ccDNCA: A Dual-Neighborhood Search-Based Dual-Population Coevolutionary Algorithm for Multi-UAV Task Allocation Problems With Complex Constraints
Solving the multiple unmanned aerial vehicles task allocation problem with complex constraints (MTAPCc) by means of the constrained multiobjective evolutionary algorithms (cMOEAs) is novel research in the field of Operation Research. Its advantages mainly consist of two aspects. One is that it can f...
Gespeichert in:
| Veröffentlicht in: | IEEE internet of things journal Jg. 12; H. 20; S. 43143 - 43165 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
15.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2327-4662, 2327-4662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Solving the multiple unmanned aerial vehicles task allocation problem with complex constraints (MTAPCc) by means of the constrained multiobjective evolutionary algorithms (cMOEAs) is novel research in the field of Operation Research. Its advantages mainly consist of two aspects. One is that it can find feasible solutions that satisfy the constraints within an acceptable time. The other is that the obtained Pareto solution set can offer more options for decision-makers. This article presents a dual-neighborhood search-based dual-population coevolutionary algorithm (ccDNCA), which can specifically solve the constrained multiobjective combinatorial optimization problems (cMCOPs) based on permutation encoding, including the MTAPCc. The dual-population coevolutionary framework and the multistrategy collaborative constraint handling method of ccDNCA can effectively improve the efficiency of constraint handling and the ability of finding better solutions. The dual-neighborhood alternating local search (DN-ALS) framework can effectively increase the proportion of feasible solutions during the evolution and enhance the quality of the final solution set. The strategy pool integrated with multiple local search strategies can push the search toward regions with better objective values and constraint values, while enhancing the generalization ability of ccDNCA. In the experimental part, by comprehensively comparing the solution results of ccDNCA with those of other advanced algorithms, it is demonstrated that ccDNCA has significant superiority when dealing with cMCOPs based on permutation encoding, such as the MTAPCc and the vehicle routing problem with time window constraints (VRPTW). |
|---|---|
| AbstractList | Solving the multiple unmanned aerial vehicles task allocation problem with complex constraints (MTAPCc) by means of the constrained multiobjective evolutionary algorithms (cMOEAs) is novel research in the field of Operation Research. Its advantages mainly consist of two aspects. One is that it can find feasible solutions that satisfy the constraints within an acceptable time. The other is that the obtained Pareto solution set can offer more options for decision-makers. This article presents a dual-neighborhood search-based dual-population coevolutionary algorithm (ccDNCA), which can specifically solve the constrained multiobjective combinatorial optimization problems (cMCOPs) based on permutation encoding, including the MTAPCc. The dual-population coevolutionary framework and the multistrategy collaborative constraint handling method of ccDNCA can effectively improve the efficiency of constraint handling and the ability of finding better solutions. The dual-neighborhood alternating local search (DN-ALS) framework can effectively increase the proportion of feasible solutions during the evolution and enhance the quality of the final solution set. The strategy pool integrated with multiple local search strategies can push the search toward regions with better objective values and constraint values, while enhancing the generalization ability of ccDNCA. In the experimental part, by comprehensively comparing the solution results of ccDNCA with those of other advanced algorithms, it is demonstrated that ccDNCA has significant superiority when dealing with cMCOPs based on permutation encoding, such as the MTAPCc and the vehicle routing problem with time window constraints (VRPTW). |
| Author | Chen, Xi Ruan, Yirun Wan, Yu Qi, Jingtao Zhao, Zipeng Tang, Jun Lu, Xin |
| Author_xml | – sequence: 1 givenname: Xi orcidid: 0000-0002-4390-5163 surname: Chen fullname: Chen, Xi email: chenxi18@nudt.edu.cn organization: Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China – sequence: 2 givenname: Zipeng orcidid: 0009-0005-1910-9131 surname: Zhao fullname: Zhao, Zipeng email: zhaozipeng22@nudt.edu.cn organization: Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China – sequence: 3 givenname: Yu orcidid: 0000-0002-0336-8658 surname: Wan fullname: Wan, Yu email: wanyu13@nudt.edu.cn organization: Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China – sequence: 4 givenname: Jingtao orcidid: 0000-0002-7966-2925 surname: Qi fullname: Qi, Jingtao email: qijingtao14@163.com organization: Intelligent Game and Decision Lab, Academy of Military Sciences, Beijing, China – sequence: 5 givenname: Yirun surname: Ruan fullname: Ruan, Yirun email: ruanyirun@nudt.edu.cn organization: Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China – sequence: 6 givenname: Xin orcidid: 0000-0002-3547-6493 surname: Lu fullname: Lu, Xin email: xin.lu.lab@outlook.com organization: College of System Engineering, National University of Defense Technology, Changsha, China – sequence: 7 givenname: Jun orcidid: 0000-0001-8925-2367 surname: Tang fullname: Tang, Jun email: tangjun06@nudt.edu.cn organization: Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China |
| BookMark | eNpNkF1LwzAYhYNMcE5_gOBFwOvOfLRd413d_JjMbeCmlyVNE9eZNTNpRX-G_9iUCpqb98D7nPOScwx6lakkAGcYDTFG7PJhulgNCSLRkEYswogcgD6hZBSEcUx6__QROHVuixDytgizuA--hZjMx-kVTOGk4TqYy_J1kxu7MaaAT5JbsQmuuZNFt16afaN5XZoKjo38MLppNbdfMNWvxpb1ZgeVsfCx0XUZrNNnuOLuzS-1EZ1taU2u5c7BFw_7kN1ey08_K1dbXla1OwGHimsnT3_nAKxvb1bj-2C2uJuO01kgSJjUQV5ERCEp4ogQpigJ41ywRAkashHGEeMJJV4lReJBUoShJCxXQuVCUK6YpANw0eXurXlvpKuzrWls5U9mlESJD_GZnsIdJaxxzkqV7W258x_OMMra8rO2_KwtP_st33vOO08ppfzj2xezEf0BNu-DWA |
| CODEN | IITJAU |
| Cites_doi | 10.1016/j.swevo.2018.08.017 10.1177/09544070211072665 10.1109/TEVC.2023.3260306 10.1007/978-3-030-72062-9_19 10.1109/tevc.2024.3496507 10.1016/j.eswa.2015.04.070 10.1109/TEVC.2021.3066301 10.48084/etasr.8239 10.1109/tevc.2008.2009032 10.1109/TSMCA.2009.2013333 10.1109/CEC.2009.4983265 10.1109/TEVC.2020.2981949 10.1016/j.ins.2013.04.001 10.1109/CEC.2012.6252868 10.1109/4235.996017 10.1287/opre.35.2.254 10.1109/TEVC.2018.2855411 10.1109/CEC.2010.5586484 10.1016/S0045-7825(99)00389-8 10.1109/TEVC.2019.2894743 10.1007/s10589-005-3070-3 10.1109/TSMC.2018.2861879 10.3390/jmse11040781 10.1007/s00500-019-03794-x 10.1007/978-3-031-14721-0_9 10.1002/9781119196037 10.1109/tevc.2024.3425629 10.1109/TCYB.2015.2493239 10.1016/j.cor.2015.04.009 10.1038/s41598-024-74432-2 10.1109/TEVC.2020.3004012 10.1109/MCI.2017.2742868 10.1609/aaai.v38i14.29488 10.1109/TEVC.2014.2373386 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2025.3595102 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 43165 |
| ExternalDocumentID | 10_1109_JIOT_2025_3595102 11111697 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Major Program of Xiangjiang Laboratory grantid: 24XJJCYJ01001 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 62073330; 72025405; 72421002; 92467302 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c248t-bd52f0ec65229f3246bc98fc34971159a8329718d8d522d44e29bfcfbcc3af9e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001592013200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Thu Nov 20 16:41:10 EST 2025 Sat Nov 29 07:16:33 EST 2025 Wed Oct 15 14:20:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-bd52f0ec65229f3246bc98fc34971159a8329718d8d522d44e29bfcfbcc3af9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8925-2367 0000-0002-4390-5163 0000-0002-0336-8658 0000-0002-3547-6493 0000-0002-7966-2925 0009-0005-1910-9131 |
| PQID | 3258711246 |
| PQPubID | 2040421 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_3258711246 ieee_primary_11111697 crossref_primary_10_1109_JIOT_2025_3595102 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-15 |
| PublicationDateYYYYMMDD | 2025-10-15 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref11 ref33 ref32 ref2 ref1 ref17 ref39 ref16 Solomon (ref37) 2008 ref38 ref19 ref18 Wang (ref10) 2021; 44 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Zitzler (ref27) 2001 ref28 (ref29) 2024 ref8 (ref30) 2024 ref7 ref9 ref4 ref3 (ref31) 2024 ref6 ref5 ref40 |
| References_xml | – volume-title: China Seismological Bureau Compiled and Published ‘Wenchuan Magnitude 8.0 Earthquake Intensity Distribution Map year: 2024 ident: ref29 – volume-title: VRPTW—Solomon benchmark—100 customers. year: 2008 ident: ref37 – ident: ref23 doi: 10.1016/j.swevo.2018.08.017 – ident: ref12 doi: 10.1177/09544070211072665 – ident: ref22 doi: 10.1109/TEVC.2023.3260306 – ident: ref21 doi: 10.1007/978-3-030-72062-9_19 – ident: ref20 doi: 10.1109/tevc.2024.3496507 – ident: ref2 doi: 10.1016/j.eswa.2015.04.070 – volume: 44 start-page: 1967 issue: 10 year: 2021 ident: ref10 article-title: Co-evolution based mixed-variable multi-objective particle swarm optimization for UAV cooperative multi-task allocation problem publication-title: Chinese J. Comput. – ident: ref9 doi: 10.1109/TEVC.2021.3066301 – ident: ref34 doi: 10.48084/etasr.8239 – ident: ref1 doi: 10.1109/tevc.2008.2009032 – ident: ref15 doi: 10.1109/TSMCA.2009.2013333 – ident: ref8 doi: 10.1109/CEC.2009.4983265 – ident: ref19 doi: 10.1109/TEVC.2020.2981949 – ident: ref3 doi: 10.1016/j.ins.2013.04.001 – start-page: 95 volume-title: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems year: 2001 ident: ref27 article-title: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization – ident: ref26 doi: 10.1109/CEC.2012.6252868 – ident: ref4 doi: 10.1109/4235.996017 – ident: ref36 doi: 10.1287/opre.35.2.254 – volume-title: China’s self-developed HH-100 commercial unmanned transport aircraft made its maiden flight successfully. year: 2024 ident: ref30 – ident: ref7 doi: 10.1109/TEVC.2018.2855411 – ident: ref17 doi: 10.1109/CEC.2010.5586484 – volume-title: The HH-100 commercial unmanned transport system verification aircraft independently developed by the aviation industry successfully made its first flight. year: 2024 ident: ref31 – ident: ref16 doi: 10.1016/S0045-7825(99)00389-8 – ident: ref24 doi: 10.1109/TEVC.2019.2894743 – ident: ref25 doi: 10.1007/s10589-005-3070-3 – ident: ref14 doi: 10.1109/TSMC.2018.2861879 – ident: ref11 doi: 10.3390/jmse11040781 – ident: ref18 doi: 10.1007/s00500-019-03794-x – ident: ref40 doi: 10.1007/978-3-031-14721-0_9 – ident: ref33 doi: 10.1002/9781119196037 – ident: ref39 doi: 10.1109/tevc.2024.3425629 – ident: ref5 doi: 10.1109/TCYB.2015.2493239 – ident: ref13 doi: 10.1016/j.cor.2015.04.009 – ident: ref35 doi: 10.1038/s41598-024-74432-2 – ident: ref6 doi: 10.1109/TEVC.2020.3004012 – ident: ref28 doi: 10.1109/MCI.2017.2742868 – ident: ref38 doi: 10.1609/aaai.v38i14.29488 – ident: ref32 doi: 10.1109/TEVC.2014.2373386 |
| SSID | ssj0001105196 |
| Score | 2.3542151 |
| Snippet | Solving the multiple unmanned aerial vehicles task allocation problem with complex constraints (MTAPCc) by means of the constrained multiobjective evolutionary... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 43143 |
| SubjectTerms | Algorithms Autonomous aerial vehicles Coding Coevolutionary framework Combinatorial analysis Constraint handling constraint handling technique (CHT) Constraints Encoding Evolutionary algorithms Hands Linear programming multi-unmanned aerial vehicle (UAV) task allocation multiobjective combinatorial optimization multiobjective evolutionary algorithm (MOEA) Multiple objective analysis Multitasking Neighborhoods Optimization Permutations Resource management Search methods Search problems Unmanned aerial vehicles Vehicle routing Windows (intervals) |
| Title | ccDNCA: A Dual-Neighborhood Search-Based Dual-Population Coevolutionary Algorithm for Multi-UAV Task Allocation Problems With Complex Constraints |
| URI | https://ieeexplore.ieee.org/document/11111697 https://www.proquest.com/docview/3258711246 |
| Volume | 12 |
| WOSCitedRecordID | wos001592013200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgIxFG2UuHAjPjCiaLpwZVKY90zdjSBRY5AFKLvJTB9KRDDMQPQz_GNvO0UWxoW7Jn2kyentPb3t7UHonGZW6ntuSiSVEfE8YYPNeSHh0lafs4OT8HSi8H3Y60WjEe2bZHWdCyOE0I_PRFMV9V0-n7GFCpW1lHnbAQ030WYYBmWy1jqgYis2EpibS9uirbvbhwGcAB2_qbJPbRM5WfkeLabyawfWbqVb_eeEdtGO4Y84LgHfQxtiuo-qK20GbEz1AH0x1um140sc484inZCeCoEC3uoXY1y-MSZX4MF4Wd3_0fHC7ZlYmvWYzj9xPHmezcfFyxsGeot1vi4Zxo94kOavUKl8oe7WL5VpcvwEjbGa0ER8YKUHqlUoiryGht3rQfuGGPkFwhwvKkjGfUdaggVA0agE4hVkjEaSuR4NgUfSFDYDKEU8goYOB5wdmkkmM8bcVFLhHqLKdDYVRwgHoaQWtWQmgAFx6WReCuPQIJKSc0tYdXSxAiZ5L3_ZSPTpxKKJQjFRKCYGxTqqKSTWDQ0IddRYYZkYQ8wT1_HhSAgkJjj-o9sJ2lajK39k-w1UKeYLcYq22LIY5_Mzvca-Aa-00nk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VWolegBYQSyn40BOSIe_EvaVLEbTbdA_L4xYlfsCq291qk0Xtz-g_7ozjhUPFgZsl24mlz-P5PPb4A_ggaq-Ko7DiRpiMR5H20eailCvj0-Ps6CQimyg8SIsiu7kRQ5esbnNhtNb28pk-pqI9y1czuaBQ2QmZt5-IdAVeknSWS9d6DKn4xEcSd3bpe-Lky8X3Ee4Bg_iY8k99FztZeh8rp_LfGmwdy9nGM4e0CeuOQbK8g_wNvNDTt7CxVGdgzli34K-Up0U__8hydrqoJrygICgiTu8Ys-6WMf-EPkx11cMHJS_Wn-l7NyOr-R-WT25n83F795MhwWU2Y5df5ldsVDU_sJK8oe027LRpGnaNjRkNaKJ_M1IEtToUbbMNl2efR_1z7gQYuAyirOW1igPjaZkgSRMGqVdSS5EZGUYiRSYpKlwOsJSpDBsGCpEORG2kqaUMKyN0uAOr09lU7wJLUiM84ZlaIwdSJqijCr8jkswYpTzt9eBoCUz5q3tno7T7E0-UhGJJKJYOxR5sExKPDR0IPdhfYlk6U2zKMIhxU4g0Jtl7otshrJ2Pvg3KwUXx9R28pj-Rd_LjfVht5wv9Hl7J-3bczA_sfPsHysTVwg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ccDNCA%3A+A+Dual-Neighborhood+Search-Based+Dual-Population+Coevolutionary+Algorithm+for+Multi-UAV+Task+Allocation+Problems+With+Complex+Constraints&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Chen%2C+Xi&rft.au=Zhao%2C+Zipeng&rft.au=Wan%2C+Yu&rft.au=Qi%2C+Jingtao&rft.date=2025-10-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=12&rft.issue=20&rft.spage=43143&rft.epage=43165&rft_id=info:doi/10.1109%2FJIOT.2025.3595102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3595102 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |