Real-Time Experimental Validation of an Adaptive Gait Event Detection Algorithm

The accurate detection of gait events, such as heel strike (HS) and toe off (TO), is critical for the implementation of many lower limb exoskeleton control strategies. While underfoot force sensors are commonly used, their limitations have inspired the development of algorithms to detect these event...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 25; H. 8; S. 13819 - 13827
Hauptverfasser: Strick, Jacob A., Wiebrecht, Jason J., Farris, Ryan J., Sawicki, Jerzy T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 15.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The accurate detection of gait events, such as heel strike (HS) and toe off (TO), is critical for the implementation of many lower limb exoskeleton control strategies. While underfoot force sensors are commonly used, their limitations have inspired the development of algorithms to detect these events from kinematic information obtained from inertial measurement units (IMUs) placed on limb segments and encoders at the joints. This work presents an adaptive, user-independent approach to gait event detection, using kinematic information from the embedded sensors of an exoskeleton. These included hip and knee joint encoders and a thigh-worn IMU; additionally, event detection only considered ipsilateral data. The algorithm was evaluated in real time with seven healthy subjects walking in the Indego Explorer exoskeleton on an instrumented treadmill at varying speeds and slopes. The experiment yielded mean gait phase errors of 0.38% <inline-formula> <tex-math notation="LaTeX">\pm ~1.82 </tex-math></inline-formula>% for HS and 0.54% <inline-formula> <tex-math notation="LaTeX">\pm ~1.14 </tex-math></inline-formula>% for TO at an accuracy of 99.93% over a total of 4104 steps. The results of this validation suggest that the presented algorithm is a viable solution to inertial-based gait event detection for the application of lower limb exoskeleton control. Future directions for this work include evaluating the algorithm for overground walking and for a controller providing gait assistance.
AbstractList The accurate detection of gait events, such as heel strike (HS) and toe off (TO), is critical for the implementation of many lower limb exoskeleton control strategies. While underfoot force sensors are commonly used, their limitations have inspired the development of algorithms to detect these events from kinematic information obtained from inertial measurement units (IMUs) placed on limb segments and encoders at the joints. This work presents an adaptive, user-independent approach to gait event detection, using kinematic information from the embedded sensors of an exoskeleton. These included hip and knee joint encoders and a thigh-worn IMU; additionally, event detection only considered ipsilateral data. The algorithm was evaluated in real time with seven healthy subjects walking in the Indego Explorer exoskeleton on an instrumented treadmill at varying speeds and slopes. The experiment yielded mean gait phase errors of 0.38% <inline-formula> <tex-math notation="LaTeX">\pm ~1.82 </tex-math></inline-formula>% for HS and 0.54% <inline-formula> <tex-math notation="LaTeX">\pm ~1.14 </tex-math></inline-formula>% for TO at an accuracy of 99.93% over a total of 4104 steps. The results of this validation suggest that the presented algorithm is a viable solution to inertial-based gait event detection for the application of lower limb exoskeleton control. Future directions for this work include evaluating the algorithm for overground walking and for a controller providing gait assistance.
The accurate detection of gait events, such as heel strike (HS) and toe off (TO), is critical for the implementation of many lower limb exoskeleton control strategies. While underfoot force sensors are commonly used, their limitations have inspired the development of algorithms to detect these events from kinematic information obtained from inertial measurement units (IMUs) placed on limb segments and encoders at the joints. This work presents an adaptive, user-independent approach to gait event detection, using kinematic information from the embedded sensors of an exoskeleton. These included hip and knee joint encoders and a thigh-worn IMU; additionally, event detection only considered ipsilateral data. The algorithm was evaluated in real time with seven healthy subjects walking in the Indego Explorer exoskeleton on an instrumented treadmill at varying speeds and slopes. The experiment yielded mean gait phase errors of 0.38% [Formula Omitted]% for HS and 0.54% [Formula Omitted]% for TO at an accuracy of 99.93% over a total of 4104 steps. The results of this validation suggest that the presented algorithm is a viable solution to inertial-based gait event detection for the application of lower limb exoskeleton control. Future directions for this work include evaluating the algorithm for overground walking and for a controller providing gait assistance.
Author Wiebrecht, Jason J.
Strick, Jacob A.
Farris, Ryan J.
Sawicki, Jerzy T.
Author_xml – sequence: 1
  givenname: Jacob A.
  orcidid: 0000-0002-0797-7434
  surname: Strick
  fullname: Strick, Jacob A.
  email: j.a.strick@vikes.csuohio.edu
  organization: Center for Rotating Machinery Dynamics and Control (RoMaDyC), Cleveland State University, Cleveland, OH, USA
– sequence: 2
  givenname: Jason J.
  orcidid: 0000-0002-9431-7011
  surname: Wiebrecht
  fullname: Wiebrecht, Jason J.
  email: j.wiebrecht@vikes.csuohio.edu
  organization: Center for Rotating Machinery Dynamics and Control (RoMaDyC), Cleveland State University, Cleveland, OH, USA
– sequence: 3
  givenname: Ryan J.
  orcidid: 0000-0002-7781-2715
  surname: Farris
  fullname: Farris, Ryan J.
  email: rfarris@messiah.edu
  organization: Department of Mechanical Engineering, Messiah University, Mechanicsburg, PA, USA
– sequence: 4
  givenname: Jerzy T.
  orcidid: 0000-0002-1564-4576
  surname: Sawicki
  fullname: Sawicki, Jerzy T.
  email: j.sawicki@csuohio.edu
  organization: Center for Rotating Machinery Dynamics and Control (RoMaDyC), Cleveland State University, Cleveland, OH, USA
BookMark eNpNkMFOg0AQhjemJrbVBzDxsIlncHaXZdljU7FqGptoNd42CwxKQwFh2-jbC7YHT_Mfvn8m803IqKorJOSSgc8Y6JvHl_jJ58ClL2QQsoifkDGTMvKYCqLRkAV4gVDvZ2TSdRsAppVUY7J6Rlt662KLNP5usO1D5WxJ32xZZNYVdUXrnNqKzjLbuGKPdGELR-N9j9FbdJj-MbPyo24L97k9J6e5LTu8OM4peb2L1_N7b7laPMxnSy_lQeQ8zRIeZakElQU2VBwVZGkWYpIy1CGgVLnKE82lUnkqg0wImyuhNYY2DCABMSXXh71NW3_tsHNmU-_aqj9pBNOgeQha9hQ7UGlbd12LuWn6D237YxiYwZsZvJnBmzl66ztXh06BiP94zQBkJH4Bcg1q4g
CODEN ISJEAZ
Cites_doi 10.1109/TIM.2023.3329222
10.1109/JSEN.2024.3406596
10.1109/TMRB.2019.2930352
10.1186/s12984-021-00828-0
10.1109/tmech.2006.871087
10.1109/LRA.2022.3182106
10.1115/1.4064435
10.1109/TRO.2022.3226887
10.1109/TMRB.2023.3329585
10.1201/9781003525592
10.1109/JSEN.2022.3175823
10.1016/j.bspc.2022.103693
10.1115/1.4055504
10.3390/s20143972
10.3389/fneur.2017.00457
10.1016/j.gaitpost.2020.06.004
10.3389/fnbot.2020.581815
10.1007/s10846-022-01583-7
10.1016/j.gaitpost.2018.08.025
10.1016/j.jbiomech.2021.110880
10.1007/s10916-009-9311-8
10.1109/tnsre.2011.2163083
10.3390/s22218226
10.1109/JSEN.2024.3469250
10.1109/TNSRE.2018.2868094
10.1016/j.gaitpost.2018.05.025
10.1109/JSEN.2018.2871328
10.1109/LRA.2021.3075368
10.1109/TRO.2021.3122975
10.3389/fnbot.2020.00038
10.1016/j.cmpb.2012.02.003
10.1016/j.gaitpost.2024.04.006
10.1115/1.4051214
10.1109/TMECH.2022.3156168
10.3389/fnbot.2019.00057
10.1109/JSEN.2022.3177951
10.1109/JSEN.2019.2951923
10.1016/j.gaitpost.2009.11.014
10.1109/TNSRE.2022.3207919
10.3390/bioengineering9050208
10.1109/TNSRE.2016.2569019
10.1109/LRA.2022.3147565
10.1007/s12541-023-00807-6
10.3390/s24030964
10.1109/TNSRE.2016.2521160
10.1186/s12984-024-01365-2
10.1109/TRO.2018.2794536
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3546182
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 13827
ExternalDocumentID 10_1109_JSEN_2025_3546182
10910058
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c248t-91b28dc507d4a672e70dcd6ebc1e960e57f7fb92577fc54d33af7399e6a640b03
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001469405500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 09:56:44 EDT 2025
Sat Nov 29 08:00:07 EST 2025
Wed Aug 27 02:03:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-91b28dc507d4a672e70dcd6ebc1e960e57f7fb92577fc54d33af7399e6a640b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7781-2715
0000-0002-9431-7011
0000-0002-1564-4576
0000-0002-0797-7434
PQID 3190926095
PQPubID 75733
PageCount 9
ParticipantIDs crossref_primary_10_1109_JSEN_2025_3546182
ieee_primary_10910058
proquest_journals_3190926095
PublicationCentury 2000
PublicationDate 2025-04-15
PublicationDateYYYYMMDD 2025-04-15
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref14
  doi: 10.1109/TIM.2023.3329222
– ident: ref45
  doi: 10.1109/JSEN.2024.3406596
– ident: ref10
  doi: 10.1109/TMRB.2019.2930352
– ident: ref43
  doi: 10.1186/s12984-021-00828-0
– ident: ref3
  doi: 10.1109/tmech.2006.871087
– ident: ref30
  doi: 10.1109/LRA.2022.3182106
– ident: ref40
  doi: 10.1115/1.4064435
– ident: ref39
  doi: 10.1109/TRO.2022.3226887
– ident: ref38
  doi: 10.1109/TMRB.2023.3329585
– ident: ref44
  doi: 10.1201/9781003525592
– ident: ref15
  doi: 10.1109/JSEN.2022.3175823
– ident: ref27
  doi: 10.1016/j.bspc.2022.103693
– ident: ref16
  doi: 10.1115/1.4055504
– ident: ref7
  doi: 10.3390/s20143972
– ident: ref21
  doi: 10.3389/fneur.2017.00457
– ident: ref26
  doi: 10.1016/j.gaitpost.2020.06.004
– ident: ref2
  doi: 10.3389/fnbot.2020.581815
– ident: ref41
  doi: 10.1007/s10846-022-01583-7
– ident: ref13
  doi: 10.1016/j.gaitpost.2018.08.025
– ident: ref11
  doi: 10.1016/j.jbiomech.2021.110880
– ident: ref18
  doi: 10.1007/s10916-009-9311-8
– ident: ref4
  doi: 10.1109/tnsre.2011.2163083
– ident: ref22
  doi: 10.3390/s22218226
– ident: ref46
  doi: 10.1109/JSEN.2024.3469250
– ident: ref47
  doi: 10.1109/TNSRE.2018.2868094
– ident: ref20
  doi: 10.1016/j.gaitpost.2018.05.025
– ident: ref12
  doi: 10.1109/JSEN.2018.2871328
– ident: ref31
  doi: 10.1109/LRA.2021.3075368
– ident: ref34
  doi: 10.1109/TRO.2021.3122975
– ident: ref23
  doi: 10.3389/fnbot.2020.00038
– ident: ref19
  doi: 10.1016/j.cmpb.2012.02.003
– ident: ref8
  doi: 10.1016/j.gaitpost.2024.04.006
– ident: ref5
  doi: 10.1115/1.4051214
– ident: ref32
  doi: 10.1109/TMECH.2022.3156168
– ident: ref37
  doi: 10.3389/fnbot.2019.00057
– ident: ref24
  doi: 10.1109/JSEN.2022.3177951
– ident: ref42
  doi: 10.1109/JSEN.2019.2951923
– ident: ref17
  doi: 10.1016/j.gaitpost.2009.11.014
– ident: ref35
  doi: 10.1109/TNSRE.2022.3207919
– ident: ref6
  doi: 10.3390/bioengineering9050208
– ident: ref29
  doi: 10.1109/TNSRE.2016.2569019
– ident: ref9
  doi: 10.1109/LRA.2022.3147565
– ident: ref36
  doi: 10.1007/s12541-023-00807-6
– ident: ref25
  doi: 10.3390/s24030964
– ident: ref33
  doi: 10.1109/TNSRE.2016.2521160
– ident: ref1
  doi: 10.1186/s12984-024-01365-2
– ident: ref28
  doi: 10.1109/TRO.2018.2794536
SSID ssj0019757
Score 2.4379823
Snippet The accurate detection of gait events, such as heel strike (HS) and toe off (TO), is critical for the implementation of many lower limb exoskeleton control...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 13819
SubjectTerms Accuracy
Algorithms
Coders
Embedded sensors
Event detection
Exoskeleton
Exoskeletons
Gait
gait event
heel strike (HS)
Heels
Hip
Inertial platforms
Kinematics
Knee
Legged locomotion
Limbs
Real time
Real-time systems
Sensors
Thigh
toe off (TO)
Walking
Title Real-Time Experimental Validation of an Adaptive Gait Event Detection Algorithm
URI https://ieeexplore.ieee.org/document/10910058
https://www.proquest.com/docview/3190926095
Volume 25
WOSCitedRecordID wos001469405500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7cRVAPvsX1RQ6ehLppmzTtUbQqHlbxxd5Knu6CtrJ2Bf-9SVplRTx4C7RTSqYzmenMfB_AoQ0KsKCpCEJD04BQLQOu7IqFIuMq4zzGxpNNsMEgHQ6zm3ZY3c_CaK1985k-dktfy1eVnLpfZX0HYul48DrQYSxphrW-SwYZ87Ce1oJxQGI2bEuYVqZ_dZcPbCoY0eOYkiRMox-HkGdV-eWK_flyvvLPN1uF5TaQRCeN5tdgTpfrsDQDL7gOCy3D-ehjA65vbUQYuIEPlM-A-qNHG4c3tEqoMoiX6ETxV-cC0QUf1yh37ZDoTNe-Y8tefX6qJuN69LIJD-f5_ell0JIpBDIiaW2dmohSJW34pwhPWKQZVlIlWshQ2yxGU2aYEZm1YGYkJSqOuWE2etEJTwgWON6CblmVehtQaGIlCZZWzhBmE0RNVWZ4yIRKjBCiB0dfu1u8NpgZhc81cFY4VRROFUWrih5suu2cubHZyR7sfSmkaM3qrbD-AmeRw8jb-UNsFxbd0129J6R70K0nU70P8_K9Hr9NDvwX8wlVt76r
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIAEHnkMMBuTACamQtknTHhGMNwPx0m5VnmwSbGgUJP49SdqhIcSBW6TWahXXjl3b3wewY4MCLGgqgtDQNCBUy4Aru2KhyLjKOI-x8WQTrN1OO53sphpW97MwWmvffKb33NLX8tVAvrtfZfsOxNLx4E3CFCUkwuW41nfRIGMe2NPaMA5IzDpVEdNK7Z_ftdo2GYzoXkxJEqbRj2PI86r8csb-hDle-Oe7LcJ8FUqig1L3SzCh-8swNwYwuAwzFcd593MFrm9tTBi4kQ_UGoP1R482Ei-JldDAIN5HB4q_OieITnivQC3XEImOdOF7tuzV56fBsFd0X-rwcNy6PzwNKjqFQEYkLaxbE1GqpA0AFeEJizTDSqpECxlqm8doygwzIrM2zIykRMUxN8zGLzrhCcECx6tQ6w_6eg1QaGIlCZZWzhBmU0RNVWZ4yIRKjBCiAbuj3c1fS9SM3GcbOMudKnKnirxSRQPqbjvHbix3sgHNkULyyrDecusxcBY5lLz1P8S2Yeb0_uoyvzxrX2zArHuSq_6EtAm1YviuN2FafhS9t-GW_3q-AG0pwfI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Experimental+Validation+of+an+Adaptive+Gait+Event+Detection+Algorithm&rft.jtitle=IEEE+sensors+journal&rft.au=Strick%2C+Jacob+A&rft.au=Wiebrecht%2C+Jason+J&rft.au=Farris%2C+Ryan+J&rft.au=Sawicki%2C+Jerzy+T&rft.date=2025-04-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=8&rft.spage=13819&rft_id=info:doi/10.1109%2FJSEN.2025.3546182&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon