Full-Scale Regression Modeling of Spatial Details for Single-/Multiplatform Hypersharpening

Whenever the sharpening band is not unique, the hypersharpening paradigm extends traditional pansharpening to any <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula>-to-<inline-formula> <tex-math notation="LaTeX">n </t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 16
Main Authors: Arienzo, Alberto, Garzelli, Andrea, Alparone, Luciano, Vivone, Gemine
Format: Journal Article
Language:English
Published: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Whenever the sharpening band is not unique, the hypersharpening paradigm extends traditional pansharpening to any <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula>-to-<inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> fusion task, by integrating spatial information from multiple sources. The <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula>-to-<inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> fusion task is recast into multiple 1-to-<inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> pansharpening problems by appropriately selecting or synthesizing a set of high-resolution (HR) bands to sharpen the set of low-resolution (LR) bands. The synthesis generates each of the sharpening bands as a linear combination of the available HR bands. The spectral coefficients of each synthetic band can be estimated using a multivariate linear regression (MLR) that matches the LR band to be sharpened. A different combination of the HR bands is assimilated into each LR band. Here, we propose a novel hypersharpening instance that directly combines high-pass spatial details, rather than low-pass image components. In general, fusion methods optimize their parameters at a reduced scale, assuming a scale-invariance property. Instead, we introduce an estimation strategy that allows the fusion parameters to be directly retrieved at the full spatial scale. Starting from an iterative process, we derive an asymptotic closed-form solution and establish its convergence conditions. Three case studies involving as many real datasets-Sentinel-2 (S2), Environmental Mapping and Analysis Program (EnMAP), and WorldView-3 (WV-3)-demonstrate performance improvements at reduced and full resolutions, obtained without any parametric optimization by the user, confirming the effectiveness and versatility of the proposed solution in single- and multiplatform fusion scenarios featuring diverse spatial resolutions, spectral bands, and resolution ratios.
AbstractList Whenever the sharpening band is not unique, the hypersharpening paradigm extends traditional pansharpening to any <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula>-to-<inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> fusion task, by integrating spatial information from multiple sources. The <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula>-to-<inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> fusion task is recast into multiple 1-to-<inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> pansharpening problems by appropriately selecting or synthesizing a set of high-resolution (HR) bands to sharpen the set of low-resolution (LR) bands. The synthesis generates each of the sharpening bands as a linear combination of the available HR bands. The spectral coefficients of each synthetic band can be estimated using a multivariate linear regression (MLR) that matches the LR band to be sharpened. A different combination of the HR bands is assimilated into each LR band. Here, we propose a novel hypersharpening instance that directly combines high-pass spatial details, rather than low-pass image components. In general, fusion methods optimize their parameters at a reduced scale, assuming a scale-invariance property. Instead, we introduce an estimation strategy that allows the fusion parameters to be directly retrieved at the full spatial scale. Starting from an iterative process, we derive an asymptotic closed-form solution and establish its convergence conditions. Three case studies involving as many real datasets-Sentinel-2 (S2), Environmental Mapping and Analysis Program (EnMAP), and WorldView-3 (WV-3)-demonstrate performance improvements at reduced and full resolutions, obtained without any parametric optimization by the user, confirming the effectiveness and versatility of the proposed solution in single- and multiplatform fusion scenarios featuring diverse spatial resolutions, spectral bands, and resolution ratios.
Whenever the sharpening band is not unique, the hypersharpening paradigm extends traditional pansharpening to any [Formula Omitted]-to-[Formula Omitted] fusion task, by integrating spatial information from multiple sources. The [Formula Omitted]-to-[Formula Omitted] fusion task is recast into multiple 1-to-[Formula Omitted] pansharpening problems by appropriately selecting or synthesizing a set of high-resolution (HR) bands to sharpen the set of low-resolution (LR) bands. The synthesis generates each of the sharpening bands as a linear combination of the available HR bands. The spectral coefficients of each synthetic band can be estimated using a multivariate linear regression (MLR) that matches the LR band to be sharpened. A different combination of the HR bands is assimilated into each LR band. Here, we propose a novel hypersharpening instance that directly combines high-pass spatial details, rather than low-pass image components. In general, fusion methods optimize their parameters at a reduced scale, assuming a scale-invariance property. Instead, we introduce an estimation strategy that allows the fusion parameters to be directly retrieved at the full spatial scale. Starting from an iterative process, we derive an asymptotic closed-form solution and establish its convergence conditions. Three case studies involving as many real datasets—Sentinel-2 (S2), Environmental Mapping and Analysis Program (EnMAP), and WorldView-3 (WV-3)—demonstrate performance improvements at reduced and full resolutions, obtained without any parametric optimization by the user, confirming the effectiveness and versatility of the proposed solution in single- and multiplatform fusion scenarios featuring diverse spatial resolutions, spectral bands, and resolution ratios.
Author Alparone, Luciano
Arienzo, Alberto
Vivone, Gemine
Garzelli, Andrea
Author_xml – sequence: 1
  givenname: Alberto
  orcidid: 0000-0002-1584-4631
  surname: Arienzo
  fullname: Arienzo, Alberto
  email: alberto.arienzo@cnr.it
  organization: National Research Council-Institute of Methodologies for Environmental Analysis (CNR-IMAA), Tito Scalo, Italy
– sequence: 2
  givenname: Andrea
  orcidid: 0000-0003-2332-780X
  surname: Garzelli
  fullname: Garzelli, Andrea
  email: andrea.garzelli@unisi.it
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
– sequence: 3
  givenname: Luciano
  orcidid: 0000-0002-8984-938X
  surname: Alparone
  fullname: Alparone, Luciano
  email: luciano.alparone@unifi.it
  organization: Department of Information Engineering, University of Florence, Florence, Italy
– sequence: 4
  givenname: Gemine
  orcidid: 0000-0001-9542-0638
  surname: Vivone
  fullname: Vivone, Gemine
  email: gemine.vivone@cnr.it
  organization: National Research Council-Institute of Methodologies for Environmental Analysis (CNR-IMAA), Tito Scalo, Italy
BookMark eNpFkMFqwkAQhpdioWr7AIUeAj1Hdza72eyx2KoFpWDsqYcwrBMbWZN0Nx58-0YsdC4DM98_A9-IDeqmJsYegU8AuJluF5t8IrhQkyQF2dcNG4JSWcxTKQdsyMGksciMuGOjEA6cg1Sgh-xrfnIuzi06ija09xRC1dTRutmRq-p91JRR3mJXoYteqcPKhahsfJT3O0fxdH1yXdU67PrhMVqeW_LhG31LdQ_cs9sSXaCHvz5mn_O37WwZrz4W77OXVWyFzLqYUkIstdSUkACNyhhtyNpUKY5cGq1QGBCoMVPWCERtbcl3aYnW4C6RyZg9X--2vvk5UeiKQ3Pydf-ySERvA1IA6Cm4UtY3IXgqi9ZXR_TnAnhxcVhcHBYXh8Wfwz7zdM1URPTPA2hjpE5-ASKEcEY
CODEN IGRSD2
Cites_doi 10.14358/PERS.72.5.591
10.1109/MGRS.2024.3509139
10.1109/MGRS.2022.3187652
10.1109/JSTARS.2015.2440092
10.1109/TNNLS.2024.3385473
10.1109/MGRS.2020.3019315
10.1109/JSTARS.2021.3075727
10.1117/12.976298
10.1016/j.inffus.2020.03.012
10.1109/TNNLS.2024.3409563
10.1109/TGRS.2009.2029094
10.1109/LGRS.2017.2677087
10.3390/rs8030172
10.1109/TPAMI.2023.3279050
10.1109/LGRS.2018.2884087
10.3390/jimaging11010001
10.3390/rs11192315
10.1109/TGRS.2021.3101848
10.1109/TGRS.2020.3000267
10.1109/TGRS.2017.2697943
10.3390/rs13214399
10.1201/b18189
10.3390/rs16244694
10.1109/LGRS.2017.2777916
10.14358/pers.74.2.193
10.1109/TCYB.2019.2951572
10.1109/TCYB.2023.3238200
10.1109/TGRS.2004.837324
10.1109/TIP.2016.2556944
10.1137/1.9781611970937
10.1109/LGRS.2009.2022650
10.1109/TIP.2018.2819501
10.1109/TGRS.2024.3405848
10.1109/JSTARS.2024.3406762
10.3390/rs16193576
10.1109/IGARSS.2018.8518869
10.1017/CBO9781316017876
10.3390/rs16050875
10.1109/TIP.2018.2836307
10.1109/TGRS.2021.3066425
10.1109/LGRS.2022.3194257
10.1109/TGRS.2019.2906073
10.1109/TGRS.2023.3332176
10.1109/TIP.2015.2458572
10.1109/JSTARS.2021.3086877
10.1109/IGARSS.2005.1525659
10.1109/TIP.2020.3004261
10.3390/rs3091817
10.1109/TNNLS.2023.3297319
10.1109/TGRS.2011.2161320
10.1117/12.2067770
10.1109/MGRS.2022.3170092
10.1109/WHISPERS.2015.8075412
10.1016/j.rse.2020.112121
10.1016/j.inffus.2022.08.032
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2025.3614444
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 16
ExternalDocumentID 10_1109_TGRS_2025_3614444
11179947
Genre orig-research
GrantInformation_xml – fundername: Italian Ministry of University and Research funded by the European Union - NextGenerationEU
  grantid: CN_00000033
– fundername: National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender
  grantid: 3138
– fundername: rectified by Decree
  grantid: 3175
– fundername: Concession Decree
  grantid: 1034
– fundername: Italian Ministry of University and Research, CUP
  grantid: B83C22002930006
– fundername: title “National Biodiversity Future Center -NBFC."
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c248t-e6eaaf747e3e217a59979ecc6550a04975a2912a7a85c92aa7ccf0d6fac9ad343
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001594874000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Sat Nov 29 14:29:50 EST 2025
Sat Nov 29 07:04:49 EST 2025
Sat Oct 25 03:08:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-e6eaaf747e3e217a59979ecc6550a04975a2912a7a85c92aa7ccf0d6fac9ad343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1584-4631
0000-0001-9542-0638
0000-0003-2332-780X
0000-0002-8984-938X
PQID 3261416111
PQPubID 85465
PageCount 16
ParticipantIDs ieee_primary_11179947
proquest_journals_3261416111
crossref_primary_10_1109_TGRS_2025_3614444
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
Wald (ref54) 2002
ref56
ref15
ref59
Yokoya (ref3) 2016; 8
Shaw (ref6) 2003; 14
ref14
ref58
ref53
ref52
ref11
ref55
ref10
Alparone (ref44) 2024; 16
ref17
ref16
ref19
ref18
Alparone (ref21) 2024; 16
Wald (ref51) 1997; 63
ref46
Heldens (ref2) 2011; 3
ref48
ref47
ref42
ref41
ref43
ref49
ref8
Alparone (ref5) 2024; 16
ref7
ref40
ref35
Alparone (ref50) 2024; 11
ref34
ref37
ref36
ref31
Alparone (ref20) 2024; 17
ref30
ref33
ref32
Vivone (ref13) 2021; 14
Yuhas (ref38)
ref1
ref39
Zhang (ref4) 2021; 252
Arienzo (ref45) 2021; 13
ref24
ref23
ref26
ref25
Vivone (ref9) 2019; 11
ref22
ref28
ref27
ref29
References_xml – ident: ref41
  doi: 10.14358/PERS.72.5.591
– ident: ref8
  doi: 10.1109/MGRS.2024.3509139
– ident: ref14
  doi: 10.1109/MGRS.2022.3187652
– ident: ref18
  doi: 10.1109/JSTARS.2015.2440092
– volume: 14
  start-page: 3
  issue: 1
  year: 2003
  ident: ref6
  article-title: Spectral imaging for remote sensing
  publication-title: LINCOLN Lab. J.
– ident: ref26
  doi: 10.1109/TNNLS.2024.3385473
– volume-title: Data Fusion: Definitions Architectures—Fusion Images Different Spatial Resolutions
  year: 2002
  ident: ref54
– ident: ref12
  doi: 10.1109/MGRS.2020.3019315
– ident: ref30
  doi: 10.1109/JSTARS.2021.3075727
– ident: ref39
  doi: 10.1117/12.976298
– ident: ref19
  doi: 10.1016/j.inffus.2020.03.012
– ident: ref32
  doi: 10.1109/TNNLS.2024.3409563
– ident: ref57
  doi: 10.1109/TGRS.2009.2029094
– ident: ref16
  doi: 10.1109/LGRS.2017.2677087
– volume: 8
  start-page: 172
  issue: 3
  year: 2016
  ident: ref3
  article-title: Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images
  publication-title: Remote Sens.
  doi: 10.3390/rs8030172
– ident: ref34
  doi: 10.1109/TPAMI.2023.3279050
– ident: ref22
  doi: 10.1109/LGRS.2018.2884087
– volume: 11
  start-page: 1
  issue: 1
  year: 2024
  ident: ref50
  article-title: Benchmarking of multispectral pansharpening: Reproducibility, assessment, and meta-analysis
  publication-title: J. Imag.
  doi: 10.3390/jimaging11010001
– volume: 11
  start-page: 2315
  issue: 19
  year: 2019
  ident: ref9
  article-title: Fast reproducible pansharpening based on instrument and acquisition modeling: AWLP revisited
  publication-title: Remote Sens.
  doi: 10.3390/rs11192315
– ident: ref28
  doi: 10.1109/TGRS.2021.3101848
– ident: ref17
  doi: 10.1109/TGRS.2020.3000267
– ident: ref37
  doi: 10.1109/TGRS.2017.2697943
– volume: 13
  start-page: 4399
  issue: 21
  year: 2021
  ident: ref45
  article-title: Reproducibility of pansharpening methods and quality indexes versus data formats
  publication-title: Remote Sens.
  doi: 10.3390/rs13214399
– ident: ref7
  doi: 10.1201/b18189
– volume: 16
  start-page: 4694
  issue: 24
  year: 2024
  ident: ref21
  article-title: Downscaling Land Surface Temperature via assimilation of LandSat 8/9 OLI and TIRS data and hypersharpening
  publication-title: Remote Sens.
  doi: 10.3390/rs16244694
– ident: ref52
  doi: 10.1109/LGRS.2017.2777916
– ident: ref55
  doi: 10.14358/pers.74.2.193
– ident: ref25
  doi: 10.1109/TCYB.2019.2951572
– volume: 63
  start-page: 691
  issue: 6
  year: 1997
  ident: ref51
  article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref27
  doi: 10.1109/TCYB.2023.3238200
– ident: ref48
  doi: 10.1109/TGRS.2004.837324
– ident: ref47
  doi: 10.1109/TIP.2016.2556944
– ident: ref42
  doi: 10.1137/1.9781611970937
– ident: ref53
  doi: 10.1109/LGRS.2009.2022650
– ident: ref43
  doi: 10.1109/TIP.2018.2819501
– ident: ref11
  doi: 10.1109/TGRS.2024.3405848
– volume: 17
  start-page: 10956
  year: 2024
  ident: ref20
  article-title: Spatial resolution enhancement of satellite hyperspectral data via nested hypersharpening with Sentinel-2 multispectral data
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2024.3406762
– volume: 16
  start-page: 3576
  issue: 19
  year: 2024
  ident: ref44
  article-title: Automatic fine co-registration of datasets from extremely high resolution satellite multispectral scanners by means of injection of residues of multivariate regression
  publication-title: Remote Sens.
  doi: 10.3390/rs16193576
– ident: ref58
  doi: 10.1109/IGARSS.2018.8518869
– ident: ref1
  doi: 10.1017/CBO9781316017876
– volume: 16
  start-page: 875
  issue: 5
  year: 2024
  ident: ref5
  article-title: Spatial resolution enhancement of vegetation indexes via fusion of hyperspectral and multispectral satellite data
  publication-title: Remote Sens.
  doi: 10.3390/rs16050875
– ident: ref24
  doi: 10.1109/TIP.2018.2836307
– ident: ref10
  doi: 10.1109/TGRS.2021.3066425
– ident: ref31
  doi: 10.1109/LGRS.2022.3194257
– ident: ref46
  doi: 10.1109/TGRS.2019.2906073
– ident: ref29
  doi: 10.1109/TGRS.2023.3332176
– ident: ref49
  doi: 10.1109/TIP.2015.2458572
– volume: 14
  start-page: 6102
  year: 2021
  ident: ref13
  article-title: A benchmarking protocol for pansharpening: Dataset, preprocessing, and quality assessment
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2021.3086877
– ident: ref40
  doi: 10.1109/IGARSS.2005.1525659
– ident: ref35
  doi: 10.1109/TIP.2020.3004261
– volume: 3
  start-page: 1817
  issue: 9
  year: 2011
  ident: ref2
  article-title: Can the future EnMAP mission contribute to urban applications? A literature survey
  publication-title: Remote Sens.
  doi: 10.3390/rs3091817
– ident: ref33
  doi: 10.1109/TNNLS.2023.3297319
– ident: ref23
  doi: 10.1109/TGRS.2011.2161320
– ident: ref56
  doi: 10.1117/12.2067770
– ident: ref59
  doi: 10.1109/MGRS.2022.3170092
– ident: ref15
  doi: 10.1109/WHISPERS.2015.8075412
– start-page: 147
  volume-title: Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop
  ident: ref38
  article-title: Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm
– volume: 252
  year: 2021
  ident: ref4
  article-title: Advances in hyperspectral remote sensing of vegetation traits and functions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112121
– ident: ref36
  doi: 10.1016/j.inffus.2022.08.032
SSID ssj0014517
Score 2.4653473
Snippet Whenever the sharpening band is not unique, the hypersharpening paradigm extends traditional pansharpening to any <inline-formula> <tex-math notation="LaTeX">m...
Whenever the sharpening band is not unique, the hypersharpening paradigm extends traditional pansharpening to any [Formula Omitted]-to-[Formula Omitted] fusion...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Band spectra
Closed form solutions
Degradation
Environmental Mapping and Analysis Program (EnMAP)
hypersharpening
Matrix decomposition
multiband image fusion
Multisensor fusion
multivariate linear regression (MLR)
Optical imaging
optical remote sensing
Optical sensors
Optimization
Pansharpening
Parameters
Reviews
Sentinel-2 (S2)
Spatial data
Spatial resolution
Spectral bands
Tensors
Training
unimodal fusion
WorldView-3 (WV-3)
Title Full-Scale Regression Modeling of Spatial Details for Single-/Multiplatform Hypersharpening
URI https://ieeexplore.ieee.org/document/11179947
https://www.proquest.com/docview/3261416111
Volume 63
WOSCitedRecordID wos001594874000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oUNAH7-J0Sh58EuKWNGmaR_G2F4c4hYEPJc0SFWSTdfP3e5J2XhAffCu0aUu-tOf7ziUH4LiQFq1SwalDukGFLxQ1TAwpz1JkR5Ilw9THZhOq18sGA31bF6vHWhjnXEw-c6fhMMbyh2M7C66yNov7lwm1CItKqapY6zNkICSra6NTfJLmdQiTdXT7_vquj1KQy9Mk6B8hfhih2FXl16842per9X--2Qas1USSnFXIb8KCG23B6rftBbdgOaZ32nIbHoPSpH3Ew5E791Tlvo5IaIQWytHJ2JPQmxjXIrmIOaUlQTJL-nju1dH2TZV1aKaB4ZIuStdJ-RwCN8GpsgMPV5f3511at1WglotsSl3qjPEoI1ziUJAYqbXSiGSKYsWgYFDScM24USaTVnNjlLW-g5gZq80wEckuNEbjkdsDIrn3iRQOaVghOsZnmddpwdDqoYxKjG7CyXye87dq94w8qo6OzgMoeQAlr0Fpwk6Y2K8L6zltQmsOTV5_YGWOrJMFbcbY_h_DDmAl3L1yl7SgMZ3M3CEs2ffpSzk5imvnAx_8wcg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oVNQH7-J0ah58EuKWNGmbR_E2UYe4CYIPJc0SFWSTdfr7PUnrDfHBt0IbUvKlPd-XcwPYy6VBq5RzapFuUOHyhGom-pSnMbIjyaJ-7EKziaTTSe_u1HWVrB5yYay1IfjMHvjL4MvvD82rPyprslC_TCSTMCWF4KxM1_p0GgjJquzoGOdSvHJispZq9s5uuigGuTyIvAIS4ocZCn1Vfv2Mg4U5Xfznuy3BQkUlyWGJ_TJM2MEKzH8rMLgCMyHA0xSrcO-1Ju0iIpbc2Icy-nVAfCs0n5BOho747sS4G8lxiCotCNJZ0sV7z5Y2r8q4Qz32HJe0UbyOikfvuvHHKmtwe3rSO2rTqrECNVykY2pjq7VDIWEji5JES6UShVjGKFc0SoZEaq4Y14lOpVFc68QY10LUtFG6H4loHWqD4cBuAJHcuUgKi0QsFy3t0tSpOGdo91BIRVrVYf9jnbOXsn5GFnRHS2UelMyDklWg1GHNL-zXg9Wa1qHxAU1WfWJFhryTeXXG2OYfw3Zhtt27uswuzzsXWzDnZyoPTxpQG49e7TZMm7fxUzHaCfvoHWAUxQ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-Scale+Regression+Modeling+of+Spatial+Details+for+Single-%2FMultiplatform+Hypersharpening&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Arienzo%2C+Alberto&rft.au=Garzelli%2C+Andrea&rft.au=Alparone%2C+Luciano&rft.au=Vivone%2C+Gemine&rft.date=2025&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=63&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2025.3614444&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2025_3614444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon