Real-Time Experimental Validation of an Adaptive Gait Event Detection Algorithm
The accurate detection of gait events, such as heel strike (HS) and toe off (TO), is critical for the implementation of many lower limb exoskeleton control strategies. While underfoot force sensors are commonly used, their limitations have inspired the development of algorithms to detect these event...
Gespeichert in:
| Veröffentlicht in: | IEEE sensors journal Jg. 25; H. 8; S. 13819 - 13827 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
15.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The accurate detection of gait events, such as heel strike (HS) and toe off (TO), is critical for the implementation of many lower limb exoskeleton control strategies. While underfoot force sensors are commonly used, their limitations have inspired the development of algorithms to detect these events from kinematic information obtained from inertial measurement units (IMUs) placed on limb segments and encoders at the joints. This work presents an adaptive, user-independent approach to gait event detection, using kinematic information from the embedded sensors of an exoskeleton. These included hip and knee joint encoders and a thigh-worn IMU; additionally, event detection only considered ipsilateral data. The algorithm was evaluated in real time with seven healthy subjects walking in the Indego Explorer exoskeleton on an instrumented treadmill at varying speeds and slopes. The experiment yielded mean gait phase errors of 0.38% <inline-formula> <tex-math notation="LaTeX">\pm ~1.82 </tex-math></inline-formula>% for HS and 0.54% <inline-formula> <tex-math notation="LaTeX">\pm ~1.14 </tex-math></inline-formula>% for TO at an accuracy of 99.93% over a total of 4104 steps. The results of this validation suggest that the presented algorithm is a viable solution to inertial-based gait event detection for the application of lower limb exoskeleton control. Future directions for this work include evaluating the algorithm for overground walking and for a controller providing gait assistance. |
|---|---|
| AbstractList | The accurate detection of gait events, such as heel strike (HS) and toe off (TO), is critical for the implementation of many lower limb exoskeleton control strategies. While underfoot force sensors are commonly used, their limitations have inspired the development of algorithms to detect these events from kinematic information obtained from inertial measurement units (IMUs) placed on limb segments and encoders at the joints. This work presents an adaptive, user-independent approach to gait event detection, using kinematic information from the embedded sensors of an exoskeleton. These included hip and knee joint encoders and a thigh-worn IMU; additionally, event detection only considered ipsilateral data. The algorithm was evaluated in real time with seven healthy subjects walking in the Indego Explorer exoskeleton on an instrumented treadmill at varying speeds and slopes. The experiment yielded mean gait phase errors of 0.38% <inline-formula> <tex-math notation="LaTeX">\pm ~1.82 </tex-math></inline-formula>% for HS and 0.54% <inline-formula> <tex-math notation="LaTeX">\pm ~1.14 </tex-math></inline-formula>% for TO at an accuracy of 99.93% over a total of 4104 steps. The results of this validation suggest that the presented algorithm is a viable solution to inertial-based gait event detection for the application of lower limb exoskeleton control. Future directions for this work include evaluating the algorithm for overground walking and for a controller providing gait assistance. The accurate detection of gait events, such as heel strike (HS) and toe off (TO), is critical for the implementation of many lower limb exoskeleton control strategies. While underfoot force sensors are commonly used, their limitations have inspired the development of algorithms to detect these events from kinematic information obtained from inertial measurement units (IMUs) placed on limb segments and encoders at the joints. This work presents an adaptive, user-independent approach to gait event detection, using kinematic information from the embedded sensors of an exoskeleton. These included hip and knee joint encoders and a thigh-worn IMU; additionally, event detection only considered ipsilateral data. The algorithm was evaluated in real time with seven healthy subjects walking in the Indego Explorer exoskeleton on an instrumented treadmill at varying speeds and slopes. The experiment yielded mean gait phase errors of 0.38% [Formula Omitted]% for HS and 0.54% [Formula Omitted]% for TO at an accuracy of 99.93% over a total of 4104 steps. The results of this validation suggest that the presented algorithm is a viable solution to inertial-based gait event detection for the application of lower limb exoskeleton control. Future directions for this work include evaluating the algorithm for overground walking and for a controller providing gait assistance. |
| Author | Wiebrecht, Jason J. Strick, Jacob A. Farris, Ryan J. Sawicki, Jerzy T. |
| Author_xml | – sequence: 1 givenname: Jacob A. orcidid: 0000-0002-0797-7434 surname: Strick fullname: Strick, Jacob A. email: j.a.strick@vikes.csuohio.edu organization: Center for Rotating Machinery Dynamics and Control (RoMaDyC), Cleveland State University, Cleveland, OH, USA – sequence: 2 givenname: Jason J. orcidid: 0000-0002-9431-7011 surname: Wiebrecht fullname: Wiebrecht, Jason J. email: j.wiebrecht@vikes.csuohio.edu organization: Center for Rotating Machinery Dynamics and Control (RoMaDyC), Cleveland State University, Cleveland, OH, USA – sequence: 3 givenname: Ryan J. orcidid: 0000-0002-7781-2715 surname: Farris fullname: Farris, Ryan J. email: rfarris@messiah.edu organization: Department of Mechanical Engineering, Messiah University, Mechanicsburg, PA, USA – sequence: 4 givenname: Jerzy T. orcidid: 0000-0002-1564-4576 surname: Sawicki fullname: Sawicki, Jerzy T. email: j.sawicki@csuohio.edu organization: Center for Rotating Machinery Dynamics and Control (RoMaDyC), Cleveland State University, Cleveland, OH, USA |
| BookMark | eNpNkMFOg0AQhjemJrbVBzDxsIlncHaXZdljU7FqGptoNd42CwxKQwFh2-jbC7YHT_Mfvn8m803IqKorJOSSgc8Y6JvHl_jJ58ClL2QQsoifkDGTMvKYCqLRkAV4gVDvZ2TSdRsAppVUY7J6Rlt662KLNP5usO1D5WxJ32xZZNYVdUXrnNqKzjLbuGKPdGELR-N9j9FbdJj-MbPyo24L97k9J6e5LTu8OM4peb2L1_N7b7laPMxnSy_lQeQ8zRIeZakElQU2VBwVZGkWYpIy1CGgVLnKE82lUnkqg0wImyuhNYY2DCABMSXXh71NW3_tsHNmU-_aqj9pBNOgeQha9hQ7UGlbd12LuWn6D237YxiYwZsZvJnBmzl66ztXh06BiP94zQBkJH4Bcg1q4g |
| CODEN | ISJEAZ |
| Cites_doi | 10.1109/TIM.2023.3329222 10.1109/JSEN.2024.3406596 10.1109/TMRB.2019.2930352 10.1186/s12984-021-00828-0 10.1109/tmech.2006.871087 10.1109/LRA.2022.3182106 10.1115/1.4064435 10.1109/TRO.2022.3226887 10.1109/TMRB.2023.3329585 10.1201/9781003525592 10.1109/JSEN.2022.3175823 10.1016/j.bspc.2022.103693 10.1115/1.4055504 10.3390/s20143972 10.3389/fneur.2017.00457 10.1016/j.gaitpost.2020.06.004 10.3389/fnbot.2020.581815 10.1007/s10846-022-01583-7 10.1016/j.gaitpost.2018.08.025 10.1016/j.jbiomech.2021.110880 10.1007/s10916-009-9311-8 10.1109/tnsre.2011.2163083 10.3390/s22218226 10.1109/JSEN.2024.3469250 10.1109/TNSRE.2018.2868094 10.1016/j.gaitpost.2018.05.025 10.1109/JSEN.2018.2871328 10.1109/LRA.2021.3075368 10.1109/TRO.2021.3122975 10.3389/fnbot.2020.00038 10.1016/j.cmpb.2012.02.003 10.1016/j.gaitpost.2024.04.006 10.1115/1.4051214 10.1109/TMECH.2022.3156168 10.3389/fnbot.2019.00057 10.1109/JSEN.2022.3177951 10.1109/JSEN.2019.2951923 10.1016/j.gaitpost.2009.11.014 10.1109/TNSRE.2022.3207919 10.3390/bioengineering9050208 10.1109/TNSRE.2016.2569019 10.1109/LRA.2022.3147565 10.1007/s12541-023-00807-6 10.3390/s24030964 10.1109/TNSRE.2016.2521160 10.1186/s12984-024-01365-2 10.1109/TRO.2018.2794536 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2025.3546182 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 13827 |
| ExternalDocumentID | 10_1109_JSEN_2025_3546182 10910058 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c248t-91b28dc507d4a672e70dcd6ebc1e960e57f7fb92577fc54d33af7399e6a640b03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001469405500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 09:56:44 EDT 2025 Sat Nov 29 08:00:07 EST 2025 Wed Aug 27 02:03:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-91b28dc507d4a672e70dcd6ebc1e960e57f7fb92577fc54d33af7399e6a640b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7781-2715 0000-0002-9431-7011 0000-0002-1564-4576 0000-0002-0797-7434 |
| PQID | 3190926095 |
| PQPubID | 75733 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2025_3546182 ieee_primary_10910058 proquest_journals_3190926095 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-15 |
| PublicationDateYYYYMMDD | 2025-04-15 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref14 doi: 10.1109/TIM.2023.3329222 – ident: ref45 doi: 10.1109/JSEN.2024.3406596 – ident: ref10 doi: 10.1109/TMRB.2019.2930352 – ident: ref43 doi: 10.1186/s12984-021-00828-0 – ident: ref3 doi: 10.1109/tmech.2006.871087 – ident: ref30 doi: 10.1109/LRA.2022.3182106 – ident: ref40 doi: 10.1115/1.4064435 – ident: ref39 doi: 10.1109/TRO.2022.3226887 – ident: ref38 doi: 10.1109/TMRB.2023.3329585 – ident: ref44 doi: 10.1201/9781003525592 – ident: ref15 doi: 10.1109/JSEN.2022.3175823 – ident: ref27 doi: 10.1016/j.bspc.2022.103693 – ident: ref16 doi: 10.1115/1.4055504 – ident: ref7 doi: 10.3390/s20143972 – ident: ref21 doi: 10.3389/fneur.2017.00457 – ident: ref26 doi: 10.1016/j.gaitpost.2020.06.004 – ident: ref2 doi: 10.3389/fnbot.2020.581815 – ident: ref41 doi: 10.1007/s10846-022-01583-7 – ident: ref13 doi: 10.1016/j.gaitpost.2018.08.025 – ident: ref11 doi: 10.1016/j.jbiomech.2021.110880 – ident: ref18 doi: 10.1007/s10916-009-9311-8 – ident: ref4 doi: 10.1109/tnsre.2011.2163083 – ident: ref22 doi: 10.3390/s22218226 – ident: ref46 doi: 10.1109/JSEN.2024.3469250 – ident: ref47 doi: 10.1109/TNSRE.2018.2868094 – ident: ref20 doi: 10.1016/j.gaitpost.2018.05.025 – ident: ref12 doi: 10.1109/JSEN.2018.2871328 – ident: ref31 doi: 10.1109/LRA.2021.3075368 – ident: ref34 doi: 10.1109/TRO.2021.3122975 – ident: ref23 doi: 10.3389/fnbot.2020.00038 – ident: ref19 doi: 10.1016/j.cmpb.2012.02.003 – ident: ref8 doi: 10.1016/j.gaitpost.2024.04.006 – ident: ref5 doi: 10.1115/1.4051214 – ident: ref32 doi: 10.1109/TMECH.2022.3156168 – ident: ref37 doi: 10.3389/fnbot.2019.00057 – ident: ref24 doi: 10.1109/JSEN.2022.3177951 – ident: ref42 doi: 10.1109/JSEN.2019.2951923 – ident: ref17 doi: 10.1016/j.gaitpost.2009.11.014 – ident: ref35 doi: 10.1109/TNSRE.2022.3207919 – ident: ref6 doi: 10.3390/bioengineering9050208 – ident: ref29 doi: 10.1109/TNSRE.2016.2569019 – ident: ref9 doi: 10.1109/LRA.2022.3147565 – ident: ref36 doi: 10.1007/s12541-023-00807-6 – ident: ref25 doi: 10.3390/s24030964 – ident: ref33 doi: 10.1109/TNSRE.2016.2521160 – ident: ref1 doi: 10.1186/s12984-024-01365-2 – ident: ref28 doi: 10.1109/TRO.2018.2794536 |
| SSID | ssj0019757 |
| Score | 2.4379823 |
| Snippet | The accurate detection of gait events, such as heel strike (HS) and toe off (TO), is critical for the implementation of many lower limb exoskeleton control... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 13819 |
| SubjectTerms | Accuracy Algorithms Coders Embedded sensors Event detection Exoskeleton Exoskeletons Gait gait event heel strike (HS) Heels Hip Inertial platforms Kinematics Knee Legged locomotion Limbs Real time Real-time systems Sensors Thigh toe off (TO) Walking |
| Title | Real-Time Experimental Validation of an Adaptive Gait Event Detection Algorithm |
| URI | https://ieeexplore.ieee.org/document/10910058 https://www.proquest.com/docview/3190926095 |
| Volume | 25 |
| WOSCitedRecordID | wos001469405500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7cRVAPvsX1RQ6ehLppmzTtUbQqHlbxxd5Knu6CtrJ2Bf-9SVplRTx4C7RTSqYzmenMfB_AoQ0KsKCpCEJD04BQLQOu7IqFIuMq4zzGxpNNsMEgHQ6zm3ZY3c_CaK1985k-dktfy1eVnLpfZX0HYul48DrQYSxphrW-SwYZ87Ce1oJxQGI2bEuYVqZ_dZcPbCoY0eOYkiRMox-HkGdV-eWK_flyvvLPN1uF5TaQRCeN5tdgTpfrsDQDL7gOCy3D-ehjA65vbUQYuIEPlM-A-qNHG4c3tEqoMoiX6ETxV-cC0QUf1yh37ZDoTNe-Y8tefX6qJuN69LIJD-f5_ell0JIpBDIiaW2dmohSJW34pwhPWKQZVlIlWshQ2yxGU2aYEZm1YGYkJSqOuWE2etEJTwgWON6CblmVehtQaGIlCZZWzhBmE0RNVWZ4yIRKjBCiB0dfu1u8NpgZhc81cFY4VRROFUWrih5suu2cubHZyR7sfSmkaM3qrbD-AmeRw8jb-UNsFxbd0129J6R70K0nU70P8_K9Hr9NDvwX8wlVt76r |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIAEHnkMMBuTACamQtknTHhGMNwPx0m5VnmwSbGgUJP49SdqhIcSBW6TWahXXjl3b3wewY4MCLGgqgtDQNCBUy4Aru2KhyLjKOI-x8WQTrN1OO53sphpW97MwWmvffKb33NLX8tVAvrtfZfsOxNLx4E3CFCUkwuW41nfRIGMe2NPaMA5IzDpVEdNK7Z_ftdo2GYzoXkxJEqbRj2PI86r8csb-hDle-Oe7LcJ8FUqig1L3SzCh-8swNwYwuAwzFcd593MFrm9tTBi4kQ_UGoP1R482Ei-JldDAIN5HB4q_OieITnivQC3XEImOdOF7tuzV56fBsFd0X-rwcNy6PzwNKjqFQEYkLaxbE1GqpA0AFeEJizTDSqpECxlqm8doygwzIrM2zIykRMUxN8zGLzrhCcECx6tQ6w_6eg1QaGIlCZZWzhBmU0RNVWZ4yIRKjBCiAbuj3c1fS9SM3GcbOMudKnKnirxSRQPqbjvHbix3sgHNkULyyrDecusxcBY5lLz1P8S2Yeb0_uoyvzxrX2zArHuSq_6EtAm1YviuN2FafhS9t-GW_3q-AG0pwfI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Experimental+Validation+of+an+Adaptive+Gait+Event+Detection+Algorithm&rft.jtitle=IEEE+sensors+journal&rft.au=Strick%2C+Jacob+A&rft.au=Wiebrecht%2C+Jason+J&rft.au=Farris%2C+Ryan+J&rft.au=Sawicki%2C+Jerzy+T&rft.date=2025-04-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=8&rft.spage=13819&rft_id=info:doi/10.1109%2FJSEN.2025.3546182&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |