Decomposed Multiobjective Wolf Pack Algorithm for Resource Allocation and Task Scheduling in Computing Networks

In computing networks, resource allocation disorder and task scheduling imbalance can lead to problems such as long latency, high energy consumption, and high cost. To address these issues, a computing network model integrating nonorthogonal multiple access (NOMA) and wireless charging at base stati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 25; H. 15; S. 30005 - 30019
Hauptverfasser: Wu, Lijuan, Lv, Li, Pan, Jeng-Shyang, Wang, Hui, Lee, Ivan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In computing networks, resource allocation disorder and task scheduling imbalance can lead to problems such as long latency, high energy consumption, and high cost. To address these issues, a computing network model integrating nonorthogonal multiple access (NOMA) and wireless charging at base stations is constructed, and a decomposed multiobjective wolf pack algorithm (MOWPA) is proposed to jointly optimize resource allocation and task scheduling. The uplink of the network uses NOMA technology, which allows multiple users to share the same subchannel and greatly improves the efficiency of spectrum utilization. The introduction of wireless charging technology at the base station ensures that users can complete their computing tasks without interruption and reduces maintenance costs. In the algorithm design, the decomposition strategy is introduced into the MOWPA to screen the initial population by polynomial mutation operator and differential evolution operator to improve the diversity of the initial population. To help the algorithm escape from local optimum, the mutation operator is introduced to generate new elements, so that the population can explore a wider solution space. The experimental results show that when the number of users reaches 40, the algorithm achieves average improvements of over 22.47%, 27.82%, and 25.58% in computing delay, energy consumption, and cost, respectively. Compared with the other 10 algorithms, it significantly improves the user experience and resource utilization.
AbstractList In computing networks, resource allocation disorder and task scheduling imbalance can lead to problems such as long latency, high energy consumption, and high cost. To address these issues, a computing network model integrating nonorthogonal multiple access (NOMA) and wireless charging at base stations is constructed, and a decomposed multiobjective wolf pack algorithm (MOWPA) is proposed to jointly optimize resource allocation and task scheduling. The uplink of the network uses NOMA technology, which allows multiple users to share the same subchannel and greatly improves the efficiency of spectrum utilization. The introduction of wireless charging technology at the base station ensures that users can complete their computing tasks without interruption and reduces maintenance costs. In the algorithm design, the decomposition strategy is introduced into the MOWPA to screen the initial population by polynomial mutation operator and differential evolution operator to improve the diversity of the initial population. To help the algorithm escape from local optimum, the mutation operator is introduced to generate new elements, so that the population can explore a wider solution space. The experimental results show that when the number of users reaches 40, the algorithm achieves average improvements of over 22.47%, 27.82%, and 25.58% in computing delay, energy consumption, and cost, respectively. Compared with the other 10 algorithms, it significantly improves the user experience and resource utilization.
Author Lv, Li
Lee, Ivan
Wang, Hui
Wu, Lijuan
Pan, Jeng-Shyang
Author_xml – sequence: 1
  givenname: Lijuan
  orcidid: 0009-0006-4238-3486
  surname: Wu
  fullname: Wu, Lijuan
  email: 1829245414@qq.com
  organization: School of Information Engineering, Jiangxi Province Engineering Research Center for Intelligent Processing and Early Warning Technology of Water Conservancy Big Data, Jiangxi University of Water Resources and Electric Power, Nanchang, China
– sequence: 2
  givenname: Li
  orcidid: 0000-0002-9705-806X
  surname: Lv
  fullname: Lv, Li
  email: lvli@nit.edu.cn
  organization: School of Information Engineering, Jiangxi Province Engineering Research Center for Intelligent Processing and Early Warning Technology of Water Conservancy Big Data, Jiangxi University of Water Resources and Electric Power, Nanchang, China
– sequence: 3
  givenname: Jeng-Shyang
  orcidid: 0000-0002-3128-9025
  surname: Pan
  fullname: Pan, Jeng-Shyang
  email: jengshyangpan@gmail.com
  organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 4
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  email: huiwang@nit.edu.cn
  organization: School of Information Engineering, Jiangxi Province Engineering Research Center for Intelligent Processing and Early Warning Technology of Water Conservancy Big Data, Jiangxi University of Water Resources and Electric Power, Nanchang, China
– sequence: 5
  givenname: Ivan
  orcidid: 0000-0002-2826-6367
  surname: Lee
  fullname: Lee, Ivan
  email: Ivan.Lee@unisa.edu.au
  organization: UniSA STEM, University of South Australia, Adelaide, SA, Australia
BookMark eNpFUMtOwzAQtBBIlMIHIHGwxDnFa8d5HFF5qxTEQ3CLYmcNadO42AmIv8dRK6E97O5oZnY1B2S3tS0ScgxsAsDys7vny_mEMy4nQmaQQL5DRiBlFkEaZ7vDLFgUi_R9nxx4v2AM8lSmI2IvUNvV2nqs6H3fdLVVC9Rd_Y30zTaGPpZ6Sc-bD-vq7nNFjXX0Cb3tncYAN1aXQdLSsq3oS-mX9Fl_YtU3dftB65ZOg3XfDcscux_rlv6Q7Jmy8Xi07WPyenX5Mr2JZg_Xt9PzWaR5nHVRKkyVKZYyxSExUmVaSRFA4CoBgSZRlVFGGo4qqQzkXLEcVJrEvExjDVyMyenGd-3sV4--Kxbh6TacLASPEyEgVGDBhqWd9d6hKdauXpXutwBWDLkWQ67FkGuxzTVoTjaaGhH_-cCkgDwTf_SJd4o
CODEN ISJEAZ
Cites_doi 10.1109/TITS.2023.3249745
10.1109/TEVC.2014.2339823
10.1007/s12652-021-03388-2
10.1016/j.jpdc.2023.02.008
10.1109/JIOT.2022.3231250
10.1109/TCYB.2021.3056176
10.1109/TSC.2021.3064579
10.1109/TITS.2023.3242997
10.1016/j.asoc.2024.112042
10.1109/TVT.2022.3197627
10.1109/JSAC.2023.3322799
10.1109/TCYB.2020.3021138
10.1109/TWC.2020.3024538
10.1109/TEVC.2022.3224600
10.1109/TVT.2017.2762423
10.1109/TNSE.2023.3339875
10.1109/JIOT.2020.3024223
10.1109/TVT.2023.3292815
10.1016/j.adhoc.2022.103044
10.1109/TITS.2023.3275741
10.1007/s12243-021-00892-6
10.1109/TEVC.2019.2894743
10.1109/JIOT.2023.3247013
10.1016/j.eswa.2022.116499
10.1109/TVT.2019.2935450
10.1109/TNET.2019.2892148
10.1109/TVT.2022.3175238
10.1109/JIOT.2022.3153847
10.1109/JIOT.2023.3239944
10.1016/j.asoc.2021.107790
10.1109/TNET.2023.3248088
10.1109/TNNLS.2023.3297624
10.1016/j.comcom.2021.01.022
10.1109/TVT.2020.2995146
10.1007/s11036-020-01627-y
10.1016/j.asoc.2023.110796
10.1109/SMC54092.2024.10831388
10.1016/j.future.2018.07.047
10.1109/TSC.2023.3293048
10.1016/j.swevo.2024.101842
10.1109/ACCESS.2025.3538676
10.1049/iet-com.2019.1300
10.1109/ISIT.2016.7541539
10.1016/j.future.2019.07.019
10.1016/j.comnet.2017.03.024
10.1109/TEVC.2017.2749619
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3581619
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 30019
ExternalDocumentID 10_1109_JSEN_2025_3581619
11053198
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62066030
  funderid: 10.13039/501100001809
– fundername: Nanchang Major Scientific and Technological Research Projects
  grantid: 2024zdxm010; 2024zdxm002
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c248t-73fd8b070b216f5b8cb5373f12b613ef6bdfbf5f2eb6df192b091b7642a74c123
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001542426600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Thu Nov 20 00:55:33 EST 2025
Sat Nov 29 07:40:16 EST 2025
Wed Aug 27 01:43:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-73fd8b070b216f5b8cb5373f12b613ef6bdfbf5f2eb6df192b091b7642a74c123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9705-806X
0000-0002-2826-6367
0009-0006-4238-3486
0000-0002-3128-9025
PQID 3246331313
PQPubID 75733
PageCount 15
ParticipantIDs ieee_primary_11053198
proquest_journals_3246331313
crossref_primary_10_1109_JSEN_2025_3581619
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref52
ref11
ref10
Jiang (ref4) 2022; 46
Zhang (ref12) 2023; 46
ref17
ref16
Jiang (ref41) 2019; 15
ref19
ref18
Zhao (ref28) 2024; 39
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref44
ref43
Chen (ref53) 2024; 41
ref49
ref8
ref7
ref9
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
Lin (ref3) 2024; 48
ref20
ref22
ref21
ref27
ref29
Xiao (ref25) 2023; 42
References_xml – ident: ref20
  doi: 10.1109/TITS.2023.3249745
– ident: ref45
  doi: 10.1109/TEVC.2014.2339823
– ident: ref32
  doi: 10.1007/s12652-021-03388-2
– ident: ref30
  doi: 10.1016/j.jpdc.2023.02.008
– volume: 42
  start-page: 1
  issue: 1
  year: 2023
  ident: ref25
  article-title: From swarm intelligence optimization to swarm intelligence evolution
  publication-title: J. Nanchang Inst. Technol.
– volume: 15
  start-page: 2289
  issue: 6
  year: 2019
  ident: ref41
  article-title: An improved multi-objective grey wolf optimizer for dependent task scheduling in edge computing
  publication-title: Int. J. Innov. Comput. Inf. Control
– ident: ref22
  doi: 10.1109/JIOT.2022.3231250
– ident: ref48
  doi: 10.1109/TCYB.2021.3056176
– volume: 46
  start-page: 649
  issue: 6
  year: 2022
  ident: ref4
  article-title: The data flow model of vehicle safety based on big data analysis
  publication-title: J. Jiangxi Normal Univ. Natural Sci. Ed.
– ident: ref34
  doi: 10.1109/TSC.2021.3064579
– ident: ref5
  doi: 10.1109/TITS.2023.3242997
– ident: ref18
  doi: 10.1016/j.asoc.2024.112042
– ident: ref21
  doi: 10.1109/TVT.2022.3197627
– ident: ref16
  doi: 10.1109/JSAC.2023.3322799
– volume: 46
  start-page: 72
  issue: 5
  year: 2023
  ident: ref12
  article-title: Multi-user-oriented MEC task hierarchical processing offloading mechanism
  publication-title: J. Beijing Univ. Posts Telecommun.
– ident: ref49
  doi: 10.1109/TCYB.2020.3021138
– ident: ref11
  doi: 10.1109/TWC.2020.3024538
– ident: ref51
  doi: 10.1109/TEVC.2022.3224600
– ident: ref33
  doi: 10.1109/TVT.2017.2762423
– ident: ref15
  doi: 10.1109/TNSE.2023.3339875
– ident: ref23
  doi: 10.1109/JIOT.2020.3024223
– volume: 41
  start-page: 2404
  issue: 8
  year: 2024
  ident: ref53
  article-title: Multi-objective wolf pack algorithm with elite guidance and information interaction
  publication-title: Appl. Res. Comput.
– ident: ref8
  doi: 10.1109/TVT.2023.3292815
– ident: ref9
  doi: 10.1016/j.adhoc.2022.103044
– ident: ref2
  doi: 10.1109/TITS.2023.3275741
– ident: ref42
  doi: 10.1007/s12243-021-00892-6
– ident: ref47
  doi: 10.1109/TEVC.2019.2894743
– ident: ref10
  doi: 10.1109/JIOT.2023.3247013
– ident: ref50
  doi: 10.1016/j.eswa.2022.116499
– volume: 39
  start-page: 3772
  issue: 11
  year: 2024
  ident: ref28
  article-title: Multi-objective wolf pack algorithm based on adaptive grouping strategy and crowding distance
  publication-title: Control Decis.
– ident: ref19
  doi: 10.1109/TVT.2019.2935450
– volume: 48
  start-page: 371
  issue: 4
  year: 2024
  ident: ref3
  article-title: The ensemble federated learning system of privacy protection in industrial Internet of Things based on blockchain
  publication-title: J. Jiangxi Normal Univ., Natural Sci. Ed.
– ident: ref35
  doi: 10.1109/TNET.2019.2892148
– ident: ref29
  doi: 10.1109/TVT.2022.3175238
– ident: ref31
  doi: 10.1109/JIOT.2022.3153847
– ident: ref1
  doi: 10.1109/JIOT.2023.3239944
– ident: ref13
  doi: 10.1016/j.asoc.2021.107790
– ident: ref36
  doi: 10.1109/TNET.2023.3248088
– ident: ref52
  doi: 10.1109/TNNLS.2023.3297624
– ident: ref37
  doi: 10.1016/j.comcom.2021.01.022
– ident: ref24
  doi: 10.1109/TVT.2020.2995146
– ident: ref38
  doi: 10.1007/s11036-020-01627-y
– ident: ref17
  doi: 10.1016/j.asoc.2023.110796
– ident: ref40
  doi: 10.1109/SMC54092.2024.10831388
– ident: ref27
  doi: 10.1016/j.future.2018.07.047
– ident: ref7
  doi: 10.1109/TSC.2023.3293048
– ident: ref26
  doi: 10.1016/j.swevo.2024.101842
– ident: ref43
  doi: 10.1109/ACCESS.2025.3538676
– ident: ref44
  doi: 10.1049/iet-com.2019.1300
– ident: ref6
  doi: 10.1109/ISIT.2016.7541539
– ident: ref14
  doi: 10.1016/j.future.2019.07.019
– ident: ref39
  doi: 10.1016/j.comnet.2017.03.024
– ident: ref46
  doi: 10.1109/TEVC.2017.2749619
SSID ssj0019757
Score 2.4354799
Snippet In computing networks, resource allocation disorder and task scheduling imbalance can lead to problems such as long latency, high energy consumption, and high...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 30005
SubjectTerms Adaptation models
Algorithms
Base stations
Computation
Computational modeling
Computing network
Costs
Decomposition
decomposition strategy
Delays
Energy consumption
Evolutionary computation
Maintenance costs
multiobjective wolf pack algorithm (MOWPA)
Multiple objective analysis
Mutation
mutation operator
Network latency
NOMA
Nonorthogonal multiple access
nonorthogonal multiple access (NOMA) technology
Operators (mathematics)
Optimization
Polynomials
Processor scheduling
Resource allocation
Resource management
Resource utilization
Solution space
Task scheduling
User experience
wireless charging
Wireless power transmission
Title Decomposed Multiobjective Wolf Pack Algorithm for Resource Allocation and Task Scheduling in Computing Networks
URI https://ieeexplore.ieee.org/document/11053198
https://www.proquest.com/docview/3246331313
Volume 25
WOSCitedRecordID wos001542426600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UBPXgW1xf5OBJ6Npn0h7FB-JhEVTcW-k0ye66ayvbKvjvnaRdXRAP0kPboS1lviQzk3kBnHIZCaEi7pA5ETuhykMHtR86KuGIOtNEaZpNiF4v7veT-zZZ3ebCKKVs8Jnqmkvry5dl_m62ys5JVJkhEy_CohC8Sdb6dhkkwpb1pBnsOmEg-q0L03OT87uH6x6Zgn7UNdW-uKmqMyeEbFeVX0uxlS83G__8s01YbxVJdtEgvwULqtiGtbnygtuw0nY4H37uQHmlTPR4WSnJbNJtiS_NWseey4lm91k-ZheTQTkd1cNXRqosm-3sE9lIPIMgywrJHrNqzB4IbGmi2AdsVLCmN4S56TVh5dUuPN1cP17eOm2zBSf3w7h2RKBljLQAoO9xHWGcYxQQ0fORJL7SHKVGHWlfIZea9EIkTQMFmS-ZCHOSf3uwVJSF2gdGrECyWjKMhAwjL4_pnGCG0g8xcRO3A2cz7qdvTU2N1NoibpIaqFIDVdpC1YFdw-6fB1tOd-BoBljaTrsqJe2QB4FHx8Efrx3Cqvl6E8J3BEv19F0dw3L-UY-q6YkdUV9chMqZ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BmDR4GKwU0THADzxN8pZvJ48TW1VgRJXaaX2LcrHddhsJajok_vudHRcqoT2gPCQ5JUp0P9t35_sC-JTIWAgVJ5zMiZRHqoo46iDiKksQdamJ0jWbEHmezmbZ2CWr21wYpZQNPlMn5tL68mVT3ZutslMSVWbIpE_hmWmd5dK1_jgNMmELe9Ic9ngUiplzYvpedvp1cpGTMRjEJ6beV2Lq6myJIdtX5Z_F2EqY4cv__LdXsO9USXbWYX8AT1TdgxdbBQZ7sOd6nC9-v4bmXJn48aZVktm02wZvutWOXTd3mo3L6pad3c2b1XK9-MFImWWbvX0iG5lnMGRlLdm0bG_ZhOCWJo59zpY167pDmJu8Cyxv-3A1vJh-HnHXboFXQZSuuQi1TJGWAAz8RMeYVhiHRPQDJJmvdIJSo451oDCRmjRDJF0DBRkwpYgqkoBvYKduavUWGLECyW4pMRYyiv0qpXOGJcogwszLvAEcb7hf_OyqahTWGvGywkBVGKgKB9UA-obdfx90nB7A0Qawwk28tiD9MAlDn47DR177CHuj6ffL4vJL_u0dPDdf6gL6jmBnvbpX72G3-rVetqsPdnQ9ABQUzeI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposed+Multiobjective+Wolf+Pack+Algorithm+for+Resource+Allocation+and+Task+Scheduling+in+Computing+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Wu%2C+Lijuan&rft.au=Lv%2C+Li&rft.au=Pan%2C+Jeng-Shyang&rft.au=Wang%2C+Hui&rft.date=2025-08-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=15&rft.spage=30005&rft.epage=30019&rft_id=info:doi/10.1109%2FJSEN.2025.3581619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2025_3581619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon