An Optimized Model With Encoder-Decoder ConvLSTM for Global Ionospheric Forecasting

The ionosphere is vital for satellite navigation and radio communication, but observational limitations necessitate ionospheric forecasting. The least squares collocation (LSC) method is commonly used for global navigation satellite system (GNSS)-based global ionospheric forecasting, though its accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters Jg. 22; S. 1 - 5
Hauptverfasser: Wang, Cheng, Xue, Kaiyu, Shi, Chuang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-598X, 1558-0571
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The ionosphere is vital for satellite navigation and radio communication, but observational limitations necessitate ionospheric forecasting. The least squares collocation (LSC) method is commonly used for global navigation satellite system (GNSS)-based global ionospheric forecasting, though its accuracy and stability need improvement. This study introduces two optimized models based on the ConvLSTM cell with an encoder-decoder structure to enhance forecasting performance. Using seven years of historical data, the model provides stable forecasts for the following year. Tests from 2015 to 2020 show that optimization reduces root mean square error (RMSE) by 10.159%-16.363% compared to the unoptimized method. The encoder-decoder ConvLSTM-B model achieves the best performance, lowering RMSE by 2.031%-8.547% compared to the ConvLSTM-A model. These results highlight the effectiveness of the proposed approach in improving ionospheric forecast accuracy.
AbstractList The ionosphere is vital for satellite navigation and radio communication, but observational limitations necessitate ionospheric forecasting. The least squares collocation (LSC) method is commonly used for global navigation satellite system (GNSS)-based global ionospheric forecasting, though its accuracy and stability need improvement. This study introduces two optimized models based on the ConvLSTM cell with an encoder-decoder structure to enhance forecasting performance. Using seven years of historical data, the model provides stable forecasts for the following year. Tests from 2015 to 2020 show that optimization reduces root mean square error (RMSE) by 10.159%–16.363% compared to the unoptimized method. The encoder-decoder ConvLSTM-B model achieves the best performance, lowering RMSE by 2.031%–8.547% compared to the ConvLSTM-A model. These results highlight the effectiveness of the proposed approach in improving ionospheric forecast accuracy.
Author Wang, Cheng
Xue, Kaiyu
Shi, Chuang
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0002-2603-1177
  surname: Wang
  fullname: Wang, Cheng
  email: acheng@buaa.edu.cn
  organization: School of Space and Earth Sciences, Beihang University, Beijing, China
– sequence: 2
  givenname: Kaiyu
  surname: Xue
  fullname: Xue, Kaiyu
  email: xuekaiyu@buaa.edu.cn
  organization: School of Electronic Information Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Chuang
  orcidid: 0000-0002-1600-9160
  surname: Shi
  fullname: Shi, Chuang
  email: shichuang@buaa.edu.cn
  organization: School of Space and Earth Sciences, Beihang University, Beijing, China
BookMark eNpNkF1rwjAYhcNwMHX7AYNdBHZdlzQfTS7FqRMqwnRsdyGt6azUpEuqsP36tdOLXZ3zwjnvgWcAetZZA8A9RiOMkXxK56_rUYxiNiKMM07ZFehjxkSEWIJ7nacsYlJ83IBBCHuEYipE0gfrsYWruikP5Y_ZwqXbmgq-l80OTm3eHj56Nn8KJ86e0vVmCQvn4bxyma7gwlkX6p3xZQ5nzptch6a0n7fgutBVMHcXHYK32XQzeYnS1XwxGadR3o43UZbFnKOCGc6lRJxmlOCEaIloliUy0UJoTuOtoMYwzQpKiShwW0IxkQIzTIbg8fy39u7raEKj9u7obTupSIyITJjEvE3hcyr3LgRvClX78qD9t8JIdexUx0517NSFXdt5OHdKY8y_vBQIY0x-AVYHasw
CODEN IGRSBY
Cites_doi 10.1109/TPS.2023.3325457
10.1002/nme.200
10.1029/2024SW003954
10.1016/j.measurement.2023.112975
10.3390/rs17010124
10.1029/2023SW003740
10.1029/RG016i003p00421
10.1007/s10291-025-01814-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2025.3565645
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2025_3565645
10980111
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFB3904402
– fundername: National Natural Science Foundation of China
  grantid: 42474037
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c248t-bb2660f5e6699064b43173a904bb797a88a642d84ee5a5f4438f1bb2023981513
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001488054300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Thu Oct 16 12:12:50 EDT 2025
Sat Nov 29 07:56:35 EST 2025
Wed Aug 27 02:01:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-bb2660f5e6699064b43173a904bb797a88a642d84ee5a5f4438f1bb2023981513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2603-1177
0000-0002-1600-9160
PQID 3203975916
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_3203975916
crossref_primary_10_1109_LGRS_2025_3565645
ieee_primary_10980111
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
Shi (ref9) 2015
ref7
ref4
ref3
ref6
ref5
ref2
ref1
References_xml – ident: ref4
  doi: 10.1109/TPS.2023.3325457
– ident: ref3
  doi: 10.1002/nme.200
– year: 2015
  ident: ref9
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
– ident: ref8
  doi: 10.1029/2024SW003954
– ident: ref1
  doi: 10.1016/j.measurement.2023.112975
– ident: ref5
  doi: 10.3390/rs17010124
– ident: ref6
  doi: 10.1029/2023SW003740
– ident: ref2
  doi: 10.1029/RG016i003p00421
– ident: ref7
  doi: 10.1007/s10291-025-01814-y
SSID ssj0024887
Score 2.4213593
Snippet The ionosphere is vital for satellite navigation and radio communication, but observational limitations necessitate ionospheric forecasting. The least squares...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Collocation methods
ConvLSTM model
Data models
Decoding
encoder-decoder structure
Encoders-Decoders
Forecast accuracy
Forecasting
Global navigation satellite system
Ionosphere
Ionospheric forecasting
Long short term memory
Mathematical models
Navigation
Navigation satellites
Navigation systems
Navigational satellites
Optimization
optimized models
Predictive models
Radio communications
Root-mean-square errors
Satellite navigation
Satellite observation
Satellites
Training
Title An Optimized Model With Encoder-Decoder ConvLSTM for Global Ionospheric Forecasting
URI https://ieeexplore.ieee.org/document/10980111
https://www.proquest.com/docview/3203975916
Volume 22
WOSCitedRecordID wos001488054300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BBYILO6Js8oETkqFp4sQ5VlAWqSyiLL1FiTtWK0GKuknl65lxgkBCHDglh9iK5tme5-X5ARzpwMus9Y0ksqBk4IexzFJtpUqpBRi0NnSekc-t6PZWdzrxfSlWd1oYRHSHz_CEX91efndgJrxURj081uyNPg_zURQWYq3vi_W0c8NjSiBVrDvlFiaVOW1dPrRpKlhXJz7zF5Yu_UhCzlXl11Ds8svF6j__bA1WSiIpGgXy6zCH-QYslZ7mvdkGLF46097ZJrQbubijoeGt_4Fdwe5nr-KlP-6JZs6K9qE8R_cUZ4N82mo_3ghisqJwAxDXA75NnFWCRrCPp0lHfFJ6C54umo9nV7I0U5CGQjOWWUapuGYVhiEloDDImDn4aVwLsiyKo1TrlKYiXR0gqlTZIPC19agQi1810QJ_Gyr5IMcdEB6awIsiRSCzcAszbbCOSFwFCQbrVeH4K7rJe3FnRuLmGrU4YSgShiIpoajCFofzx4dFJKuw_wVIUnarUeLXa8SfFFHa3T-K7cEy114skuxDZTyc4AEsmOm4PxoeuhbzCd-QvDM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21CxW9lI-CuhSKD5yQDMnGTpwjonyJsCB2gb1FiXcsVqLZandZCX59Z5ygIlU9cEoOsRzNsz3PH88PYNeosHQuspLIgpYqilNZFsZJXVALsOhc7D0j77Kk2zWDQXrdiNW9FgYR_eEz3OdXv5c_HNsnXiqjHp4a9kb_CAtaqU5Qy7X-Xq1nvB8ekwKpUzNoNjGp1EF2etOjyWBH70fMYFi89CYNeV-VfwZjn2FOlt_5byvwpaGS4rDGfhU-YLUGS42r-cPzGnw69ba9z1-hd1iJKxocfo1ecCjY_-xR3I9mD-K4Yk37RP5E_xRH42qe9fqXgrisqP0AxPmY7xNnnaAV7ORpiymflV6H25Pj_tGZbOwUpKXQzGRZUjIOnMY4phQUq5K5Q1SkgSrLJE0KYwqajAyNQtSFdkpFxoVUiOWvhohBtAGtalzhNxAhWhUmiSaYWbqFpbHYQSS2ggSDC9uw9xrd_Hd9a0buZxtBmjMUOUORN1C0YZ3D-ebDOpJt2HoFJG861jSPOgExKE2kdvM_xXZg6ax_meXZeffiO3zmmuolky1ozSZPuA2Ldj4bTSc_fOv5A9lwv3o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Model+With+Encoder-Decoder+ConvLSTM+for+Global+Ionospheric+Forecasting&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Cheng&rft.au=Xue%2C+Kaiyu&rft.au=Shi%2C+Chuang&rft.date=2025&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=22&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2025.3565645&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2025_3565645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon