A Deep Dictionary Learning Framework for Device-Free Localization Based on Nonconvex Sparse Regularization and DC Programming

Received signal strength (RSS)-based device-free localization (DFL) is commonly used in the Internet-of-Things (IoT) field. However, the current DFL algorithms have limitations in terms of stability and accuracy, which hinders the widespread application of DFL. Current research on DFL predominantly...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 25; číslo 21; s. 40877 - 40891
Hlavní autoři: Tan, Benying, Wang, Manman, Li, Yujie, Lu, Yongyun, Ding, Shuxue
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Received signal strength (RSS)-based device-free localization (DFL) is commonly used in the Internet-of-Things (IoT) field. However, the current DFL algorithms have limitations in terms of stability and accuracy, which hinders the widespread application of DFL. Current research on DFL predominantly revolves around sparse representation and deep learning. The sparse representation method requires building a suitable dictionary to achieve higher accuracy, while the deep learning method is affected by data volume and computational complexity. In contrast to traditional localization methods that rely on raw data features, this article suggests using the deep dictionary learning (DDL) framework to extract depth features. Then, the extracted low-level and high-level features are not only used to construct a dictionary but also to reconstruct the testing data for DFL using the sparse representation classification. This approach leverages the advantages of sparse representation and deep learning to achieve highly accurate localization. The proposed DDL model involves learning multiple dictionaries with varying descriptive capabilities to extract deep features from the observed signal through a layer-by-layer DDL process. For better dictionary learning, we introduce the minimax-concave penalty (MCP) for each layer of dictionary learning. Utilizing the difference-of-convex (DC) programming, the formulated nonconvex problems are efficiently optimized. Furthermore, to enhance localization accuracy, the data are expanded to reinforce the essential features of DDL. The performance of the DCDDL algorithm was assessed using collected laboratory datasets and public datasets, demonstrating its superiority over existing localization algorithms.
AbstractList Received signal strength (RSS)-based device-free localization (DFL) is commonly used in the Internet-of-Things (IoT) field. However, the current DFL algorithms have limitations in terms of stability and accuracy, which hinders the widespread application of DFL. Current research on DFL predominantly revolves around sparse representation and deep learning. The sparse representation method requires building a suitable dictionary to achieve higher accuracy, while the deep learning method is affected by data volume and computational complexity. In contrast to traditional localization methods that rely on raw data features, this article suggests using the deep dictionary learning (DDL) framework to extract depth features. Then, the extracted low-level and high-level features are not only used to construct a dictionary but also to reconstruct the testing data for DFL using the sparse representation classification. This approach leverages the advantages of sparse representation and deep learning to achieve highly accurate localization. The proposed DDL model involves learning multiple dictionaries with varying descriptive capabilities to extract deep features from the observed signal through a layer-by-layer DDL process. For better dictionary learning, we introduce the minimax-concave penalty (MCP) for each layer of dictionary learning. Utilizing the difference-of-convex (DC) programming, the formulated nonconvex problems are efficiently optimized. Furthermore, to enhance localization accuracy, the data are expanded to reinforce the essential features of DDL. The performance of the DCDDL algorithm was assessed using collected laboratory datasets and public datasets, demonstrating its superiority over existing localization algorithms.
Author Ding, Shuxue
Tan, Benying
Wang, Manman
Lu, Yongyun
Li, Yujie
Author_xml – sequence: 1
  givenname: Benying
  orcidid: 0000-0002-9121-8499
  surname: Tan
  fullname: Tan, Benying
  email: by-tan@guet.edu.cn
  organization: School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin, China
– sequence: 2
  givenname: Manman
  surname: Wang
  fullname: Wang, Manman
  organization: School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin, China
– sequence: 3
  givenname: Yujie
  orcidid: 0000-0002-5801-4937
  surname: Li
  fullname: Li, Yujie
  email: yujieli@guet.edu.cn
  organization: School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin, China
– sequence: 4
  givenname: Yongyun
  surname: Lu
  fullname: Lu, Yongyun
  organization: School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin, China
– sequence: 5
  givenname: Shuxue
  orcidid: 0000-0002-4963-3883
  surname: Ding
  fullname: Ding, Shuxue
  email: sding@guet.edu.cn
  organization: School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin, China
BookMark eNpFkMlKBDEQhoMouD6A4CHguceks3T6qLO4MKi4gLemJl0ZWmeSMT3jBr67aUbxUlWH7_8Lvl2y6YNHQg4563HOypOr--F1L2e56gnNlJZ6g-xwpUzGC2k2u1uwTIriaZvstu0zY7wsVLFDvk_pAHFBB41dNsFD_KRjhOgbP6WjCHN8D_GFuhAT9tZYzEYRkY6DhVnzBV2EnkGLNU3HdfA2-Df8oPcLiC3SO5yuZhD_QPA1HfTpbQzT1DxPL_bJloNZiwe_e488joYP_YtsfHN-2T8dZzaXZpkBBzVxdsIcaOVk6YxUztWTUhtIQztUdSG1YXUB2glmgGlrcrAiF7IWTOyR43XvIobXFbbL6jmsok8vK5HrFJVG6kTxNWVjaNuIrlrEZp6UVJxVneWqs1x1lqtfyylztM40iPjPc16ovNTiB-KLfDQ
CODEN ISJEAZ
Cites_doi 10.3390/s22124447
10.1109/SMC.2018.00399
10.1109/JSEN.2018.2806564
10.1109/ACCESS.2021.3111083
10.1214/09-AOS729
10.1007/s10462-021-09967-1
10.1007/BF00332918
10.1109/SLAAI-ICAI59257.2023.10365021
10.1016/j.ejor.2014.11.031
10.1109/JIOT.2019.2907580
10.1109/TNNLS.2021.3114400
10.3390/jsan7010007
10.1109/TIM.2021.3065426
10.1016/j.asoc.2023.110164
10.1109/JSEN.2022.3231611
10.1109/JIOT.2016.2558659
10.1016/j.sigpro.2016.07.005
10.1162/NECO_a_00763
10.1109/ACCESS.2016.2611583
10.1109/JIOT.2018.2849375
10.1145/3234150
10.1007/978-1-4419-7011-4
10.1198/016214506000000735
10.1162/NECO_a_00836
10.1016/j.dsp.2018.08.005
10.1109/TMC.2009.174
10.1109/JIOT.2018.2812300
10.1109/TMC.2015.2504965
10.1109/TVT.2016.2635161
10.1109/JIOT.2016.2624800
10.1109/CITS55221.2022.9832985
10.1109/ICEICT55736.2022.9909163
10.1109/ACCESS.2018.2843325
10.1016/j.neucom.2020.07.085
10.1109/ACCESS.2019.2911004
10.1145/1287853.1287880
10.1155/2018/4201367
10.1016/j.jnca.2017.08.014
10.1155/2022/2323293
10.1109/TVT.2017.2701399
10.1007/s10479-004-5022-1
10.1109/ACCESS.2018.2876034
10.1016/j.dsp.2022.103420
10.1109/WCNC55385.2023.10118744
10.1109/TII.2022.3218666
10.1109/JIOT.2021.3067515
10.1109/PERCOM.2007.8
10.1007/s13042-022-01559-x
10.1109/JIOT.2020.3019732
10.1007/978-3-031-20500-2_31
10.1109/TCSS.2022.3153660
10.1109/JSEN.2017.2730226
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3605646
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 40891
ExternalDocumentID 10_1109_JSEN_2025_3605646
11175296
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62076077; 62001126
  funderid: 10.13039/501100001809
– fundername: Guangxi Science and Technology Major Project
  grantid: AA22068057
– fundername: Guangxi Natural Science Foundation through the Youth Science Fund Project
  grantid: 62076077; 62001126; AA22068057; 2021GXNSFBA220039
  funderid: 10.13039/501100004607
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
M43
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c248t-a1a5bfcb0fa65f49f845ffdb968ab966fe5d74680d7a6f308a06c82ac3234d303
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001606677500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Thu Nov 20 00:54:47 EST 2025
Sat Nov 29 06:59:18 EST 2025
Wed Nov 05 07:06:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-a1a5bfcb0fa65f49f845ffdb968ab966fe5d74680d7a6f308a06c82ac3234d303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4963-3883
0000-0002-9121-8499
0000-0002-5801-4937
PQID 3267464846
PQPubID 75733
PageCount 15
ParticipantIDs ieee_primary_11175296
proquest_journals_3267464846
crossref_primary_10_1109_JSEN_2025_3605646
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref53
ref52
ref10
Zhao (ref11) 2023; 137
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
Zhang (ref1) 2023; 19
ref36
ref31
Xue (ref14) 2023; 23
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
Xu (ref48) 2014
ref21
ref28
ref27
ref29
References_xml – ident: ref19
  doi: 10.3390/s22124447
– ident: ref33
  doi: 10.1109/SMC.2018.00399
– ident: ref7
  doi: 10.1109/JSEN.2018.2806564
– ident: ref4
  doi: 10.1109/ACCESS.2021.3111083
– ident: ref26
  doi: 10.1214/09-AOS729
– ident: ref18
  doi: 10.1007/s10462-021-09967-1
– ident: ref24
  doi: 10.1007/BF00332918
– ident: ref23
  doi: 10.1109/SLAAI-ICAI59257.2023.10365021
– ident: ref29
  doi: 10.1016/j.ejor.2014.11.031
– ident: ref43
  doi: 10.1109/JIOT.2019.2907580
– ident: ref49
  doi: 10.1109/TNNLS.2021.3114400
– ident: ref52
  doi: 10.3390/jsan7010007
– ident: ref53
  doi: 10.1109/TIM.2021.3065426
– volume: 137
  year: 2023
  ident: ref11
  article-title: An accurate approach of device-free localization with attention empowered residual network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110164
– volume: 23
  start-page: 2750
  issue: 3
  year: 2023
  ident: ref14
  article-title: Enhanced WiFi CSI fingerprints for device-free localization with deep learning representations
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2022.3231611
– ident: ref36
  doi: 10.1109/JIOT.2016.2558659
– ident: ref38
  doi: 10.1016/j.sigpro.2016.07.005
– ident: ref20
  doi: 10.1162/NECO_a_00763
– ident: ref46
  doi: 10.1109/ACCESS.2016.2611583
– ident: ref37
  doi: 10.1109/JIOT.2018.2849375
– ident: ref17
  doi: 10.1145/3234150
– ident: ref27
  doi: 10.1007/978-1-4419-7011-4
– ident: ref28
  doi: 10.1198/016214506000000735
– ident: ref50
  doi: 10.1162/NECO_a_00836
– ident: ref31
  doi: 10.1016/j.dsp.2018.08.005
– ident: ref40
  doi: 10.1109/TMC.2009.174
– ident: ref3
  doi: 10.1109/JIOT.2018.2812300
– ident: ref32
  doi: 10.1109/TMC.2015.2504965
– ident: ref41
  doi: 10.1109/TVT.2016.2635161
– ident: ref8
  doi: 10.1109/JIOT.2016.2624800
– ident: ref6
  doi: 10.1109/CITS55221.2022.9832985
– ident: ref45
  doi: 10.1109/ICEICT55736.2022.9909163
– ident: ref5
  doi: 10.1109/ACCESS.2018.2843325
– ident: ref21
  doi: 10.1016/j.neucom.2020.07.085
– ident: ref51
  doi: 10.1109/ACCESS.2019.2911004
– ident: ref39
  doi: 10.1145/1287853.1287880
– ident: ref42
  doi: 10.1155/2018/4201367
– ident: ref12
  doi: 10.1016/j.jnca.2017.08.014
– ident: ref10
  doi: 10.1155/2022/2323293
– ident: ref9
  doi: 10.1109/TVT.2017.2701399
– ident: ref30
  doi: 10.1007/s10479-004-5022-1
– ident: ref34
  doi: 10.1109/ACCESS.2018.2876034
– ident: ref15
  doi: 10.1016/j.dsp.2022.103420
– ident: ref22
  doi: 10.1109/WCNC55385.2023.10118744
– volume: 19
  start-page: 8528
  issue: 7
  year: 2023
  ident: ref1
  article-title: Online spatiotemporal modeling for robust and lightweight device-free localization in nonstationary environments
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2022.3218666
– ident: ref2
  doi: 10.1109/JIOT.2021.3067515
– ident: ref35
  doi: 10.1109/PERCOM.2007.8
– year: 2014
  ident: ref48
  article-title: A fast patch-dictionary method for whole image recovery
  publication-title: arXiv:1408.3740
– ident: ref44
  doi: 10.1007/s13042-022-01559-x
– ident: ref13
  doi: 10.1109/JIOT.2020.3019732
– ident: ref47
  doi: 10.1007/978-3-031-20500-2_31
– ident: ref16
  doi: 10.1109/TCSS.2022.3153660
– ident: ref25
  doi: 10.1109/JSEN.2017.2730226
SSID ssj0019757
Score 2.4429312
Snippet Received signal strength (RSS)-based device-free localization (DFL) is commonly used in the Internet-of-Things (IoT) field. However, the current DFL algorithms...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 40877
SubjectTerms Accuracy
Algorithms
Data mining
Data models
Datasets
Deep dictionary learning (DDL)
Deep learning
device-free localization (DFL)
Dictionaries
difference-of-convex (DC) programming
Feature extraction
Internet of Things
Localization
Location awareness
Machine learning
nonconvex sparse regularization
received signal strength (RSS)
Regularization
Representations
Signal strength
Sparse approximation
Wireless sensor networks
Title A Deep Dictionary Learning Framework for Device-Free Localization Based on Nonconvex Sparse Regularization and DC Programming
URI https://ieeexplore.ieee.org/document/11175296
https://www.proquest.com/docview/3267464846
Volume 25
WOSCitedRecordID wos001606677500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BQmp7KJSCuoUiH3qqZHASxx9HYFlVFVohaKW9RY49LhzIrsJSlUP_e23H2yJVHHqJfJgklsf2PHvmzQB85F46qzXSVhhDOZY1VZ4xajDgU29cVdg2FZuQ06mazfRlJqsnLgwipuAzPIrN5Mt3c_sQr8qOi5hXstRiHdalFANZ64_LQMuU1jOsYEZ5JWfZhVkwffzl-nwajoJlfVQF9C4i2H1ihFJVlX-24mRfJlv_2bNteJ2BJDkZNP8G1rDbgVdP0gvuwItc4fzm8S38OiFjxAUZ3yYig-kfSU6t-p1MVgFaJCDYIBY3DzrpEclFtHSZqUlOg8FzJDSm8y4Fq_8k14twLkZylQra9ytB0zkyPiOXQ-jXXfjFLnybnH89-0xz6QVqS66W1BSmbr1tmTei9lx7xWvvXauFMuEhPNZOcqGYk0b4iinDhFWlsVVZcRfM4h5sdPMO3wHxRSUdatY6oXihrfJC2jAnTK2UdtaN4NNKF81iyLDRpJMJ001UXBMV12TFjWA3Dv5fwTzuIzhYqa_Ji_C-Ccg09JEHhPX-mdf24WX8-sAtPICNZf-AH2DT_lje3veHaX79Bm-c0Bk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BTxQxFH5RNEEPqIhhBbUHTyaFzkyn0x6RZYO6TohgsrdJp31FDs5uhoXIgf9O2-kqifHgZdJDmzZ9bd_35r3vPYD33FXWKIW0FVpTjnlJpWOMavT41GlbZKaNxSaqupazmTpJZPXIhUHEGHyGe6EZffl2bq7Cr7L9LOSVzJV4CI9KznM20LV-Ow1UFRN7-jvMKC-qWXJiZkztfz49qr0xmJd7hcfvIsDde2oo1lX56zGOGmby7D_X9hw2EpQkB4PsX8AD7Dbh6b0Eg5uwnmqc_7h5CbcHZIy4IOOLSGXQ_Q1JyVXPyWQVokU8hvXdwvNBJz0imQZdl7ia5KNXeZb4Rj3vYrj6L3K68JYxkm-xpH2_6qg7S8aH5GQI_vrpp9iC75Ojs8NjmoovUJNzuaQ602XrTMucFqXjykleOmdbJaT2H-GwtBUXktlKC1cwqZkwMtemyAtuvWJ8BWvdvMNtIC4rKouKtVZInikjnaiMPxW6lFJZY0fwYSWLZjHk2GiibcJUEwTXBME1SXAj2Aqb_6dj2vcR7K7E16RreNl4bOrXyD3Gev2PYe9g_fjs67SZfqq_7MCTMNPANNyFtWV_hW_gsbleXlz2b-NZuwNqbdNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Dictionary+Learning+Framework+for+Device-Free+Localization+Based+on+Nonconvex+Sparse+Regularization+and+DC+Programming&rft.jtitle=IEEE+sensors+journal&rft.au=Tan%2C+Benying&rft.au=Wang%2C+Manman&rft.au=Li%2C+Yujie&rft.au=Lu%2C+Yongyun&rft.date=2025-11-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=21&rft.spage=40877&rft.epage=40891&rft_id=info:doi/10.1109%2FJSEN.2025.3605646&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2025_3605646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon