ccDNCA: A Dual-Neighborhood Search-Based Dual-Population Coevolutionary Algorithm for Multi-UAV Task Allocation Problems With Complex Constraints

Solving the multiple unmanned aerial vehicles task allocation problem with complex constraints (MTAPCc) by means of the constrained multiobjective evolutionary algorithms (cMOEAs) is novel research in the field of Operation Research. Its advantages mainly consist of two aspects. One is that it can f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal Jg. 12; H. 20; S. 43143 - 43165
Hauptverfasser: Chen, Xi, Zhao, Zipeng, Wan, Yu, Qi, Jingtao, Ruan, Yirun, Lu, Xin, Tang, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 15.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2327-4662, 2327-4662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Solving the multiple unmanned aerial vehicles task allocation problem with complex constraints (MTAPCc) by means of the constrained multiobjective evolutionary algorithms (cMOEAs) is novel research in the field of Operation Research. Its advantages mainly consist of two aspects. One is that it can find feasible solutions that satisfy the constraints within an acceptable time. The other is that the obtained Pareto solution set can offer more options for decision-makers. This article presents a dual-neighborhood search-based dual-population coevolutionary algorithm (ccDNCA), which can specifically solve the constrained multiobjective combinatorial optimization problems (cMCOPs) based on permutation encoding, including the MTAPCc. The dual-population coevolutionary framework and the multistrategy collaborative constraint handling method of ccDNCA can effectively improve the efficiency of constraint handling and the ability of finding better solutions. The dual-neighborhood alternating local search (DN-ALS) framework can effectively increase the proportion of feasible solutions during the evolution and enhance the quality of the final solution set. The strategy pool integrated with multiple local search strategies can push the search toward regions with better objective values and constraint values, while enhancing the generalization ability of ccDNCA. In the experimental part, by comprehensively comparing the solution results of ccDNCA with those of other advanced algorithms, it is demonstrated that ccDNCA has significant superiority when dealing with cMCOPs based on permutation encoding, such as the MTAPCc and the vehicle routing problem with time window constraints (VRPTW).
AbstractList Solving the multiple unmanned aerial vehicles task allocation problem with complex constraints (MTAPCc) by means of the constrained multiobjective evolutionary algorithms (cMOEAs) is novel research in the field of Operation Research. Its advantages mainly consist of two aspects. One is that it can find feasible solutions that satisfy the constraints within an acceptable time. The other is that the obtained Pareto solution set can offer more options for decision-makers. This article presents a dual-neighborhood search-based dual-population coevolutionary algorithm (ccDNCA), which can specifically solve the constrained multiobjective combinatorial optimization problems (cMCOPs) based on permutation encoding, including the MTAPCc. The dual-population coevolutionary framework and the multistrategy collaborative constraint handling method of ccDNCA can effectively improve the efficiency of constraint handling and the ability of finding better solutions. The dual-neighborhood alternating local search (DN-ALS) framework can effectively increase the proportion of feasible solutions during the evolution and enhance the quality of the final solution set. The strategy pool integrated with multiple local search strategies can push the search toward regions with better objective values and constraint values, while enhancing the generalization ability of ccDNCA. In the experimental part, by comprehensively comparing the solution results of ccDNCA with those of other advanced algorithms, it is demonstrated that ccDNCA has significant superiority when dealing with cMCOPs based on permutation encoding, such as the MTAPCc and the vehicle routing problem with time window constraints (VRPTW).
Author Chen, Xi
Ruan, Yirun
Wan, Yu
Qi, Jingtao
Zhao, Zipeng
Tang, Jun
Lu, Xin
Author_xml – sequence: 1
  givenname: Xi
  orcidid: 0000-0002-4390-5163
  surname: Chen
  fullname: Chen, Xi
  email: chenxi18@nudt.edu.cn
  organization: Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Zipeng
  orcidid: 0009-0005-1910-9131
  surname: Zhao
  fullname: Zhao, Zipeng
  email: zhaozipeng22@nudt.edu.cn
  organization: Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Yu
  orcidid: 0000-0002-0336-8658
  surname: Wan
  fullname: Wan, Yu
  email: wanyu13@nudt.edu.cn
  organization: Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Jingtao
  orcidid: 0000-0002-7966-2925
  surname: Qi
  fullname: Qi, Jingtao
  email: qijingtao14@163.com
  organization: Intelligent Game and Decision Lab, Academy of Military Sciences, Beijing, China
– sequence: 5
  givenname: Yirun
  surname: Ruan
  fullname: Ruan, Yirun
  email: ruanyirun@nudt.edu.cn
  organization: Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China
– sequence: 6
  givenname: Xin
  orcidid: 0000-0002-3547-6493
  surname: Lu
  fullname: Lu, Xin
  email: xin.lu.lab@outlook.com
  organization: College of System Engineering, National University of Defense Technology, Changsha, China
– sequence: 7
  givenname: Jun
  orcidid: 0000-0001-8925-2367
  surname: Tang
  fullname: Tang, Jun
  email: tangjun06@nudt.edu.cn
  organization: Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China
BookMark eNpNkF1LwzAYhYNMcE5_gOBFwOvOfLRd413d_JjMbeCmlyVNE9eZNTNpRX-G_9iUCpqb98D7nPOScwx6lakkAGcYDTFG7PJhulgNCSLRkEYswogcgD6hZBSEcUx6__QROHVuixDytgizuA--hZjMx-kVTOGk4TqYy_J1kxu7MaaAT5JbsQmuuZNFt16afaN5XZoKjo38MLppNbdfMNWvxpb1ZgeVsfCx0XUZrNNnuOLuzS-1EZ1taU2u5c7BFw_7kN1ey08_K1dbXla1OwGHimsnT3_nAKxvb1bj-2C2uJuO01kgSJjUQV5ERCEp4ogQpigJ41ywRAkashHGEeMJJV4lReJBUoShJCxXQuVCUK6YpANw0eXurXlvpKuzrWls5U9mlESJD_GZnsIdJaxxzkqV7W258x_OMMra8rO2_KwtP_st33vOO08ppfzj2xezEf0BNu-DWA
CODEN IITJAU
Cites_doi 10.1016/j.swevo.2018.08.017
10.1177/09544070211072665
10.1109/TEVC.2023.3260306
10.1007/978-3-030-72062-9_19
10.1109/tevc.2024.3496507
10.1016/j.eswa.2015.04.070
10.1109/TEVC.2021.3066301
10.48084/etasr.8239
10.1109/tevc.2008.2009032
10.1109/TSMCA.2009.2013333
10.1109/CEC.2009.4983265
10.1109/TEVC.2020.2981949
10.1016/j.ins.2013.04.001
10.1109/CEC.2012.6252868
10.1109/4235.996017
10.1287/opre.35.2.254
10.1109/TEVC.2018.2855411
10.1109/CEC.2010.5586484
10.1016/S0045-7825(99)00389-8
10.1109/TEVC.2019.2894743
10.1007/s10589-005-3070-3
10.1109/TSMC.2018.2861879
10.3390/jmse11040781
10.1007/s00500-019-03794-x
10.1007/978-3-031-14721-0_9
10.1002/9781119196037
10.1109/tevc.2024.3425629
10.1109/TCYB.2015.2493239
10.1016/j.cor.2015.04.009
10.1038/s41598-024-74432-2
10.1109/TEVC.2020.3004012
10.1109/MCI.2017.2742868
10.1609/aaai.v38i14.29488
10.1109/TEVC.2014.2373386
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2025.3595102
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 43165
ExternalDocumentID 10_1109_JIOT_2025_3595102
11111697
Genre orig-research
GrantInformation_xml – fundername: Major Program of Xiangjiang Laboratory
  grantid: 24XJJCYJ01001
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 62073330; 72025405; 72421002; 92467302
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c248t-bd52f0ec65229f3246bc98fc34971159a8329718d8d522d44e29bfcfbcc3af9e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001592013200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Thu Nov 20 16:41:10 EST 2025
Sat Nov 29 07:16:33 EST 2025
Wed Oct 15 14:20:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 20
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-bd52f0ec65229f3246bc98fc34971159a8329718d8d522d44e29bfcfbcc3af9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8925-2367
0000-0002-4390-5163
0000-0002-0336-8658
0000-0002-3547-6493
0000-0002-7966-2925
0009-0005-1910-9131
PQID 3258711246
PQPubID 2040421
PageCount 23
ParticipantIDs proquest_journals_3258711246
ieee_primary_11111697
crossref_primary_10_1109_JIOT_2025_3595102
PublicationCentury 2000
PublicationDate 2025-10-15
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref11
ref33
ref32
ref2
ref1
ref17
ref39
ref16
Solomon (ref37) 2008
ref38
ref19
ref18
Wang (ref10) 2021; 44
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Zitzler (ref27) 2001
ref28
(ref29) 2024
ref8
(ref30) 2024
ref7
ref9
ref4
ref3
(ref31) 2024
ref6
ref5
ref40
References_xml – volume-title: China Seismological Bureau Compiled and Published ‘Wenchuan Magnitude 8.0 Earthquake Intensity Distribution Map
  year: 2024
  ident: ref29
– volume-title: VRPTW—Solomon benchmark—100 customers.
  year: 2008
  ident: ref37
– ident: ref23
  doi: 10.1016/j.swevo.2018.08.017
– ident: ref12
  doi: 10.1177/09544070211072665
– ident: ref22
  doi: 10.1109/TEVC.2023.3260306
– ident: ref21
  doi: 10.1007/978-3-030-72062-9_19
– ident: ref20
  doi: 10.1109/tevc.2024.3496507
– ident: ref2
  doi: 10.1016/j.eswa.2015.04.070
– volume: 44
  start-page: 1967
  issue: 10
  year: 2021
  ident: ref10
  article-title: Co-evolution based mixed-variable multi-objective particle swarm optimization for UAV cooperative multi-task allocation problem
  publication-title: Chinese J. Comput.
– ident: ref9
  doi: 10.1109/TEVC.2021.3066301
– ident: ref34
  doi: 10.48084/etasr.8239
– ident: ref1
  doi: 10.1109/tevc.2008.2009032
– ident: ref15
  doi: 10.1109/TSMCA.2009.2013333
– ident: ref8
  doi: 10.1109/CEC.2009.4983265
– ident: ref19
  doi: 10.1109/TEVC.2020.2981949
– ident: ref3
  doi: 10.1016/j.ins.2013.04.001
– start-page: 95
  volume-title: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems
  year: 2001
  ident: ref27
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization
– ident: ref26
  doi: 10.1109/CEC.2012.6252868
– ident: ref4
  doi: 10.1109/4235.996017
– ident: ref36
  doi: 10.1287/opre.35.2.254
– volume-title: China’s self-developed HH-100 commercial unmanned transport aircraft made its maiden flight successfully.
  year: 2024
  ident: ref30
– ident: ref7
  doi: 10.1109/TEVC.2018.2855411
– ident: ref17
  doi: 10.1109/CEC.2010.5586484
– volume-title: The HH-100 commercial unmanned transport system verification aircraft independently developed by the aviation industry successfully made its first flight.
  year: 2024
  ident: ref31
– ident: ref16
  doi: 10.1016/S0045-7825(99)00389-8
– ident: ref24
  doi: 10.1109/TEVC.2019.2894743
– ident: ref25
  doi: 10.1007/s10589-005-3070-3
– ident: ref14
  doi: 10.1109/TSMC.2018.2861879
– ident: ref11
  doi: 10.3390/jmse11040781
– ident: ref18
  doi: 10.1007/s00500-019-03794-x
– ident: ref40
  doi: 10.1007/978-3-031-14721-0_9
– ident: ref33
  doi: 10.1002/9781119196037
– ident: ref39
  doi: 10.1109/tevc.2024.3425629
– ident: ref5
  doi: 10.1109/TCYB.2015.2493239
– ident: ref13
  doi: 10.1016/j.cor.2015.04.009
– ident: ref35
  doi: 10.1038/s41598-024-74432-2
– ident: ref6
  doi: 10.1109/TEVC.2020.3004012
– ident: ref28
  doi: 10.1109/MCI.2017.2742868
– ident: ref38
  doi: 10.1609/aaai.v38i14.29488
– ident: ref32
  doi: 10.1109/TEVC.2014.2373386
SSID ssj0001105196
Score 2.3542151
Snippet Solving the multiple unmanned aerial vehicles task allocation problem with complex constraints (MTAPCc) by means of the constrained multiobjective evolutionary...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 43143
SubjectTerms Algorithms
Autonomous aerial vehicles
Coding
Coevolutionary framework
Combinatorial analysis
Constraint handling
constraint handling technique (CHT)
Constraints
Encoding
Evolutionary algorithms
Hands
Linear programming
multi-unmanned aerial vehicle (UAV) task allocation
multiobjective combinatorial optimization
multiobjective evolutionary algorithm (MOEA)
Multiple objective analysis
Multitasking
Neighborhoods
Optimization
Permutations
Resource management
Search methods
Search problems
Unmanned aerial vehicles
Vehicle routing
Windows (intervals)
Title ccDNCA: A Dual-Neighborhood Search-Based Dual-Population Coevolutionary Algorithm for Multi-UAV Task Allocation Problems With Complex Constraints
URI https://ieeexplore.ieee.org/document/11111697
https://www.proquest.com/docview/3258711246
Volume 12
WOSCitedRecordID wos001592013200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgIxFG2UuHAjPjCiaLpwZVKY90zdjSBRY5AFKLvJTB9KRDDMQPQz_GNvO0UWxoW7Jn2kyentPb3t7UHonGZW6ntuSiSVEfE8YYPNeSHh0lafs4OT8HSi8H3Y60WjEe2bZHWdCyOE0I_PRFMV9V0-n7GFCpW1lHnbAQ030WYYBmWy1jqgYis2EpibS9uirbvbhwGcAB2_qbJPbRM5WfkeLabyawfWbqVb_eeEdtGO4Y84LgHfQxtiuo-qK20GbEz1AH0x1um140sc484inZCeCoEC3uoXY1y-MSZX4MF4Wd3_0fHC7ZlYmvWYzj9xPHmezcfFyxsGeot1vi4Zxo94kOavUKl8oe7WL5VpcvwEjbGa0ER8YKUHqlUoiryGht3rQfuGGPkFwhwvKkjGfUdaggVA0agE4hVkjEaSuR4NgUfSFDYDKEU8goYOB5wdmkkmM8bcVFLhHqLKdDYVRwgHoaQWtWQmgAFx6WReCuPQIJKSc0tYdXSxAiZ5L3_ZSPTpxKKJQjFRKCYGxTqqKSTWDQ0IddRYYZkYQ8wT1_HhSAgkJjj-o9sJ2lajK39k-w1UKeYLcYq22LIY5_Mzvca-Aa-00nk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VWolegBYQSyn40BOSIe_EvaVLEbTbdA_L4xYlfsCq291qk0Xtz-g_7ozjhUPFgZsl24mlz-P5PPb4A_ggaq-Ko7DiRpiMR5H20eailCvj0-Ps6CQimyg8SIsiu7kRQ5esbnNhtNb28pk-pqI9y1czuaBQ2QmZt5-IdAVeknSWS9d6DKn4xEcSd3bpe-Lky8X3Ee4Bg_iY8k99FztZeh8rp_LfGmwdy9nGM4e0CeuOQbK8g_wNvNDTt7CxVGdgzli34K-Up0U__8hydrqoJrygICgiTu8Ys-6WMf-EPkx11cMHJS_Wn-l7NyOr-R-WT25n83F795MhwWU2Y5df5ldsVDU_sJK8oe027LRpGnaNjRkNaKJ_M1IEtToUbbMNl2efR_1z7gQYuAyirOW1igPjaZkgSRMGqVdSS5EZGUYiRSYpKlwOsJSpDBsGCpEORG2kqaUMKyN0uAOr09lU7wJLUiM84ZlaIwdSJqijCr8jkswYpTzt9eBoCUz5q3tno7T7E0-UhGJJKJYOxR5sExKPDR0IPdhfYlk6U2zKMIhxU4g0Jtl7otshrJ2Pvg3KwUXx9R28pj-Rd_LjfVht5wv9Hl7J-3bczA_sfPsHysTVwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ccDNCA%3A+A+Dual-Neighborhood+Search-Based+Dual-Population+Coevolutionary+Algorithm+for+Multi-UAV+Task+Allocation+Problems+With+Complex+Constraints&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Chen%2C+Xi&rft.au=Zhao%2C+Zipeng&rft.au=Wan%2C+Yu&rft.au=Qi%2C+Jingtao&rft.date=2025-10-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=12&rft.issue=20&rft.spage=43143&rft.epage=43165&rft_id=info:doi/10.1109%2FJIOT.2025.3595102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3595102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon