Modeling the Bionic Compound Eye Vision System Based on Graph Neural Networks

A bionic compound eye (CE) vision system is inspired by examples from nature, such as the eyes of dragonflies, mollusks, and other beings. It is used for visual measurements and 3-D reconstruction at close range due to the large number of overlapping miniaturized subeyes, which allow such systems to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 25; číslo 14; s. 26748 - 26755
Hlavní autoři: Arngold, Artem, Li, Yuan, Ren, Xuemei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A bionic compound eye (CE) vision system is inspired by examples from nature, such as the eyes of dragonflies, mollusks, and other beings. It is used for visual measurements and 3-D reconstruction at close range due to the large number of overlapping miniaturized subeyes, which allow such systems to be applied in robot navigation, autonomous vehicles, medical endoscopy, and others. The calibration of the CE is difficult due to distortions and the large number of optimized parameters. This work proposes a new method for CE modeling based on graph neural networks (GNNs). This model creates a 2-D to 3-D correspondence solving the problem of missing values that appears when an object is not captured in all subeyes. The obtained results verified better performance of the proposed model in the estimation of 3-D object coordinates and in visual measurement of Euclidean distance between objects, compared to a traditional calibration approach based on pinhole camera model as well as a method based on multilayer perceptron (MLP) model, where missing values are filled with zeros. Comparative analysis is done to validate a design of the proposed GNN-based model.
AbstractList A bionic compound eye (CE) vision system is inspired by examples from nature, such as the eyes of dragonflies, mollusks, and other beings. It is used for visual measurements and 3-D reconstruction at close range due to the large number of overlapping miniaturized subeyes, which allow such systems to be applied in robot navigation, autonomous vehicles, medical endoscopy, and others. The calibration of the CE is difficult due to distortions and the large number of optimized parameters. This work proposes a new method for CE modeling based on graph neural networks (GNNs). This model creates a 2-D to 3-D correspondence solving the problem of missing values that appears when an object is not captured in all subeyes. The obtained results verified better performance of the proposed model in the estimation of 3-D object coordinates and in visual measurement of Euclidean distance between objects, compared to a traditional calibration approach based on pinhole camera model as well as a method based on multilayer perceptron (MLP) model, where missing values are filled with zeros. Comparative analysis is done to validate a design of the proposed GNN-based model.
Author Li, Yuan
Ren, Xuemei
Arngold, Artem
Author_xml – sequence: 1
  givenname: Artem
  orcidid: 0009-0004-1357-5169
  surname: Arngold
  fullname: Arngold, Artem
  email: 3820231113@bit.edu.cn
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Yuan
  orcidid: 0000-0002-0482-4213
  surname: Li
  fullname: Li, Yuan
  email: liyuan@bit.edu.cn
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Xuemei
  orcidid: 0000-0002-7248-3318
  surname: Ren
  fullname: Ren, Xuemei
  email: xmren@bit.edu.cn
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
BookMark eNpFkF9LwzAUxYNMcE4_gOBDwOfO_Gma5tGNOZVtPkzFt5A2t65za2rSIvv2tmzg07n3cs498LtEg8pVgNANJWNKibp_Wc9WY0aYGHMhBZXsDA2pEGlEZZwO-pmTKOby8wJdhrAlhCop5BAtl87Crqy-cLMBPCldVeZ46va1ayuLZwfAH2Xornh9CA3s8cQEsLjb597UG7yC1ptdJ82v89_hCp0XZhfg-qQj9P44e5s-RYvX-fP0YRHlLE6bCIwVSUHzzMgssyIHq0TMQYBiSSFSJXMRJzlPlbKUpUli4qwAlVsglimZWj5Cd8e_tXc_LYRGb13rq65Sc8aJSGiseOeiR1fuXQgeCl37cm_8QVOie2q6p6Z7avpErcvcHjMlAPz7KWGJlIL_AaK6aoo
CODEN ISJEAZ
Cites_doi 10.1364/OE.473620
10.24963/ijcai.2021/214
10.1109/ROBIO.2011.6181567
10.48550/ARXIV.1706.03762
10.1109/CCDC58219.2023.10327114
10.1109/JSEN.2019.2931661
10.1109/34.888718
10.1007/978-1-84882-935-0_11
10.1364/OE.388125
10.1364/AO.53.001166
10.1007/s10462-016-9513-7
10.1126/scirobotics.adl3606
10.1109/JSEN.2014.2337254
10.1109/TPAMI.2021.3081010
10.1109/JSEN.2019.2938559
10.1109/JSEN.2021.3111612
10.23919/CCC58697.2023.10240669
10.1109/COGINF.2011.6016165
10.3390/mi12070847
10.1109/TNNLS.2020.2978386
10.1109/ICSENS.2014.6985020
10.1109/JSEN.2010.2099112
10.1609/aaai.v33i01.33014602
10.1109/CVRS.2012.6421255
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3575172
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 26755
ExternalDocumentID 10_1109_JSEN_2025_3575172
11026775
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62273050
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c248t-ead56f1cba7bbd5ced9543e5e926f5897c546c3899d12866a4bfe9cde0d2978d3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001530264300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Thu Nov 20 00:24:35 EST 2025
Sat Nov 29 07:42:16 EST 2025
Wed Jul 23 05:50:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-ead56f1cba7bbd5ced9543e5e926f5897c546c3899d12866a4bfe9cde0d2978d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7248-3318
0009-0004-1357-5169
0000-0002-0482-4213
PQID 3230561493
PQPubID 75733
PageCount 8
ParticipantIDs crossref_primary_10_1109_JSEN_2025_3575172
proquest_journals_3230561493
ieee_primary_11026775
PublicationCentury 2000
PublicationDate 2025-07-15
PublicationDateYYYYMMDD 2025-07-15
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref25
ref22
ref21
ref8
ref7
Velickovic (ref20)
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1364/OE.473620
– ident: ref21
  doi: 10.24963/ijcai.2021/214
– ident: ref13
  doi: 10.1109/ROBIO.2011.6181567
– ident: ref15
  doi: 10.48550/ARXIV.1706.03762
– ident: ref17
  doi: 10.1109/CCDC58219.2023.10327114
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref20
  article-title: Graph Attention Networks
– ident: ref3
  doi: 10.1109/JSEN.2019.2931661
– ident: ref9
  doi: 10.1109/34.888718
– ident: ref23
  doi: 10.1007/978-1-84882-935-0_11
– ident: ref18
  doi: 10.1364/OE.388125
– ident: ref12
  doi: 10.1364/AO.53.001166
– ident: ref1
  doi: 10.1007/s10462-016-9513-7
– ident: ref25
  doi: 10.1126/scirobotics.adl3606
– ident: ref2
  doi: 10.1109/JSEN.2014.2337254
– ident: ref24
  doi: 10.1109/TPAMI.2021.3081010
– ident: ref6
  doi: 10.1109/JSEN.2019.2938559
– ident: ref5
  doi: 10.1109/JSEN.2021.3111612
– ident: ref16
  doi: 10.23919/CCC58697.2023.10240669
– ident: ref14
  doi: 10.1109/COGINF.2011.6016165
– ident: ref4
  doi: 10.3390/mi12070847
– ident: ref19
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref8
  doi: 10.1109/ICSENS.2014.6985020
– ident: ref7
  doi: 10.1109/JSEN.2010.2099112
– ident: ref22
  doi: 10.1609/aaai.v33i01.33014602
– ident: ref10
  doi: 10.1109/CVRS.2012.6421255
SSID ssj0019757
Score 2.4341714
Snippet A bionic compound eye (CE) vision system is inspired by examples from nature, such as the eyes of dragonflies, mollusks, and other beings. It is used for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 26748
SubjectTerms Autonomous navigation
Bionics
Calibration
Cameras
Compound eye (CE)
Compounds
Computational modeling
Euclidean geometry
Eye (anatomy)
graph neural network (GNN)
Graph neural networks
Image reconstruction
Lenses
Machine vision
modeling
Modelling
Mollusks
Multilayer perceptrons
Neural networks
Pinhole cameras
Solid modeling
Three-dimensional displays
Transformers
Vision systems
visual measurement
Visualization
Title Modeling the Bionic Compound Eye Vision System Based on Graph Neural Networks
URI https://ieeexplore.ieee.org/document/11026775
https://www.proquest.com/docview/3230561493
Volume 25
WOSCitedRecordID wos001530264300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50EdSDb3F9kYMnoZomTdIcVVZFdBF8sLfSJlP0soq7Cv57J2nXB-LBWwvttMyXZPLNZGYA9pwU3JnSJdpJIig1t0mFIk3qVKIrS1NXsRzD_aXp9_PBwF63yeoxFwYR4-EzPAiXMZbvn9xrcJUdkqkS2hg1DdPG6CZZ6zNkYE0s60kzmCeZNIM2hJlye3hx0-sTFRTqQIYwgxE_jFDsqvJrKY725XTxn3-2BAvtRpIdNcgvwxQOV2D-W3nBFZhtO5w_vK_CVWh6FlLPGe342HHwwjoWFoPQVon13pHdxyxz1pQwZ8dk3Tyj-7MggIUaHvS1fnNofLQGd6e925PzpG2lkDiR5eOExovSdeqq0lSVVw69VZlEhVboWuXWOJURWkS-PBksrcusqtE6j9wL4plerkNn-DTEDWCWVxytLK3nZNmMJgLnaA-CmJckI9dd2J_otnhuKmYUkWlwWwQgigBE0QLRhbWgzK8HWz12YXsCR9FOqlEhReQ7mZWbf7y2BXNBevC9pmobOuOXV9yBGfc2fhy97Mbx8gHg7r1D
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6xgTT2AKwrWkcBP_CElNax4zh-3FBL2doIiVL1LUrsi8ZLi9puUv_9zk4GTIgH3hIptqP7bJ-_O98dwAcrBbe6tFFqJRGUmpuoQhFHdSzRlqWuq5COYTHVeZ4tl-ZrG6weYmEQMVw-w4F_DL58t7a33lQ2JFUlUq3VATxVSSJ4E671y2lgdEjsSWuYR4nUy9aJGXMzvPo2yokMCjWQ3tGgxSM1FOqq_LUZBw0zfvmf__YKXrRHSXbRYH8CT3DVgeM_Egx24KitcX6zP4WZL3vmg88ZnfnYpbfDWua3A19YiY32yBYhzpw1SczZJek3x-j9s--A-SweNFreXBvfduH7eDT_NInaYgqRFUm2i2jGqLSObVXqqnLKojMqkajQiLRWmdFWJYQX0S9HKitNy6Sq0ViH3Alimk6-hsPVeoVnwAyvOBpZGsdJt-mUKJylUwhiVlIfWdqDjw-yLX42OTOKwDW4KTwQhQeiaIHoQdcL8_eHrRx70H-Ao2iX1baQIjCexMjzfzR7D0eT-WxaTL_k12_guR_JW2Jj1YfD3eYW38Ize7f7sd28C3PnHudGwIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Bionic+Compound+Eye+Vision+System+Based+on+Graph+Neural+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Arngold%2C+Artem&rft.au=Li%2C+Yuan&rft.au=Ren%2C+Xuemei&rft.date=2025-07-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=14&rft.spage=26748&rft.epage=26755&rft_id=info:doi/10.1109%2FJSEN.2025.3575172&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2025_3575172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon