Spatial-Spectral Bipartite Graph Clustering With Low-Frequency Tensor Regularization for Hyperspectral and LiDAR Data

The increasing complexity of remote sensing (RS) applications necessitates multimodal data fusion to overcome the inherent limitations of single-source data. In particular, the integration of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data captures complementary spectral and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 63; S. 1 - 17
Hauptverfasser: Cao, Zhe, Lu, Yihang, Xin, Haonan, Yu, Chuanqiang, Wang, Rong, Nie, Feiping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The increasing complexity of remote sensing (RS) applications necessitates multimodal data fusion to overcome the inherent limitations of single-source data. In particular, the integration of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data captures complementary spectral and spatial features, significantly enhancing object discrimination. Unlike supervised methods requiring costly expert annotations, unsupervised clustering eliminates labeling needs, thereby offering an efficient solution for complex scene analysis with reduced deployment costs. However, existing unsupervised clustering methods still face several challenges, including insufficient utilization of spatial information, high data dimensionality, and interference from high-frequency noise, which collectively hinder their further development and practical application. To address these issues, this article proposes a novel method called spatial-spectral bipartite graph clustering with low-frequency tensor (SSBC-LFT) regularization for hyperspectral and LiDAR data. The proposed method first focuses on modeling clustering structures, innovatively constructing spatially informed bipartite graphs for each modality to enrich spatial details while reducing computational complexity. Additionally, an adaptive spectral band selection mechanism dynamically assigns higher weights to discriminative bands during clustering while suppressing redundant ones. Finally, through proposed low-frequency tensor nuclear norm (LFTNN) regularization, high-frequency noise is effectively filtered in the frequency domain, extracting stable and consistent cross-modal structural information from the low-rank space to further enhance clustering robustness and accuracy. Extensive experiments on real-world multimodal RS datasets demonstrate the superior performance of the SSBC-LFT model, offering a robust and effective solution for unsupervised clustering in complex scenarios.
AbstractList The increasing complexity of remote sensing (RS) applications necessitates multimodal data fusion to overcome the inherent limitations of single-source data. In particular, the integration of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data captures complementary spectral and spatial features, significantly enhancing object discrimination. Unlike supervised methods requiring costly expert annotations, unsupervised clustering eliminates labeling needs, thereby offering an efficient solution for complex scene analysis with reduced deployment costs. However, existing unsupervised clustering methods still face several challenges, including insufficient utilization of spatial information, high data dimensionality, and interference from high-frequency noise, which collectively hinder their further development and practical application. To address these issues, this article proposes a novel method called spatial–spectral bipartite graph clustering with low-frequency tensor (SSBC-LFT) regularization for hyperspectral and LiDAR data. The proposed method first focuses on modeling clustering structures, innovatively constructing spatially informed bipartite graphs for each modality to enrich spatial details while reducing computational complexity. Additionally, an adaptive spectral band selection mechanism dynamically assigns higher weights to discriminative bands during clustering while suppressing redundant ones. Finally, through proposed low-frequency tensor nuclear norm (LFTNN) regularization, high-frequency noise is effectively filtered in the frequency domain, extracting stable and consistent cross-modal structural information from the low-rank space to further enhance clustering robustness and accuracy. Extensive experiments on real-world multimodal RS datasets demonstrate the superior performance of the SSBC-LFT model, offering a robust and effective solution for unsupervised clustering in complex scenarios.
Author Lu, Yihang
Wang, Rong
Xin, Haonan
Cao, Zhe
Yu, Chuanqiang
Nie, Feiping
Author_xml – sequence: 1
  givenname: Zhe
  orcidid: 0009-0005-3706-6446
  surname: Cao
  fullname: Cao, Zhe
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Yihang
  orcidid: 0000-0001-7322-8602
  surname: Lu
  fullname: Lu, Yihang
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Haonan
  orcidid: 0000-0003-2473-4108
  surname: Xin
  fullname: Xin, Haonan
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 4
  givenname: Chuanqiang
  surname: Yu
  fullname: Yu, Chuanqiang
  email: fishychq@163.com
  organization: Rocket Force University of Engineering, Xi'an Institute of High Technology, Xi'an, Shaanxi, China
– sequence: 5
  givenname: Rong
  orcidid: 0000-0001-9240-6726
  surname: Wang
  fullname: Wang, Rong
  email: wangrong07@tsinghua.org.cn
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 6
  givenname: Feiping
  orcidid: 0000-0002-0871-6519
  surname: Nie
  fullname: Nie, Feiping
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, China
BookMark eNpFkFFrwjAQx8NwMHX7AIM9BPZcl6RJ2zw6nToQBurYY4npVSNd2yUpw336RXTs6eDuf787fgPUq5saELqnZEQpkU-b-Wo9YoSJUZwwxqW8Qn0qRBaRhPMe6hMqk4hlkt2ggXMHQigXNO2jbt0qb1QVrVvQ3qoKP5tWWW884LlV7R5Pqs55sKbe4Q_j93jZfEczC18d1PqIN1C7xuIV7LpKWfMTYE2Ny9BaHFuw7o-q6gIvzXS8wlPl1S26LlXl4O5Sh-h99rKZLKLl2_x1Ml5GmvHMR6BpzArKtjzZiqLIeCFgWxCaclYCKUpdEhYmUlGSaq6yNAWVQsxBZrHMdBwP0eOZ29omPOx8fmg6W4eTecySlIuMCxZS9JzStnHOQpm31nwqe8wpyU9285Pd_GQ3v9gNOw_nHQMA_3nKSGDK-BfyMXmC
CODEN IGRSD2
Cites_doi 10.1109/TIP.2021.3131941
10.1137/07070111X
10.1609/aaai.v38i15.29609
10.1109/TPAMI.2019.2891760
10.1109/TGRS.2018.2852708
10.1109/TGRS.2017.2726901
10.1109/TGRS.2024.3474976
10.1109/TGRS.2020.3032427
10.1109/TKDE.2023.3264970
10.1109/TGRS.2025.3584093
10.1109/TGRS.2025.3532225
10.1109/TTHZ.2024.3404642
10.1109/TII.2024.3514152
10.1109/TGRS.2020.2963848
10.1109/TGRS.2018.2868796
10.1109/TCSVT.2025.3531199
10.1016/j.inffus.2024.102693
10.1109/TMC.2024.3427784
10.1109/TGRS.2024.3464648
10.1109/TPAMI.2024.3507857
10.1109/TCSVT.2024.3375511
10.1109/TKDE.2023.3236698
10.1609/aaai.v37i8.26201
10.1109/CVPR.2017.520
10.1109/TGRS.2017.2706326
10.1016/j.jag.2024.103649
10.1016/j.jag.2023.103640
10.1109/TPAMI.2011.105
10.1117/12.974664
10.1109/TPAMI.2025.3557581
10.1109/TGRS.2024.3370633
10.1109/TCSVT.2024.3492814
10.1016/0098-3004(93)90090-R
10.1109/MGRS.2020.3032575
10.1016/j.isprsjprs.2025.05.008
10.1007/s10489-022-04339-w
10.1109/TGRS.2024.3424829
10.1109/TCSVT.2024.3492045
10.1109/TCSVT.2021.3055625
10.1109/CVPR.2015.7298741
10.1109/TKDE.2024.3364663
10.1109/TCSVT.2021.3095250
10.1109/TGRS.2020.3023418
10.1109/TGRS.2016.2524557
10.1109/TNNLS.2025.3543219
10.1109/TGRS.2023.3314616
10.1016/j.laa.2010.09.020
10.1109/TGRS.2023.3321789
10.1145/3474085.3475516
10.1109/TIP.2022.3141612
10.1109/TPAMI.2020.3017672
10.1038/s41467-024-53701-8
10.1109/LGRS.2024.3374877
10.1109/TPAMI.2012.120
10.1109/TIP.2025.3569479
10.1109/TCSVT.2024.3471877
10.1109/ACCESS.2024.3444042
10.1109/TNNLS.2020.2984814
10.1109/TGRS.2024.3385202
10.1609/aaai.v37i9.26333
10.1109/34.87344
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2025.3622499
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 17
ExternalDocumentID 10_1109_TGRS_2025_3622499
11205849
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62276212
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c248t-ec132d12b46b5dd84d5ebd01742fe0dfcf026b59a107c4a877ea7e34e98398c33
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001606670800043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Sat Nov 01 15:18:35 EDT 2025
Sat Nov 29 07:01:37 EST 2025
Wed Nov 05 07:06:37 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-ec132d12b46b5dd84d5ebd01742fe0dfcf026b59a107c4a877ea7e34e98398c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9240-6726
0000-0001-7322-8602
0009-0005-3706-6446
0000-0003-2473-4108
0000-0002-0871-6519
PQID 3267458452
PQPubID 85465
PageCount 17
ParticipantIDs proquest_journals_3267458452
ieee_primary_11205849
crossref_primary_10_1109_TGRS_2025_3622499
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Huang (ref50)
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Powell (ref48) 1969; 5
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref57
  doi: 10.1109/TIP.2021.3131941
– ident: ref12
  doi: 10.1137/07070111X
– ident: ref53
  doi: 10.1609/aaai.v38i15.29609
– start-page: 3569
  volume-title: Proc. 24th Int. Conf. Artif. Intell. (IJCAI)
  ident: ref50
  article-title: A new simplex sparse learning model to measure data similarity for clustering
– ident: ref46
  doi: 10.1109/TPAMI.2019.2891760
– ident: ref17
  doi: 10.1109/TGRS.2018.2852708
– ident: ref51
  doi: 10.1109/TGRS.2017.2726901
– ident: ref38
  doi: 10.1109/TGRS.2024.3474976
– ident: ref29
  doi: 10.1109/TGRS.2020.3032427
– ident: ref30
  doi: 10.1109/TKDE.2023.3264970
– ident: ref34
  doi: 10.1109/TGRS.2025.3584093
– ident: ref37
  doi: 10.1109/TGRS.2025.3532225
– ident: ref41
  doi: 10.1109/TTHZ.2024.3404642
– ident: ref20
  doi: 10.1109/TII.2024.3514152
– ident: ref18
  doi: 10.1109/TGRS.2020.2963848
– ident: ref31
  doi: 10.1109/TGRS.2018.2868796
– ident: ref21
  doi: 10.1109/TCSVT.2025.3531199
– ident: ref15
  doi: 10.1016/j.inffus.2024.102693
– ident: ref44
  doi: 10.1109/TMC.2024.3427784
– ident: ref7
  doi: 10.1109/TGRS.2024.3464648
– ident: ref23
  doi: 10.1109/TPAMI.2024.3507857
– ident: ref26
  doi: 10.1109/TCSVT.2024.3375511
– ident: ref55
  doi: 10.1109/TKDE.2023.3236698
– ident: ref54
  doi: 10.1609/aaai.v37i8.26201
– ident: ref61
  doi: 10.1109/CVPR.2017.520
– ident: ref3
  doi: 10.1109/TGRS.2017.2706326
– ident: ref5
  doi: 10.1016/j.jag.2024.103649
– ident: ref4
  doi: 10.1016/j.jag.2023.103640
– ident: ref40
  doi: 10.1109/TPAMI.2011.105
– ident: ref63
  doi: 10.1117/12.974664
– ident: ref11
  doi: 10.1109/TPAMI.2025.3557581
– ident: ref25
  doi: 10.1109/TGRS.2024.3370633
– ident: ref16
  doi: 10.1109/TCSVT.2024.3492814
– ident: ref47
  doi: 10.1016/0098-3004(93)90090-R
– ident: ref1
  doi: 10.1109/MGRS.2020.3032575
– ident: ref6
  doi: 10.1016/j.isprsjprs.2025.05.008
– ident: ref33
  doi: 10.1007/s10489-022-04339-w
– ident: ref10
  doi: 10.1109/TGRS.2024.3424829
– ident: ref19
  doi: 10.1109/TCSVT.2024.3492045
– ident: ref14
  doi: 10.1109/TCSVT.2021.3055625
– ident: ref60
  doi: 10.1109/CVPR.2015.7298741
– ident: ref52
  doi: 10.1109/TKDE.2024.3364663
– ident: ref8
  doi: 10.1109/TCSVT.2021.3095250
– ident: ref36
  doi: 10.1109/TGRS.2020.3023418
– ident: ref28
  doi: 10.1109/TGRS.2016.2524557
– ident: ref22
  doi: 10.1109/TNNLS.2025.3543219
– ident: ref24
  doi: 10.1109/TGRS.2023.3314616
– ident: ref32
  doi: 10.1016/j.laa.2010.09.020
– ident: ref42
  doi: 10.1109/TGRS.2023.3321789
– volume: 5
  start-page: 283
  issue: 6
  year: 1969
  ident: ref48
  article-title: A method for nonlinear constraints in minimization problems
  publication-title: Optimization
– ident: ref58
  doi: 10.1145/3474085.3475516
– ident: ref49
  doi: 10.1109/TIP.2022.3141612
– ident: ref13
  doi: 10.1109/TPAMI.2020.3017672
– ident: ref39
  doi: 10.1038/s41467-024-53701-8
– ident: ref2
  doi: 10.1109/LGRS.2024.3374877
– ident: ref59
  doi: 10.1109/TPAMI.2012.120
– ident: ref9
  doi: 10.1109/TIP.2025.3569479
– ident: ref43
  doi: 10.1109/TCSVT.2024.3471877
– ident: ref27
  doi: 10.1109/ACCESS.2024.3444042
– ident: ref45
  doi: 10.1109/TNNLS.2020.2984814
– ident: ref35
  doi: 10.1109/TGRS.2024.3385202
– ident: ref56
  doi: 10.1609/aaai.v37i9.26333
– ident: ref62
  doi: 10.1109/34.87344
SSID ssj0014517
Score 2.4653337
Snippet The increasing complexity of remote sensing (RS) applications necessitates multimodal data fusion to overcome the inherent limitations of single-source data....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Annotations
Band selection
Bipartite graph
Clustering
Clustering algorithms
Complexity
Computational efficiency
Data integration
Graph theory
Hyperspectral imaging
Information processing
Laser radar
Lidar
low-frequency tensor nuclear norm (LFTNN)
multimodal remote sensing (RS)
Multisensor fusion
Regularization
Remote sensing
Scene analysis
spatial bipartite graph
Spatial data
Surface topography
Synthetic aperture radar
Tensors
Unsupervised learning
Title Spatial-Spectral Bipartite Graph Clustering With Low-Frequency Tensor Regularization for Hyperspectral and LiDAR Data
URI https://ieeexplore.ieee.org/document/11205849
https://www.proquest.com/docview/3267458452
Volume 63
WOSCitedRecordID wos001606670800043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB5ik0JzaNPUpW4e6JBTQPE-pNXqmDp1cjAhuE6b26KVtHSh2Ga9Tsi_70irPErpIbddWIlFM5qZb54Ax5zzyhjOqI6jkjKVKaqEivEVRaFWiYh9I-0fU3F1ld_eyutQrO5rYay1PvnMnrpHH8s3S71xrrIR2gYRKkzZg54QWVes9RQyYDwOtdEZRRSRhBBmHMnR_GL2HaFgwk9RXCPekH8pIT9V5R9R7PXL5P0r_2wX3gVDkpx1lP8AW3axBzsv2gvuwRuf3qnXH2HjJg8jp1E3bt75NsjXeuWYprXkwrWsJuPfG9cyAdeRn3X7i0yX93TSdHnWD2SOYHfZkJkfXN-E0k2C9i65RBzblWu6XdXCkGl9fjYj56pVA7iZfJuPL2kYuEB1wvKWWo3Y1MRJybKSG5Mzw21p8M6ypLKRqXSFiK3kUiFm1EzlQlglbMqsRDMr12n6CfqL5cJ-BiIUy6pUxwINNhQLmcxkmWrJ0tQYlmbxEE4eKVCsur4ahccjkSwcuQpHriKQawgDd-TPH4bTHsLBI9GKcPXWBdqjwgV_efLlP8v24a3bvXOkHEC_bTb2ELb1XVuvmyPPVX8A6Y3Kpw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RStX2UJ5Vt6XUB05IhjzsOD5SYNmqYYWW5XGLHNtRV6p2UTbbqv--Y8eUIsSBWyLFSeQZz8w3T4BdznltDGdUx1FFmcoUVULFeIuiUKtExL6R9lUhhsP85kaeh2J1XwtjrfXJZ3bfXfpYvpnphXOVHaBtEKHClC_gpRudFcq1_gUNGI9DdXRGEUckIYgZR_JgfDq6QDCY8H0U2Ig45AM15OeqPBLGXsP0V5_5b2vwLpiS5LCj_Tos2ekGvP2vweAGvPIJnnq-CQs3exh5jbqB8867Qb5Obh3btJacuqbV5OjnwjVNwHXketL-IMXsN-03Xab1HzJGuDtryMiPrm9C8SZBi5cMEMl2BZvurWpqSDE5PhyRY9WqLbjsn4yPBjSMXKA6YXlLrUZ0auKkYlnFjcmZ4bYyeGpZUtvI1LpGzFZxqRA1aqZyIawSNmVWoqGV6zR9D8vT2dR-ACIUy-pUxwJNNhQMmcxklWrJ0tQYlmZxD_buKFDedp01So9IIlk6cpWOXGUgVw-23JbfPxh2uwfbd0Qrw-Gbl2iRChf-5cnHJ5Z9gdeD8VlRFt-G3z_BG_elzq2yDctts7CfYUX_aifzZsdz2F-ir83w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial-Spectral+Bipartite+Graph+Clustering+With+Low-Frequency+Tensor+Regularization+for+Hyperspectral+and+LiDAR+Data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Cao%2C+Zhe&rft.au=Lu%2C+Yihang&rft.au=Xin%2C+Haonan&rft.au=Yu%2C+Chuanqiang&rft.date=2025&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=63&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTGRS.2025.3622499&rft.externalDocID=11205849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon