Spatial-Spectral Bipartite Graph Clustering With Low-Frequency Tensor Regularization for Hyperspectral and LiDAR Data
The increasing complexity of remote sensing (RS) applications necessitates multimodal data fusion to overcome the inherent limitations of single-source data. In particular, the integration of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data captures complementary spectral and...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 63; S. 1 - 17 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The increasing complexity of remote sensing (RS) applications necessitates multimodal data fusion to overcome the inherent limitations of single-source data. In particular, the integration of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data captures complementary spectral and spatial features, significantly enhancing object discrimination. Unlike supervised methods requiring costly expert annotations, unsupervised clustering eliminates labeling needs, thereby offering an efficient solution for complex scene analysis with reduced deployment costs. However, existing unsupervised clustering methods still face several challenges, including insufficient utilization of spatial information, high data dimensionality, and interference from high-frequency noise, which collectively hinder their further development and practical application. To address these issues, this article proposes a novel method called spatial-spectral bipartite graph clustering with low-frequency tensor (SSBC-LFT) regularization for hyperspectral and LiDAR data. The proposed method first focuses on modeling clustering structures, innovatively constructing spatially informed bipartite graphs for each modality to enrich spatial details while reducing computational complexity. Additionally, an adaptive spectral band selection mechanism dynamically assigns higher weights to discriminative bands during clustering while suppressing redundant ones. Finally, through proposed low-frequency tensor nuclear norm (LFTNN) regularization, high-frequency noise is effectively filtered in the frequency domain, extracting stable and consistent cross-modal structural information from the low-rank space to further enhance clustering robustness and accuracy. Extensive experiments on real-world multimodal RS datasets demonstrate the superior performance of the SSBC-LFT model, offering a robust and effective solution for unsupervised clustering in complex scenarios. |
|---|---|
| AbstractList | The increasing complexity of remote sensing (RS) applications necessitates multimodal data fusion to overcome the inherent limitations of single-source data. In particular, the integration of hyperspectral images (HSIs) and light detection and ranging (LiDAR) data captures complementary spectral and spatial features, significantly enhancing object discrimination. Unlike supervised methods requiring costly expert annotations, unsupervised clustering eliminates labeling needs, thereby offering an efficient solution for complex scene analysis with reduced deployment costs. However, existing unsupervised clustering methods still face several challenges, including insufficient utilization of spatial information, high data dimensionality, and interference from high-frequency noise, which collectively hinder their further development and practical application. To address these issues, this article proposes a novel method called spatial–spectral bipartite graph clustering with low-frequency tensor (SSBC-LFT) regularization for hyperspectral and LiDAR data. The proposed method first focuses on modeling clustering structures, innovatively constructing spatially informed bipartite graphs for each modality to enrich spatial details while reducing computational complexity. Additionally, an adaptive spectral band selection mechanism dynamically assigns higher weights to discriminative bands during clustering while suppressing redundant ones. Finally, through proposed low-frequency tensor nuclear norm (LFTNN) regularization, high-frequency noise is effectively filtered in the frequency domain, extracting stable and consistent cross-modal structural information from the low-rank space to further enhance clustering robustness and accuracy. Extensive experiments on real-world multimodal RS datasets demonstrate the superior performance of the SSBC-LFT model, offering a robust and effective solution for unsupervised clustering in complex scenarios. |
| Author | Lu, Yihang Wang, Rong Xin, Haonan Cao, Zhe Yu, Chuanqiang Nie, Feiping |
| Author_xml | – sequence: 1 givenname: Zhe orcidid: 0009-0005-3706-6446 surname: Cao fullname: Cao, Zhe organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 2 givenname: Yihang orcidid: 0000-0001-7322-8602 surname: Lu fullname: Lu, Yihang organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 3 givenname: Haonan orcidid: 0000-0003-2473-4108 surname: Xin fullname: Xin, Haonan organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 4 givenname: Chuanqiang surname: Yu fullname: Yu, Chuanqiang email: fishychq@163.com organization: Rocket Force University of Engineering, Xi'an Institute of High Technology, Xi'an, Shaanxi, China – sequence: 5 givenname: Rong orcidid: 0000-0001-9240-6726 surname: Wang fullname: Wang, Rong email: wangrong07@tsinghua.org.cn organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 6 givenname: Feiping orcidid: 0000-0002-0871-6519 surname: Nie fullname: Nie, Feiping organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, China |
| BookMark | eNpFkFFrwjAQx8NwMHX7AIM9BPZcl6RJ2zw6nToQBurYY4npVSNd2yUpw336RXTs6eDuf787fgPUq5saELqnZEQpkU-b-Wo9YoSJUZwwxqW8Qn0qRBaRhPMe6hMqk4hlkt2ggXMHQigXNO2jbt0qb1QVrVvQ3qoKP5tWWW884LlV7R5Pqs55sKbe4Q_j93jZfEczC18d1PqIN1C7xuIV7LpKWfMTYE2Ny9BaHFuw7o-q6gIvzXS8wlPl1S26LlXl4O5Sh-h99rKZLKLl2_x1Ml5GmvHMR6BpzArKtjzZiqLIeCFgWxCaclYCKUpdEhYmUlGSaq6yNAWVQsxBZrHMdBwP0eOZ29omPOx8fmg6W4eTecySlIuMCxZS9JzStnHOQpm31nwqe8wpyU9285Pd_GQ3v9gNOw_nHQMA_3nKSGDK-BfyMXmC |
| CODEN | IGRSD2 |
| Cites_doi | 10.1109/TIP.2021.3131941 10.1137/07070111X 10.1609/aaai.v38i15.29609 10.1109/TPAMI.2019.2891760 10.1109/TGRS.2018.2852708 10.1109/TGRS.2017.2726901 10.1109/TGRS.2024.3474976 10.1109/TGRS.2020.3032427 10.1109/TKDE.2023.3264970 10.1109/TGRS.2025.3584093 10.1109/TGRS.2025.3532225 10.1109/TTHZ.2024.3404642 10.1109/TII.2024.3514152 10.1109/TGRS.2020.2963848 10.1109/TGRS.2018.2868796 10.1109/TCSVT.2025.3531199 10.1016/j.inffus.2024.102693 10.1109/TMC.2024.3427784 10.1109/TGRS.2024.3464648 10.1109/TPAMI.2024.3507857 10.1109/TCSVT.2024.3375511 10.1109/TKDE.2023.3236698 10.1609/aaai.v37i8.26201 10.1109/CVPR.2017.520 10.1109/TGRS.2017.2706326 10.1016/j.jag.2024.103649 10.1016/j.jag.2023.103640 10.1109/TPAMI.2011.105 10.1117/12.974664 10.1109/TPAMI.2025.3557581 10.1109/TGRS.2024.3370633 10.1109/TCSVT.2024.3492814 10.1016/0098-3004(93)90090-R 10.1109/MGRS.2020.3032575 10.1016/j.isprsjprs.2025.05.008 10.1007/s10489-022-04339-w 10.1109/TGRS.2024.3424829 10.1109/TCSVT.2024.3492045 10.1109/TCSVT.2021.3055625 10.1109/CVPR.2015.7298741 10.1109/TKDE.2024.3364663 10.1109/TCSVT.2021.3095250 10.1109/TGRS.2020.3023418 10.1109/TGRS.2016.2524557 10.1109/TNNLS.2025.3543219 10.1109/TGRS.2023.3314616 10.1016/j.laa.2010.09.020 10.1109/TGRS.2023.3321789 10.1145/3474085.3475516 10.1109/TIP.2022.3141612 10.1109/TPAMI.2020.3017672 10.1038/s41467-024-53701-8 10.1109/LGRS.2024.3374877 10.1109/TPAMI.2012.120 10.1109/TIP.2025.3569479 10.1109/TCSVT.2024.3471877 10.1109/ACCESS.2024.3444042 10.1109/TNNLS.2020.2984814 10.1109/TGRS.2024.3385202 10.1609/aaai.v37i9.26333 10.1109/34.87344 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2025.3622499 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 17 |
| ExternalDocumentID | 10_1109_TGRS_2025_3622499 11205849 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62276212 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c248t-ec132d12b46b5dd84d5ebd01742fe0dfcf026b59a107c4a877ea7e34e98398c33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001606670800043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Sat Nov 01 15:18:35 EDT 2025 Sat Nov 29 07:01:37 EST 2025 Wed Nov 05 07:06:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-ec132d12b46b5dd84d5ebd01742fe0dfcf026b59a107c4a877ea7e34e98398c33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9240-6726 0000-0001-7322-8602 0009-0005-3706-6446 0000-0003-2473-4108 0000-0002-0871-6519 |
| PQID | 3267458452 |
| PQPubID | 85465 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3267458452 ieee_primary_11205849 crossref_primary_10_1109_TGRS_2025_3622499 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Huang (ref50) ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Powell (ref48) 1969; 5 ref24 ref23 ref26 ref25 ref20 ref63 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref57 doi: 10.1109/TIP.2021.3131941 – ident: ref12 doi: 10.1137/07070111X – ident: ref53 doi: 10.1609/aaai.v38i15.29609 – start-page: 3569 volume-title: Proc. 24th Int. Conf. Artif. Intell. (IJCAI) ident: ref50 article-title: A new simplex sparse learning model to measure data similarity for clustering – ident: ref46 doi: 10.1109/TPAMI.2019.2891760 – ident: ref17 doi: 10.1109/TGRS.2018.2852708 – ident: ref51 doi: 10.1109/TGRS.2017.2726901 – ident: ref38 doi: 10.1109/TGRS.2024.3474976 – ident: ref29 doi: 10.1109/TGRS.2020.3032427 – ident: ref30 doi: 10.1109/TKDE.2023.3264970 – ident: ref34 doi: 10.1109/TGRS.2025.3584093 – ident: ref37 doi: 10.1109/TGRS.2025.3532225 – ident: ref41 doi: 10.1109/TTHZ.2024.3404642 – ident: ref20 doi: 10.1109/TII.2024.3514152 – ident: ref18 doi: 10.1109/TGRS.2020.2963848 – ident: ref31 doi: 10.1109/TGRS.2018.2868796 – ident: ref21 doi: 10.1109/TCSVT.2025.3531199 – ident: ref15 doi: 10.1016/j.inffus.2024.102693 – ident: ref44 doi: 10.1109/TMC.2024.3427784 – ident: ref7 doi: 10.1109/TGRS.2024.3464648 – ident: ref23 doi: 10.1109/TPAMI.2024.3507857 – ident: ref26 doi: 10.1109/TCSVT.2024.3375511 – ident: ref55 doi: 10.1109/TKDE.2023.3236698 – ident: ref54 doi: 10.1609/aaai.v37i8.26201 – ident: ref61 doi: 10.1109/CVPR.2017.520 – ident: ref3 doi: 10.1109/TGRS.2017.2706326 – ident: ref5 doi: 10.1016/j.jag.2024.103649 – ident: ref4 doi: 10.1016/j.jag.2023.103640 – ident: ref40 doi: 10.1109/TPAMI.2011.105 – ident: ref63 doi: 10.1117/12.974664 – ident: ref11 doi: 10.1109/TPAMI.2025.3557581 – ident: ref25 doi: 10.1109/TGRS.2024.3370633 – ident: ref16 doi: 10.1109/TCSVT.2024.3492814 – ident: ref47 doi: 10.1016/0098-3004(93)90090-R – ident: ref1 doi: 10.1109/MGRS.2020.3032575 – ident: ref6 doi: 10.1016/j.isprsjprs.2025.05.008 – ident: ref33 doi: 10.1007/s10489-022-04339-w – ident: ref10 doi: 10.1109/TGRS.2024.3424829 – ident: ref19 doi: 10.1109/TCSVT.2024.3492045 – ident: ref14 doi: 10.1109/TCSVT.2021.3055625 – ident: ref60 doi: 10.1109/CVPR.2015.7298741 – ident: ref52 doi: 10.1109/TKDE.2024.3364663 – ident: ref8 doi: 10.1109/TCSVT.2021.3095250 – ident: ref36 doi: 10.1109/TGRS.2020.3023418 – ident: ref28 doi: 10.1109/TGRS.2016.2524557 – ident: ref22 doi: 10.1109/TNNLS.2025.3543219 – ident: ref24 doi: 10.1109/TGRS.2023.3314616 – ident: ref32 doi: 10.1016/j.laa.2010.09.020 – ident: ref42 doi: 10.1109/TGRS.2023.3321789 – volume: 5 start-page: 283 issue: 6 year: 1969 ident: ref48 article-title: A method for nonlinear constraints in minimization problems publication-title: Optimization – ident: ref58 doi: 10.1145/3474085.3475516 – ident: ref49 doi: 10.1109/TIP.2022.3141612 – ident: ref13 doi: 10.1109/TPAMI.2020.3017672 – ident: ref39 doi: 10.1038/s41467-024-53701-8 – ident: ref2 doi: 10.1109/LGRS.2024.3374877 – ident: ref59 doi: 10.1109/TPAMI.2012.120 – ident: ref9 doi: 10.1109/TIP.2025.3569479 – ident: ref43 doi: 10.1109/TCSVT.2024.3471877 – ident: ref27 doi: 10.1109/ACCESS.2024.3444042 – ident: ref45 doi: 10.1109/TNNLS.2020.2984814 – ident: ref35 doi: 10.1109/TGRS.2024.3385202 – ident: ref56 doi: 10.1609/aaai.v37i9.26333 – ident: ref62 doi: 10.1109/34.87344 |
| SSID | ssj0014517 |
| Score | 2.4653337 |
| Snippet | The increasing complexity of remote sensing (RS) applications necessitates multimodal data fusion to overcome the inherent limitations of single-source data.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Annotations Band selection Bipartite graph Clustering Clustering algorithms Complexity Computational efficiency Data integration Graph theory Hyperspectral imaging Information processing Laser radar Lidar low-frequency tensor nuclear norm (LFTNN) multimodal remote sensing (RS) Multisensor fusion Regularization Remote sensing Scene analysis spatial bipartite graph Spatial data Surface topography Synthetic aperture radar Tensors Unsupervised learning |
| Title | Spatial-Spectral Bipartite Graph Clustering With Low-Frequency Tensor Regularization for Hyperspectral and LiDAR Data |
| URI | https://ieeexplore.ieee.org/document/11205849 https://www.proquest.com/docview/3267458452 |
| Volume | 63 |
| WOSCitedRecordID | wos001606670800043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB5ik0JzaNPUpW4e6JBTQPE-pNXqmDp1cjAhuE6b26KVtHSh2Ga9Tsi_70irPErpIbddWIlFM5qZb54Ax5zzyhjOqI6jkjKVKaqEivEVRaFWiYh9I-0fU3F1ld_eyutQrO5rYay1PvnMnrpHH8s3S71xrrIR2gYRKkzZg54QWVes9RQyYDwOtdEZRRSRhBBmHMnR_GL2HaFgwk9RXCPekH8pIT9V5R9R7PXL5P0r_2wX3gVDkpx1lP8AW3axBzsv2gvuwRuf3qnXH2HjJg8jp1E3bt75NsjXeuWYprXkwrWsJuPfG9cyAdeRn3X7i0yX93TSdHnWD2SOYHfZkJkfXN-E0k2C9i65RBzblWu6XdXCkGl9fjYj56pVA7iZfJuPL2kYuEB1wvKWWo3Y1MRJybKSG5Mzw21p8M6ypLKRqXSFiK3kUiFm1EzlQlglbMqsRDMr12n6CfqL5cJ-BiIUy6pUxwINNhQLmcxkmWrJ0tQYlmbxEE4eKVCsur4ahccjkSwcuQpHriKQawgDd-TPH4bTHsLBI9GKcPXWBdqjwgV_efLlP8v24a3bvXOkHEC_bTb2ELb1XVuvmyPPVX8A6Y3Kpw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RStX2UJ5Vt6XUB05IhjzsOD5SYNmqYYWW5XGLHNtRV6p2UTbbqv--Y8eUIsSBWyLFSeQZz8w3T4BdznltDGdUx1FFmcoUVULFeIuiUKtExL6R9lUhhsP85kaeh2J1XwtjrfXJZ3bfXfpYvpnphXOVHaBtEKHClC_gpRudFcq1_gUNGI9DdXRGEUckIYgZR_JgfDq6QDCY8H0U2Ig45AM15OeqPBLGXsP0V5_5b2vwLpiS5LCj_Tos2ekGvP2vweAGvPIJnnq-CQs3exh5jbqB8867Qb5Obh3btJacuqbV5OjnwjVNwHXketL-IMXsN-03Xab1HzJGuDtryMiPrm9C8SZBi5cMEMl2BZvurWpqSDE5PhyRY9WqLbjsn4yPBjSMXKA6YXlLrUZ0auKkYlnFjcmZ4bYyeGpZUtvI1LpGzFZxqRA1aqZyIawSNmVWoqGV6zR9D8vT2dR-ACIUy-pUxwJNNhQMmcxklWrJ0tQYlmZxD_buKFDedp01So9IIlk6cpWOXGUgVw-23JbfPxh2uwfbd0Qrw-Gbl2iRChf-5cnHJ5Z9gdeD8VlRFt-G3z_BG_elzq2yDctts7CfYUX_aifzZsdz2F-ir83w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial-Spectral+Bipartite+Graph+Clustering+With+Low-Frequency+Tensor+Regularization+for+Hyperspectral+and+LiDAR+Data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Cao%2C+Zhe&rft.au=Lu%2C+Yihang&rft.au=Xin%2C+Haonan&rft.au=Yu%2C+Chuanqiang&rft.date=2025&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=63&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTGRS.2025.3622499&rft.externalDocID=11205849 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |