Modeling the Bionic Compound Eye Vision System Based on Graph Neural Networks
A bionic compound eye (CE) vision system is inspired by examples from nature, such as the eyes of dragonflies, mollusks, and other beings. It is used for visual measurements and 3-D reconstruction at close range due to the large number of overlapping miniaturized subeyes, which allow such systems to...
Uloženo v:
| Vydáno v: | IEEE sensors journal Ročník 25; číslo 14; s. 26748 - 26755 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
15.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A bionic compound eye (CE) vision system is inspired by examples from nature, such as the eyes of dragonflies, mollusks, and other beings. It is used for visual measurements and 3-D reconstruction at close range due to the large number of overlapping miniaturized subeyes, which allow such systems to be applied in robot navigation, autonomous vehicles, medical endoscopy, and others. The calibration of the CE is difficult due to distortions and the large number of optimized parameters. This work proposes a new method for CE modeling based on graph neural networks (GNNs). This model creates a 2-D to 3-D correspondence solving the problem of missing values that appears when an object is not captured in all subeyes. The obtained results verified better performance of the proposed model in the estimation of 3-D object coordinates and in visual measurement of Euclidean distance between objects, compared to a traditional calibration approach based on pinhole camera model as well as a method based on multilayer perceptron (MLP) model, where missing values are filled with zeros. Comparative analysis is done to validate a design of the proposed GNN-based model. |
|---|---|
| AbstractList | A bionic compound eye (CE) vision system is inspired by examples from nature, such as the eyes of dragonflies, mollusks, and other beings. It is used for visual measurements and 3-D reconstruction at close range due to the large number of overlapping miniaturized subeyes, which allow such systems to be applied in robot navigation, autonomous vehicles, medical endoscopy, and others. The calibration of the CE is difficult due to distortions and the large number of optimized parameters. This work proposes a new method for CE modeling based on graph neural networks (GNNs). This model creates a 2-D to 3-D correspondence solving the problem of missing values that appears when an object is not captured in all subeyes. The obtained results verified better performance of the proposed model in the estimation of 3-D object coordinates and in visual measurement of Euclidean distance between objects, compared to a traditional calibration approach based on pinhole camera model as well as a method based on multilayer perceptron (MLP) model, where missing values are filled with zeros. Comparative analysis is done to validate a design of the proposed GNN-based model. |
| Author | Li, Yuan Ren, Xuemei Arngold, Artem |
| Author_xml | – sequence: 1 givenname: Artem orcidid: 0009-0004-1357-5169 surname: Arngold fullname: Arngold, Artem email: 3820231113@bit.edu.cn organization: School of Automation, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Yuan orcidid: 0000-0002-0482-4213 surname: Li fullname: Li, Yuan email: liyuan@bit.edu.cn organization: School of Automation, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Xuemei orcidid: 0000-0002-7248-3318 surname: Ren fullname: Ren, Xuemei email: xmren@bit.edu.cn organization: School of Automation, Beijing Institute of Technology, Beijing, China |
| BookMark | eNpFkF9LwzAUxYNMcE4_gOBDwOfO_Gma5tGNOZVtPkzFt5A2t65za2rSIvv2tmzg07n3cs498LtEg8pVgNANJWNKibp_Wc9WY0aYGHMhBZXsDA2pEGlEZZwO-pmTKOby8wJdhrAlhCop5BAtl87Crqy-cLMBPCldVeZ46va1ayuLZwfAH2Xornh9CA3s8cQEsLjb597UG7yC1ptdJ82v89_hCp0XZhfg-qQj9P44e5s-RYvX-fP0YRHlLE6bCIwVSUHzzMgssyIHq0TMQYBiSSFSJXMRJzlPlbKUpUli4qwAlVsglimZWj5Cd8e_tXc_LYRGb13rq65Sc8aJSGiseOeiR1fuXQgeCl37cm_8QVOie2q6p6Z7avpErcvcHjMlAPz7KWGJlIL_AaK6aoo |
| CODEN | ISJEAZ |
| Cites_doi | 10.1364/OE.473620 10.24963/ijcai.2021/214 10.1109/ROBIO.2011.6181567 10.48550/ARXIV.1706.03762 10.1109/CCDC58219.2023.10327114 10.1109/JSEN.2019.2931661 10.1109/34.888718 10.1007/978-1-84882-935-0_11 10.1364/OE.388125 10.1364/AO.53.001166 10.1007/s10462-016-9513-7 10.1126/scirobotics.adl3606 10.1109/JSEN.2014.2337254 10.1109/TPAMI.2021.3081010 10.1109/JSEN.2019.2938559 10.1109/JSEN.2021.3111612 10.23919/CCC58697.2023.10240669 10.1109/COGINF.2011.6016165 10.3390/mi12070847 10.1109/TNNLS.2020.2978386 10.1109/ICSENS.2014.6985020 10.1109/JSEN.2010.2099112 10.1609/aaai.v33i01.33014602 10.1109/CVRS.2012.6421255 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2025.3575172 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 26755 |
| ExternalDocumentID | 10_1109_JSEN_2025_3575172 11026775 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62273050 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c248t-ead56f1cba7bbd5ced9543e5e926f5897c546c3899d12866a4bfe9cde0d2978d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001530264300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Thu Nov 20 00:24:35 EST 2025 Sat Nov 29 07:42:16 EST 2025 Wed Jul 23 05:50:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-ead56f1cba7bbd5ced9543e5e926f5897c546c3899d12866a4bfe9cde0d2978d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7248-3318 0009-0004-1357-5169 0000-0002-0482-4213 |
| PQID | 3230561493 |
| PQPubID | 75733 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2025_3575172 proquest_journals_3230561493 ieee_primary_11026775 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-15 |
| PublicationDateYYYYMMDD | 2025-07-15 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref25 ref22 ref21 ref8 ref7 Velickovic (ref20) ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref11 doi: 10.1364/OE.473620 – ident: ref21 doi: 10.24963/ijcai.2021/214 – ident: ref13 doi: 10.1109/ROBIO.2011.6181567 – ident: ref15 doi: 10.48550/ARXIV.1706.03762 – ident: ref17 doi: 10.1109/CCDC58219.2023.10327114 – start-page: 1 volume-title: Proc. ICLR ident: ref20 article-title: Graph Attention Networks – ident: ref3 doi: 10.1109/JSEN.2019.2931661 – ident: ref9 doi: 10.1109/34.888718 – ident: ref23 doi: 10.1007/978-1-84882-935-0_11 – ident: ref18 doi: 10.1364/OE.388125 – ident: ref12 doi: 10.1364/AO.53.001166 – ident: ref1 doi: 10.1007/s10462-016-9513-7 – ident: ref25 doi: 10.1126/scirobotics.adl3606 – ident: ref2 doi: 10.1109/JSEN.2014.2337254 – ident: ref24 doi: 10.1109/TPAMI.2021.3081010 – ident: ref6 doi: 10.1109/JSEN.2019.2938559 – ident: ref5 doi: 10.1109/JSEN.2021.3111612 – ident: ref16 doi: 10.23919/CCC58697.2023.10240669 – ident: ref14 doi: 10.1109/COGINF.2011.6016165 – ident: ref4 doi: 10.3390/mi12070847 – ident: ref19 doi: 10.1109/TNNLS.2020.2978386 – ident: ref8 doi: 10.1109/ICSENS.2014.6985020 – ident: ref7 doi: 10.1109/JSEN.2010.2099112 – ident: ref22 doi: 10.1609/aaai.v33i01.33014602 – ident: ref10 doi: 10.1109/CVRS.2012.6421255 |
| SSID | ssj0019757 |
| Score | 2.4341714 |
| Snippet | A bionic compound eye (CE) vision system is inspired by examples from nature, such as the eyes of dragonflies, mollusks, and other beings. It is used for... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 26748 |
| SubjectTerms | Autonomous navigation Bionics Calibration Cameras Compound eye (CE) Compounds Computational modeling Euclidean geometry Eye (anatomy) graph neural network (GNN) Graph neural networks Image reconstruction Lenses Machine vision modeling Modelling Mollusks Multilayer perceptrons Neural networks Pinhole cameras Solid modeling Three-dimensional displays Transformers Vision systems visual measurement Visualization |
| Title | Modeling the Bionic Compound Eye Vision System Based on Graph Neural Networks |
| URI | https://ieeexplore.ieee.org/document/11026775 https://www.proquest.com/docview/3230561493 |
| Volume | 25 |
| WOSCitedRecordID | wos001530264300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50EdSDb3F9kYMnoZomTdIcVVZFdBF8sLfSJlP0soq7Cv57J2nXB-LBWwvttMyXZPLNZGYA9pwU3JnSJdpJIig1t0mFIk3qVKIrS1NXsRzD_aXp9_PBwF63yeoxFwYR4-EzPAiXMZbvn9xrcJUdkqkS2hg1DdPG6CZZ6zNkYE0s60kzmCeZNIM2hJlye3hx0-sTFRTqQIYwgxE_jFDsqvJrKY725XTxn3-2BAvtRpIdNcgvwxQOV2D-W3nBFZhtO5w_vK_CVWh6FlLPGe342HHwwjoWFoPQVon13pHdxyxz1pQwZ8dk3Tyj-7MggIUaHvS1fnNofLQGd6e925PzpG2lkDiR5eOExovSdeqq0lSVVw69VZlEhVboWuXWOJURWkS-PBksrcusqtE6j9wL4plerkNn-DTEDWCWVxytLK3nZNmMJgLnaA-CmJckI9dd2J_otnhuKmYUkWlwWwQgigBE0QLRhbWgzK8HWz12YXsCR9FOqlEhReQ7mZWbf7y2BXNBevC9pmobOuOXV9yBGfc2fhy97Mbx8gHg7r1D |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6xgTT2AKwrWkcBP_CElNax4zh-3FBL2doIiVL1LUrsi8ZLi9puUv_9zk4GTIgH3hIptqP7bJ-_O98dwAcrBbe6tFFqJRGUmpuoQhFHdSzRlqWuq5COYTHVeZ4tl-ZrG6weYmEQMVw-w4F_DL58t7a33lQ2JFUlUq3VATxVSSJ4E671y2lgdEjsSWuYR4nUy9aJGXMzvPo2yokMCjWQ3tGgxSM1FOqq_LUZBw0zfvmf__YKXrRHSXbRYH8CT3DVgeM_Egx24KitcX6zP4WZL3vmg88ZnfnYpbfDWua3A19YiY32yBYhzpw1SczZJek3x-j9s--A-SweNFreXBvfduH7eDT_NInaYgqRFUm2i2jGqLSObVXqqnLKojMqkajQiLRWmdFWJYQX0S9HKitNy6Sq0ViH3Alimk6-hsPVeoVnwAyvOBpZGsdJt-mUKJylUwhiVlIfWdqDjw-yLX42OTOKwDW4KTwQhQeiaIHoQdcL8_eHrRx70H-Ao2iX1baQIjCexMjzfzR7D0eT-WxaTL_k12_guR_JW2Jj1YfD3eYW38Ize7f7sd28C3PnHudGwIo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Bionic+Compound+Eye+Vision+System+Based+on+Graph+Neural+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Arngold%2C+Artem&rft.au=Li%2C+Yuan&rft.au=Ren%2C+Xuemei&rft.date=2025-07-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=14&rft.spage=26748&rft.epage=26755&rft_id=info:doi/10.1109%2FJSEN.2025.3575172&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2025_3575172 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |