed Hasan
  organization: Computer technique engineering department, Faculty of Information Technology, Imam Jafar Al-sadiq University, Iraq
– sequence: 8
  givenname: Iskander
  surname: Tlili
  fullname: Tlili, Iskander
  organization: Physics Department, College of Science, Al-Zulfi, Majmaah University, AL-Majmaah 11952, Saudi Arabia
– sequence: 9
  givenname: Andino
  surname: Maseleno
  fullname: Maseleno, Andino
  organization: Department of Information Systems, STMIK Pringsewu, Lampung, Indonesia
– sequence: 10
  givenname: Ali
  surname: Majdi
  fullname: Majdi, Ali
  organization: Department of Building and Construction Techniques Engineering, Al- Mustaqbal University College, Hilla 51001, Iraq
– sequence: 11
  givenname: Shahul Hameed Masthan
  surname: Ali
  fullname: Ali, Shahul Hameed Masthan
  organization: Department of Civil Engineering, PSR Engineering College (Autonomous), Sivakasi, Tamil Nadu, India
BookMark eNqNkMtKAzEUhrOoYFt9h7zA1EzmltkIWrxBQRe6DmeSkzZlmqlJWujbm6GC4EYXh3AO-T_4vxmZuMEhITRni5zl9c12AfqIbh0GExeccZ7OBa-bCZmytq6ytm3EJZmFsGUsLxnPp8S_edRWRTs4Ohgaok_5uKHgdBroT8EGah0N2JtMDbs9pL9uTdXglMeI9BDGdQdqYx3SHsG78dBBQE09rj2GMMIjqo2znwcMV-TCQB_w-vudk4_Hh_flc7Z6fXpZ3q0yxUsRM2MU5wY1tjUI1WlWNUJDWVVCYN6kVgVyoUqEuih5Ccjaroa6UpXuoEPDizm5PXOVH0LwaKSyEcam0YPtZc7kaE1u5Y81OVqTZ2sJIH4B9t7uwJ_-E70_RzEVPFr0MiiLTiXXHlWUerB_Q74Ayq6WmQ
CitedBy_id crossref_primary_10_1016_j_cscm_2024_e04112
crossref_primary_10_3390_ma16114149
crossref_primary_10_1016_j_enganabound_2022_11_020
crossref_primary_10_1016_j_wmb_2023_12_011
crossref_primary_10_1016_j_jobe_2024_110330
crossref_primary_10_1016_j_asoc_2025_113110
crossref_primary_10_1016_j_cscm_2024_e04151
crossref_primary_10_3390_app13074117
crossref_primary_10_1007_s13369_024_08776_2
crossref_primary_10_1016_j_apmt_2025_102601
crossref_primary_10_1080_02286203_2023_2212345
crossref_primary_10_1111_jace_20616
crossref_primary_10_1016_j_conbuildmat_2024_137370
crossref_primary_10_1016_j_applthermaleng_2025_127340
crossref_primary_10_1016_j_jobe_2024_109418
crossref_primary_10_1007_s40819_023_01519_1
crossref_primary_10_3390_su15064939
crossref_primary_10_1016_j_psep_2023_12_054
crossref_primary_10_1108_JAAR_10_2023_0323
crossref_primary_10_1007_s42107_023_00892_y
crossref_primary_10_1016_j_asoc_2024_112490
crossref_primary_10_1016_j_enganabound_2022_11_018
crossref_primary_10_3233_JIFS_236703
crossref_primary_10_1016_j_landusepol_2024_107147
crossref_primary_10_1007_s11368_025_04023_9
crossref_primary_10_1007_s43503_024_00040_8
crossref_primary_10_1016_j_mtcomm_2023_107356
crossref_primary_10_1038_s41598_025_12359_y
crossref_primary_10_1038_s41598_023_44482_z
crossref_primary_10_1016_j_jobe_2024_108752
crossref_primary_10_1007_s10489_023_05121_2
crossref_primary_10_4028_p_Dx5xwt
crossref_primary_10_3390_electronics14163289
crossref_primary_10_3390_buildings14051255
crossref_primary_10_1016_j_energy_2023_127861
crossref_primary_10_1016_j_psep_2024_05_052
crossref_primary_10_1140_epjs_s11734_023_00912_7
crossref_primary_10_1016_j_istruc_2023_104968
crossref_primary_10_1016_j_jtice_2023_104781
crossref_primary_10_1088_1402_4896_ad4ea5
crossref_primary_10_1007_s40996_024_01480_z
crossref_primary_10_1016_j_heliyon_2023_e22036
crossref_primary_10_1007_s42107_023_00942_5
crossref_primary_10_1016_j_autcon_2024_105959
crossref_primary_10_1016_j_mtcomm_2024_109525
crossref_primary_10_1088_2053_1591_ad2db7
crossref_primary_10_31466_kfbd_1504950
crossref_primary_10_1016_j_advengsoft_2024_103796
crossref_primary_10_1016_j_cscm_2023_e02163
crossref_primary_10_1080_15623599_2024_2345008
crossref_primary_10_1016_j_cscm_2025_e04589
crossref_primary_10_1007_s41939_024_00597_y
crossref_primary_10_1016_j_cscm_2024_e03510
crossref_primary_10_1016_j_advengsoft_2023_103454
crossref_primary_10_1016_j_advengsoft_2024_103597
crossref_primary_10_1016_j_enganabound_2022_11_032
crossref_primary_10_1177_00219983241310556
crossref_primary_10_1016_j_matpr_2023_04_208
crossref_primary_10_2478_acee_2024_0014
crossref_primary_10_1016_j_engappai_2023_106958
crossref_primary_10_1016_j_istruc_2025_108645
crossref_primary_10_3390_fire8080289
crossref_primary_10_1016_j_istruc_2023_06_122
crossref_primary_10_1016_j_advengsoft_2022_103317
crossref_primary_10_1016_j_engappai_2023_107177
crossref_primary_10_1016_j_cscm_2022_e01723
crossref_primary_10_1016_j_cscm_2023_e02557
Cites_doi 10.1155/2019/3069046
10.1016/j.resconrec.2006.12.004
10.1061/(ASCE)0899-1561(2005)17:1(19)
10.1016/j.desal.2020.114926
10.1016/j.commatsci.2007.04.009
10.1016/S0008-8846(00)00345-8
10.1016/j.engstruct.2008.04.009
10.1016/S0008-8846(00)00497-X
10.1007/s00521-019-04267-w
10.25130/tjes.16.3.05
10.1155/2014/381549
10.1016/j.aej.2014.04.002
10.1080/19648189.2016.1246693
10.1016/S0008-8846(03)00013-9
10.1007/s11709-016-0363-9
10.1016/j.hbrcj.2013.04.001
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.advengsoft.2022.103267
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
ExternalDocumentID 10_1016_j_advengsoft_2022_103267
S0965997822001685
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c248t-ffc22fede96a8cbd0578da45588e172673e28c4ea63424ae09b6a65c5dbabef23
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867694200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-9978
IngestDate Sat Nov 29 07:09:31 EST 2025
Tue Nov 18 20:40:15 EST 2025
Fri Feb 23 02:42:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Regression
Self-compacting concrete
Random forest
Decision tree
Compression strength
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c248t-ffc22fede96a8cbd0578da45588e172673e28c4ea63424ae09b6a65c5dbabef23
ParticipantIDs crossref_citationtrail_10_1016_j_advengsoft_2022_103267
crossref_primary_10_1016_j_advengsoft_2022_103267
elsevier_sciencedirect_doi_10_1016_j_advengsoft_2022_103267
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Advances in engineering software (1992)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References EFNARC (European Federation of Specialist Construction Chemicals and Concrete Systems) (2002) Specification & guidelines for self-compacting concrete.
Timur Cihan M, Tekirdag Namık, C, (2019) ‘Prediction of concrete compressive strength and slump by machine learning methods’, Article ID 3069046. 10.1155/2019/3069046.
Noguchi (bib0016) 2021; 282
Hodhod, Ahmed (bib0014) 2013; 9
Varma MB, and Bhandare DK, (2018) “SCC with FLY ASH and A.R.Glass Fibers”, Researchgate.
Asteris, Kolovos, Douvika, Roinos (bib0004) 2016; 20
Pazouki, Golafshani, Behnood (bib0012) 2021; 23
Bosiljkov (bib0006) 2003; 33
Heirman (bib0013) 2008; 30
Tarefder, White, Zaman (bib0027) 2005; 17
Dutta, Samui, Kim (bib0026) 2018; 21
Ni, Wang (bib0021) 2000; 30
Khademi, Akbari, Jamal, Nikoo (bib0015) 2017; 11
Saha, Debnath, Thomas (bib0022) 2020; 32
Chabib, Nehdi, Sonebi (bib0007) 2003; 100
Nagwani, Deo (bib0019) 2014; 2014
Shahsavar, Shoaib, karimipour, Goodarzi (bib0002) 2018; 131
Dutta, Murthy, Kim, Samui (bib0025) 2017; 53
Topçu, Sarıdemir (bib0029) 2008; 41
Felekoglu (bib0011) 2007; 51
Yousif, Abdullah (bib0031) 2009; 16
Hussain, Shoeibi, Armaghani (bib0024) 2021; 127
Malik, Musharavati, Ahmed, Khanmohammadi, Fernandez (bib0018) 2021
Nehdi, Chabib, Naggar (bib0020) 2001; 98
Elsheikh, Shanmugan, Sathyamurthy, Thakur, Issa, Panchal, Muthuramalingam, Kumar, Sharifpur (bib0003) 2022; 49
Chopra, Sharma, Kumar, Chopra (bib0008) 2018; 2018
Diab, Elyamany, AbdElmoaty, Shalan (bib0009) 2014; 53
Saha, Prasad, Rathish Kumar (bib0023) 2017; 20
Gandhi, Shanmugan, Gorjian, Pruncu, Sivakumar, Elsheikh, Essa, Omara, Panchal (bib0017) 2021; 502
Persson (bib0005) 2001; 31
Shahsavar, Khanmohammadi, Toghraie, Salihepour (bib0001) 2019; 276
Heirman (10.1016/j.advengsoft.2022.103267_bib0013) 2008; 30
Saha (10.1016/j.advengsoft.2022.103267_bib0023) 2017; 20
Hussain (10.1016/j.advengsoft.2022.103267_bib0024) 2021; 127
Noguchi (10.1016/j.advengsoft.2022.103267_bib0016) 2021; 282
Topçu (10.1016/j.advengsoft.2022.103267_bib0029) 2008; 41
Hodhod (10.1016/j.advengsoft.2022.103267_bib0014) 2013; 9
Persson (10.1016/j.advengsoft.2022.103267_bib0005) 2001; 31
Chabib (10.1016/j.advengsoft.2022.103267_bib0007) 2003; 100
Asteris (10.1016/j.advengsoft.2022.103267_bib0004) 2016; 20
Pazouki (10.1016/j.advengsoft.2022.103267_bib0012) 2021; 23
10.1016/j.advengsoft.2022.103267_bib0028
Elsheikh (10.1016/j.advengsoft.2022.103267_bib0003) 2022; 49
Saha (10.1016/j.advengsoft.2022.103267_bib0022) 2020; 32
Gandhi (10.1016/j.advengsoft.2022.103267_bib0017) 2021; 502
Chopra (10.1016/j.advengsoft.2022.103267_bib0008) 2018; 2018
Yousif (10.1016/j.advengsoft.2022.103267_bib0031) 2009; 16
Shahsavar (10.1016/j.advengsoft.2022.103267_bib0001) 2019; 276
Nehdi (10.1016/j.advengsoft.2022.103267_bib0020) 2001; 98
Shahsavar (10.1016/j.advengsoft.2022.103267_bib0002) 2018; 131
10.1016/j.advengsoft.2022.103267_bib0010
Dutta (10.1016/j.advengsoft.2022.103267_bib0025) 2017; 53
Felekoglu (10.1016/j.advengsoft.2022.103267_bib0011) 2007; 51
Khademi (10.1016/j.advengsoft.2022.103267_bib0015) 2017; 11
Ni (10.1016/j.advengsoft.2022.103267_bib0021) 2000; 30
Tarefder (10.1016/j.advengsoft.2022.103267_bib0027) 2005; 17
10.1016/j.advengsoft.2022.103267_bib0030
Diab (10.1016/j.advengsoft.2022.103267_bib0009) 2014; 53
Malik (10.1016/j.advengsoft.2022.103267_bib0018) 2021
Bosiljkov (10.1016/j.advengsoft.2022.103267_bib0006) 2003; 33
Nagwani (10.1016/j.advengsoft.2022.103267_bib0019) 2014; 2014
Dutta (10.1016/j.advengsoft.2022.103267_bib0026) 2018; 21
References_xml – volume: 131
  start-page: 432
  year: 2018
  end-page: 441
  ident: bib0002
  article-title: A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: a new approach of GMDH type of neural network
  publication-title: Int J Heat Mass Transf
– volume: 41
  start-page: 305
  year: 2008
  end-page: 311
  ident: bib0029
  article-title: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic
  publication-title: Comput Mater Sci
– volume: 9
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib0014
  article-title: Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete
  publication-title: HBRC J
– volume: 17
  start-page: 468
  year: 2005
  end-page: 473
  ident: bib0027
  article-title: Neural network model for asphalt concrete permeability
  publication-title: ASCE J Mater Civ Eng
– volume: 21
  start-page: 463
  year: 2018
  end-page: 470
  ident: bib0026
  article-title: Comparison of machine learning techniques to predict compressive strength of concrete
  publication-title: Comput Concr
– volume: 53
  start-page: 167
  year: 2017
  end-page: 185
  ident: bib0025
  article-title: Prediction of compressive strength of self-compacting concrete using intelligent computational modeling
  publication-title: CMC
– volume: 31
  start-page: 193
  year: 2001
  end-page: 198
  ident: bib0005
  article-title: A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete
  publication-title: Cem Concr Res
– volume: 20
  start-page: 102
  year: 2016
  end-page: 122
  ident: bib0004
  article-title: Prediction of self-compacting concrete strength using artificial neural networks
  publication-title: Eur J Environ Civ Eng
– reference: EFNARC (European Federation of Specialist Construction Chemicals and Concrete Systems) (2002) Specification & guidelines for self-compacting concrete.
– volume: 51
  start-page: 770
  year: 2007
  end-page: 791
  ident: bib0011
  article-title: Utilisation of high volumes of limestone quarry wastes in concrete industry
  publication-title: Resour Conserv Recycle
– volume: 282
  year: 2021
  ident: bib0016
  article-title: Multi-objective optimisations of envelope components for a prefabricated house in six climate zones
  publication-title: Appl Energy
– volume: 98
  start-page: 349
  year: 2001
  end-page: 401
  ident: bib0020
  article-title: Predicting performance of self-compacting concrete mixtures using artificial neural
  publication-title: ACI Mater J
– reference: Timur Cihan M, Tekirdag Namık, C, (2019) ‘Prediction of concrete compressive strength and slump by machine learning methods’, Article ID 3069046. 10.1155/2019/3069046.
– volume: 53
  start-page: 627
  year: 2014
  end-page: 642
  ident: bib0009
  article-title: Prediction of concrete compressive strength due to long term sulfate attack using neural network
  publication-title: Alex Eng J
– volume: 32
  start-page: 7995
  year: 2020
  end-page: 8010
  ident: bib0022
  article-title: Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach
  publication-title: Neural Comput Appl
– volume: 16
  start-page: 55
  year: 2009
  end-page: 63
  ident: bib0031
  article-title: Artificial neural networks model for predicting compressive strength of concrete
  publication-title: Tikrit J Eng Sci
– volume: 33
  start-page: 1279
  year: 2003
  end-page: 1286
  ident: bib0006
  article-title: SCC mixes with poorly graded aggregate and high volume of limestone filler
  publication-title: Cem Concr Res
– volume: 276
  start-page: 850
  year: 2019
  end-page: 860
  ident: bib0001
  article-title: Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles
  publication-title: Elesvier
– volume: 30
  start-page: 2945
  year: 2008
  end-page: 2956
  ident: bib0013
  article-title: Time-dependent deformations of limestone powder type self-compacting concrete
  publication-title: Eng Struct
– reference: Varma MB, and Bhandare DK, (2018) “SCC with FLY ASH and A.R.Glass Fibers”, Researchgate.
– volume: 100
  start-page: 164
  year: 2003
  end-page: 173
  ident: bib0007
  article-title: Artificial intelligence model for flowable concrete mixtures used in underwater construction and repair
  publication-title: ACI Mater J
– volume: 2014
  start-page: 16
  year: 2014
  ident: bib0019
  article-title: Estimating the concrete compressive strength using hard clustering and fuzzy clustering based regression techniques
  publication-title: Sci World J
– volume: 49
  year: 2022
  ident: bib0003
  article-title: Low-cost bilayered structure for improving the performance of solar stills: performance/cost analysis and water yield prediction using machine learning
  publication-title: Sustain Energy Technol Assess
– volume: 2018
  start-page: 9
  year: 2018
  ident: bib0008
  article-title: Comparison of machine learning techniques for the prediction of compressive strength of concrete
  publication-title: Adv Civ Eng
– year: 2021
  ident: bib0018
  article-title: Mathematical modeling of melting point and viscosity of a new molten salt for concentrating solar plant
  publication-title: J Therm Anal Calorim
– volume: 11
  start-page: 90
  year: 2017
  end-page: 99
  ident: bib0015
  article-title: Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete
  publication-title: Front Struct Civ Eng
– volume: 30
  start-page: 1245
  year: 2000
  end-page: 1250
  ident: bib0021
  article-title: Prediction of compressive strength of concrete by neural networks
  publication-title: Cem Concr Res
– volume: 20
  start-page: 031
  year: 2017
  end-page: 038
  ident: bib0023
  article-title: Predicting strength of SCC using artificial neural network and multivariable regression analysis
  publication-title: Comput Concr
– volume: 23
  start-page: 1
  year: 2021
  end-page: 23
  ident: bib0012
  article-title: Predicting the compressive strength of self-compacting concrete containing Class F fly ash using metaheuristic radial basis function neural network
  publication-title: Struct Concr
– volume: 127
  start-page: -
  year: 2021
  end-page: 105520
  ident: bib0024
  article-title: Impact of magnetic field and entropy generation of Casson fluid on double diffusive natural convection in staggered cavity
  publication-title: Elesvier
– volume: 502
  year: 2021
  ident: bib0017
  article-title: Performance enhancement of stepped basin solar still based on OSELM with traversal tree for higher energy adaptive control
  publication-title: Desalination
– ident: 10.1016/j.advengsoft.2022.103267_bib0028
  doi: 10.1155/2019/3069046
– volume: 51
  start-page: 770
  issue: 4
  year: 2007
  ident: 10.1016/j.advengsoft.2022.103267_bib0011
  article-title: Utilisation of high volumes of limestone quarry wastes in concrete industry
  publication-title: Resour Conserv Recycle
  doi: 10.1016/j.resconrec.2006.12.004
– volume: 20
  start-page: 031
  issue: 1
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103267_bib0023
  article-title: Predicting strength of SCC using artificial neural network and multivariable regression analysis
  publication-title: Comput Concr
– volume: 17
  start-page: 468
  issue: 1
  year: 2005
  ident: 10.1016/j.advengsoft.2022.103267_bib0027
  article-title: Neural network model for asphalt concrete permeability
  publication-title: ASCE J Mater Civ Eng
  doi: 10.1061/(ASCE)0899-1561(2005)17:1(19)
– volume: 100
  start-page: 164
  issue: 2
  year: 2003
  ident: 10.1016/j.advengsoft.2022.103267_bib0007
  article-title: Artificial intelligence model for flowable concrete mixtures used in underwater construction and repair
  publication-title: ACI Mater J
– volume: 502
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103267_bib0017
  article-title: Performance enhancement of stepped basin solar still based on OSELM with traversal tree for higher energy adaptive control
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114926
– ident: 10.1016/j.advengsoft.2022.103267_bib0030
– year: 2021
  ident: 10.1016/j.advengsoft.2022.103267_bib0018
  article-title: Mathematical modeling of melting point and viscosity of a new molten salt for concentrating solar plant
  publication-title: J Therm Anal Calorim
– volume: 53
  start-page: 167
  issue: 2
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103267_bib0025
  article-title: Prediction of compressive strength of self-compacting concrete using intelligent computational modeling
  publication-title: CMC
– volume: 41
  start-page: 305
  issue: 3
  year: 2008
  ident: 10.1016/j.advengsoft.2022.103267_bib0029
  article-title: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2007.04.009
– volume: 98
  start-page: 349
  issue: 5
  year: 2001
  ident: 10.1016/j.advengsoft.2022.103267_bib0020
  article-title: Predicting performance of self-compacting concrete mixtures using artificial neural
  publication-title: ACI Mater J
– volume: 2018
  start-page: 9
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103267_bib0008
  article-title: Comparison of machine learning techniques for the prediction of compressive strength of concrete
  publication-title: Adv Civ Eng
– volume: 30
  start-page: 1245
  issue: 8
  year: 2000
  ident: 10.1016/j.advengsoft.2022.103267_bib0021
  article-title: Prediction of compressive strength of concrete by neural networks
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(00)00345-8
– volume: 21
  start-page: 463
  issue: 4
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103267_bib0026
  article-title: Comparison of machine learning techniques to predict compressive strength of concrete
  publication-title: Comput Concr
– volume: 30
  start-page: 2945
  issue: 10
  year: 2008
  ident: 10.1016/j.advengsoft.2022.103267_bib0013
  article-title: Time-dependent deformations of limestone powder type self-compacting concrete
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2008.04.009
– volume: 31
  start-page: 193
  year: 2001
  ident: 10.1016/j.advengsoft.2022.103267_bib0005
  article-title: A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(00)00497-X
– volume: 32
  start-page: 7995
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103267_bib0022
  article-title: Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04267-w
– volume: 276
  start-page: 850
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103267_bib0001
  article-title: Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles
  publication-title: Elesvier
– volume: 16
  start-page: 55
  issue: 3
  year: 2009
  ident: 10.1016/j.advengsoft.2022.103267_bib0031
  article-title: Artificial neural networks model for predicting compressive strength of concrete
  publication-title: Tikrit J Eng Sci
  doi: 10.25130/tjes.16.3.05
– volume: 131
  start-page: 432
  issue: 1
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103267_bib0002
  article-title: A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: a new approach of GMDH type of neural network
  publication-title: Int J Heat Mass Transf
– ident: 10.1016/j.advengsoft.2022.103267_bib0010
– volume: 2014
  start-page: 16
  year: 2014
  ident: 10.1016/j.advengsoft.2022.103267_bib0019
  article-title: Estimating the concrete compressive strength using hard clustering and fuzzy clustering based regression techniques
  publication-title: Sci World J
  doi: 10.1155/2014/381549
– volume: 53
  start-page: 627
  year: 2014
  ident: 10.1016/j.advengsoft.2022.103267_bib0009
  article-title: Prediction of concrete compressive strength due to long term sulfate attack using neural network
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2014.04.002
– volume: 20
  start-page: 102
  issue: 1
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103267_bib0004
  article-title: Prediction of self-compacting concrete strength using artificial neural networks
  publication-title: Eur J Environ Civ Eng
  doi: 10.1080/19648189.2016.1246693
– volume: 49
  year: 2022
  ident: 10.1016/j.advengsoft.2022.103267_bib0003
  article-title: Low-cost bilayered structure for improving the performance of solar stills: performance/cost analysis and water yield prediction using machine learning
  publication-title: Sustain Energy Technol Assess
– volume: 33
  start-page: 1279
  year: 2003
  ident: 10.1016/j.advengsoft.2022.103267_bib0006
  article-title: SCC mixes with poorly graded aggregate and high volume of limestone filler
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(03)00013-9
– volume: 11
  start-page: 90
  issue: 1
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103267_bib0015
  article-title: Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-016-0363-9
– volume: 23
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103267_bib0012
  article-title: Predicting the compressive strength of self-compacting concrete containing Class F fly ash using metaheuristic radial basis function neural network
  publication-title: Struct Concr
– volume: 282
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103267_bib0016
  article-title: Multi-objective optimisations of envelope components for a prefabricated house in six climate zones
  publication-title: Appl Energy
– volume: 9
  start-page: 15
  year: 2013
  ident: 10.1016/j.advengsoft.2022.103267_bib0014
  article-title: Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete
  publication-title: HBRC J
  doi: 10.1016/j.hbrcj.2013.04.001
– volume: 127
  start-page: -
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103267_bib0024
  article-title: Impact of magnetic field and entropy generation of Casson fluid on double diffusive natural convection in staggered cavity
  publication-title: Elesvier
SSID ssj0014021
Score 2.5679731
Snippet •The main objective of this work is to develop regression models for forecasting self-compacting concrete compressive strength that are based on machine...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103267
SubjectTerms Compression strength
Decision tree
Machine learning
Random forest
Regression
Self-compacting concrete
Title Prediction of strength and analysis in self-compacting concrete using machine learning based regression techniques
URI https://dx.doi.org/10.1016/j.advengsoft.2022.103267
Volume 173
WOSCitedRecordID wos000867694200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0965-9978
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0014021
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8cBkgxk1-4C1KRXO1xVOFhgChqUJD6lvkOMddS-dNTTLGL-RvcRzbSRmTNpB4iSqnx457vvpcci6EvM6TEgAYDzOZoYESqTxELSEOAUWFTFJVqqzqmk3kh4dsPuez0einz4U5X-das4sLfvZfWY1jyGyTOvsX7O4nxQH8jEzHK7Idrzdi_Gxj3r14RdDkguiFy18TvgLJUgc1rFXYRaDLxibealQgGwjazntw0gVZgu8qsQiMuDOZLgsbOKuDvvprva3gTm1MQbcEDLUOgxqP--8myswUhuI82vJAfBEr8U1sWm2uzh-LnBbBtFzW0GcSfcbNV213luF3A0M1oKU5bmtx8sPRQt07uWf4NMfCVuxG7drdcG4OtJAnvZvD-SuzNOTc9vvpj-483jp8TW1A29vjD7lgXRSrsahQhCzMlsdmkfFA8nsp7ksisg9c9DFxq2KYqTAzFXamW2Q3ylOOx-vu9OPB_FP_QgvN9K55o9-FCyqzoYZXP9XVmtKW9nP0gNxzZgudWrg9JCPQe-S-M2GoExA1DvkuIX5sj9zdKnn5iGwGeNJTRT08KcKTenjSpaaX4Ek9PGkHT-rgST08aQdPOsCTDvB8TL6-Pzh69yF0fT9CGSWsCZWSUaSgAp4JJssKTQpWiSRNGQPUt7M8hojJBEQWJ1Ei4A0vM5GlMq1KUYKK4idkR59qeEpoySSUCcQJU6YOU8VSyCslyxxFPE_SyT7J_W9cSFcU3_RmWRfXcXqfTHrKM1sY5gY0bz0bC6fgWsW1QJxeS_3sH1Z8Tu4Mf6YXZKfZtPCS3JbnzbLevHIg_QWJIdVc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+strength+and+analysis+in+self-compacting+concrete+using+machine+learning+based+regression+techniques&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Rajakarunakaran%2C+Surya+Abisek&rft.au=Lourdu%2C+Arun+Raja&rft.au=Muthusamy%2C+Suresh&rft.au=Panchal%2C+Hitesh&rft.date=2022-11-01&rft.issn=0965-9978&rft.volume=173&rft.spage=103267&rft_id=info:doi/10.1016%2Fj.advengsoft.2022.103267&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_advengsoft_2022_103267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon