Decomposed Multiobjective Wolf Pack Algorithm for Resource Allocation and Task Scheduling in Computing Networks
In computing networks, resource allocation disorder and task scheduling imbalance can lead to problems such as long latency, high energy consumption, and high cost. To address these issues, a computing network model integrating nonorthogonal multiple access (NOMA) and wireless charging at base stati...
Gespeichert in:
| Veröffentlicht in: | IEEE sensors journal Jg. 25; H. 15; S. 30005 - 30019 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In computing networks, resource allocation disorder and task scheduling imbalance can lead to problems such as long latency, high energy consumption, and high cost. To address these issues, a computing network model integrating nonorthogonal multiple access (NOMA) and wireless charging at base stations is constructed, and a decomposed multiobjective wolf pack algorithm (MOWPA) is proposed to jointly optimize resource allocation and task scheduling. The uplink of the network uses NOMA technology, which allows multiple users to share the same subchannel and greatly improves the efficiency of spectrum utilization. The introduction of wireless charging technology at the base station ensures that users can complete their computing tasks without interruption and reduces maintenance costs. In the algorithm design, the decomposition strategy is introduced into the MOWPA to screen the initial population by polynomial mutation operator and differential evolution operator to improve the diversity of the initial population. To help the algorithm escape from local optimum, the mutation operator is introduced to generate new elements, so that the population can explore a wider solution space. The experimental results show that when the number of users reaches 40, the algorithm achieves average improvements of over 22.47%, 27.82%, and 25.58% in computing delay, energy consumption, and cost, respectively. Compared with the other 10 algorithms, it significantly improves the user experience and resource utilization. |
|---|---|
| AbstractList | In computing networks, resource allocation disorder and task scheduling imbalance can lead to problems such as long latency, high energy consumption, and high cost. To address these issues, a computing network model integrating nonorthogonal multiple access (NOMA) and wireless charging at base stations is constructed, and a decomposed multiobjective wolf pack algorithm (MOWPA) is proposed to jointly optimize resource allocation and task scheduling. The uplink of the network uses NOMA technology, which allows multiple users to share the same subchannel and greatly improves the efficiency of spectrum utilization. The introduction of wireless charging technology at the base station ensures that users can complete their computing tasks without interruption and reduces maintenance costs. In the algorithm design, the decomposition strategy is introduced into the MOWPA to screen the initial population by polynomial mutation operator and differential evolution operator to improve the diversity of the initial population. To help the algorithm escape from local optimum, the mutation operator is introduced to generate new elements, so that the population can explore a wider solution space. The experimental results show that when the number of users reaches 40, the algorithm achieves average improvements of over 22.47%, 27.82%, and 25.58% in computing delay, energy consumption, and cost, respectively. Compared with the other 10 algorithms, it significantly improves the user experience and resource utilization. |
| Author | Lv, Li Lee, Ivan Wang, Hui Wu, Lijuan Pan, Jeng-Shyang |
| Author_xml | – sequence: 1 givenname: Lijuan orcidid: 0009-0006-4238-3486 surname: Wu fullname: Wu, Lijuan email: 1829245414@qq.com organization: School of Information Engineering, Jiangxi Province Engineering Research Center for Intelligent Processing and Early Warning Technology of Water Conservancy Big Data, Jiangxi University of Water Resources and Electric Power, Nanchang, China – sequence: 2 givenname: Li orcidid: 0000-0002-9705-806X surname: Lv fullname: Lv, Li email: lvli@nit.edu.cn organization: School of Information Engineering, Jiangxi Province Engineering Research Center for Intelligent Processing and Early Warning Technology of Water Conservancy Big Data, Jiangxi University of Water Resources and Electric Power, Nanchang, China – sequence: 3 givenname: Jeng-Shyang orcidid: 0000-0002-3128-9025 surname: Pan fullname: Pan, Jeng-Shyang email: jengshyangpan@gmail.com organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 4 givenname: Hui surname: Wang fullname: Wang, Hui email: huiwang@nit.edu.cn organization: School of Information Engineering, Jiangxi Province Engineering Research Center for Intelligent Processing and Early Warning Technology of Water Conservancy Big Data, Jiangxi University of Water Resources and Electric Power, Nanchang, China – sequence: 5 givenname: Ivan orcidid: 0000-0002-2826-6367 surname: Lee fullname: Lee, Ivan email: Ivan.Lee@unisa.edu.au organization: UniSA STEM, University of South Australia, Adelaide, SA, Australia |
| BookMark | eNpFUMtOwzAQtBBIlMIHIHGwxDnFa8d5HFF5qxTEQ3CLYmcNadO42AmIv8dRK6E97O5oZnY1B2S3tS0ScgxsAsDys7vny_mEMy4nQmaQQL5DRiBlFkEaZ7vDLFgUi_R9nxx4v2AM8lSmI2IvUNvV2nqs6H3fdLVVC9Rd_Y30zTaGPpZ6Sc-bD-vq7nNFjXX0Cb3tncYAN1aXQdLSsq3oS-mX9Fl_YtU3dftB65ZOg3XfDcscux_rlv6Q7Jmy8Xi07WPyenX5Mr2JZg_Xt9PzWaR5nHVRKkyVKZYyxSExUmVaSRFA4CoBgSZRlVFGGo4qqQzkXLEcVJrEvExjDVyMyenGd-3sV4--Kxbh6TacLASPEyEgVGDBhqWd9d6hKdauXpXutwBWDLkWQ67FkGuxzTVoTjaaGhH_-cCkgDwTf_SJd4o |
| CODEN | ISJEAZ |
| Cites_doi | 10.1109/TITS.2023.3249745 10.1109/TEVC.2014.2339823 10.1007/s12652-021-03388-2 10.1016/j.jpdc.2023.02.008 10.1109/JIOT.2022.3231250 10.1109/TCYB.2021.3056176 10.1109/TSC.2021.3064579 10.1109/TITS.2023.3242997 10.1016/j.asoc.2024.112042 10.1109/TVT.2022.3197627 10.1109/JSAC.2023.3322799 10.1109/TCYB.2020.3021138 10.1109/TWC.2020.3024538 10.1109/TEVC.2022.3224600 10.1109/TVT.2017.2762423 10.1109/TNSE.2023.3339875 10.1109/JIOT.2020.3024223 10.1109/TVT.2023.3292815 10.1016/j.adhoc.2022.103044 10.1109/TITS.2023.3275741 10.1007/s12243-021-00892-6 10.1109/TEVC.2019.2894743 10.1109/JIOT.2023.3247013 10.1016/j.eswa.2022.116499 10.1109/TVT.2019.2935450 10.1109/TNET.2019.2892148 10.1109/TVT.2022.3175238 10.1109/JIOT.2022.3153847 10.1109/JIOT.2023.3239944 10.1016/j.asoc.2021.107790 10.1109/TNET.2023.3248088 10.1109/TNNLS.2023.3297624 10.1016/j.comcom.2021.01.022 10.1109/TVT.2020.2995146 10.1007/s11036-020-01627-y 10.1016/j.asoc.2023.110796 10.1109/SMC54092.2024.10831388 10.1016/j.future.2018.07.047 10.1109/TSC.2023.3293048 10.1016/j.swevo.2024.101842 10.1109/ACCESS.2025.3538676 10.1049/iet-com.2019.1300 10.1109/ISIT.2016.7541539 10.1016/j.future.2019.07.019 10.1016/j.comnet.2017.03.024 10.1109/TEVC.2017.2749619 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2025.3581619 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 30019 |
| ExternalDocumentID | 10_1109_JSEN_2025_3581619 11053198 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62066030 funderid: 10.13039/501100001809 – fundername: Nanchang Major Scientific and Technological Research Projects grantid: 2024zdxm010; 2024zdxm002 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c248t-73fd8b070b216f5b8cb5373f12b613ef6bdfbf5f2eb6df192b091b7642a74c123 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001542426600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Thu Nov 20 00:55:33 EST 2025 Sat Nov 29 07:40:16 EST 2025 Wed Aug 27 01:43:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-73fd8b070b216f5b8cb5373f12b613ef6bdfbf5f2eb6df192b091b7642a74c123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9705-806X 0000-0002-2826-6367 0009-0006-4238-3486 0000-0002-3128-9025 |
| PQID | 3246331313 |
| PQPubID | 75733 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_11053198 proquest_journals_3246331313 crossref_primary_10_1109_JSEN_2025_3581619 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 ref52 ref11 ref10 Jiang (ref4) 2022; 46 Zhang (ref12) 2023; 46 ref17 ref16 Jiang (ref41) 2019; 15 ref19 ref18 Zhao (ref28) 2024; 39 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref44 ref43 Chen (ref53) 2024; 41 ref49 ref8 ref7 ref9 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 Lin (ref3) 2024; 48 ref20 ref22 ref21 ref27 ref29 Xiao (ref25) 2023; 42 |
| References_xml | – ident: ref20 doi: 10.1109/TITS.2023.3249745 – ident: ref45 doi: 10.1109/TEVC.2014.2339823 – ident: ref32 doi: 10.1007/s12652-021-03388-2 – ident: ref30 doi: 10.1016/j.jpdc.2023.02.008 – volume: 42 start-page: 1 issue: 1 year: 2023 ident: ref25 article-title: From swarm intelligence optimization to swarm intelligence evolution publication-title: J. Nanchang Inst. Technol. – volume: 15 start-page: 2289 issue: 6 year: 2019 ident: ref41 article-title: An improved multi-objective grey wolf optimizer for dependent task scheduling in edge computing publication-title: Int. J. Innov. Comput. Inf. Control – ident: ref22 doi: 10.1109/JIOT.2022.3231250 – ident: ref48 doi: 10.1109/TCYB.2021.3056176 – volume: 46 start-page: 649 issue: 6 year: 2022 ident: ref4 article-title: The data flow model of vehicle safety based on big data analysis publication-title: J. Jiangxi Normal Univ. Natural Sci. Ed. – ident: ref34 doi: 10.1109/TSC.2021.3064579 – ident: ref5 doi: 10.1109/TITS.2023.3242997 – ident: ref18 doi: 10.1016/j.asoc.2024.112042 – ident: ref21 doi: 10.1109/TVT.2022.3197627 – ident: ref16 doi: 10.1109/JSAC.2023.3322799 – volume: 46 start-page: 72 issue: 5 year: 2023 ident: ref12 article-title: Multi-user-oriented MEC task hierarchical processing offloading mechanism publication-title: J. Beijing Univ. Posts Telecommun. – ident: ref49 doi: 10.1109/TCYB.2020.3021138 – ident: ref11 doi: 10.1109/TWC.2020.3024538 – ident: ref51 doi: 10.1109/TEVC.2022.3224600 – ident: ref33 doi: 10.1109/TVT.2017.2762423 – ident: ref15 doi: 10.1109/TNSE.2023.3339875 – ident: ref23 doi: 10.1109/JIOT.2020.3024223 – volume: 41 start-page: 2404 issue: 8 year: 2024 ident: ref53 article-title: Multi-objective wolf pack algorithm with elite guidance and information interaction publication-title: Appl. Res. Comput. – ident: ref8 doi: 10.1109/TVT.2023.3292815 – ident: ref9 doi: 10.1016/j.adhoc.2022.103044 – ident: ref2 doi: 10.1109/TITS.2023.3275741 – ident: ref42 doi: 10.1007/s12243-021-00892-6 – ident: ref47 doi: 10.1109/TEVC.2019.2894743 – ident: ref10 doi: 10.1109/JIOT.2023.3247013 – ident: ref50 doi: 10.1016/j.eswa.2022.116499 – volume: 39 start-page: 3772 issue: 11 year: 2024 ident: ref28 article-title: Multi-objective wolf pack algorithm based on adaptive grouping strategy and crowding distance publication-title: Control Decis. – ident: ref19 doi: 10.1109/TVT.2019.2935450 – volume: 48 start-page: 371 issue: 4 year: 2024 ident: ref3 article-title: The ensemble federated learning system of privacy protection in industrial Internet of Things based on blockchain publication-title: J. Jiangxi Normal Univ., Natural Sci. Ed. – ident: ref35 doi: 10.1109/TNET.2019.2892148 – ident: ref29 doi: 10.1109/TVT.2022.3175238 – ident: ref31 doi: 10.1109/JIOT.2022.3153847 – ident: ref1 doi: 10.1109/JIOT.2023.3239944 – ident: ref13 doi: 10.1016/j.asoc.2021.107790 – ident: ref36 doi: 10.1109/TNET.2023.3248088 – ident: ref52 doi: 10.1109/TNNLS.2023.3297624 – ident: ref37 doi: 10.1016/j.comcom.2021.01.022 – ident: ref24 doi: 10.1109/TVT.2020.2995146 – ident: ref38 doi: 10.1007/s11036-020-01627-y – ident: ref17 doi: 10.1016/j.asoc.2023.110796 – ident: ref40 doi: 10.1109/SMC54092.2024.10831388 – ident: ref27 doi: 10.1016/j.future.2018.07.047 – ident: ref7 doi: 10.1109/TSC.2023.3293048 – ident: ref26 doi: 10.1016/j.swevo.2024.101842 – ident: ref43 doi: 10.1109/ACCESS.2025.3538676 – ident: ref44 doi: 10.1049/iet-com.2019.1300 – ident: ref6 doi: 10.1109/ISIT.2016.7541539 – ident: ref14 doi: 10.1016/j.future.2019.07.019 – ident: ref39 doi: 10.1016/j.comnet.2017.03.024 – ident: ref46 doi: 10.1109/TEVC.2017.2749619 |
| SSID | ssj0019757 |
| Score | 2.4354799 |
| Snippet | In computing networks, resource allocation disorder and task scheduling imbalance can lead to problems such as long latency, high energy consumption, and high... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 30005 |
| SubjectTerms | Adaptation models Algorithms Base stations Computation Computational modeling Computing network Costs Decomposition decomposition strategy Delays Energy consumption Evolutionary computation Maintenance costs multiobjective wolf pack algorithm (MOWPA) Multiple objective analysis Mutation mutation operator Network latency NOMA Nonorthogonal multiple access nonorthogonal multiple access (NOMA) technology Operators (mathematics) Optimization Polynomials Processor scheduling Resource allocation Resource management Resource utilization Solution space Task scheduling User experience wireless charging Wireless power transmission |
| Title | Decomposed Multiobjective Wolf Pack Algorithm for Resource Allocation and Task Scheduling in Computing Networks |
| URI | https://ieeexplore.ieee.org/document/11053198 https://www.proquest.com/docview/3246331313 |
| Volume | 25 |
| WOSCitedRecordID | wos001542426600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UBPXgW1xf5OBJ6Npn0h7FB-JhEVTcW-k0ye66ayvbKvjvnaRdXRAP0kPboS1lviQzk3kBnHIZCaEi7pA5ETuhykMHtR86KuGIOtNEaZpNiF4v7veT-zZZ3ebCKKVs8Jnqmkvry5dl_m62ys5JVJkhEy_CohC8Sdb6dhkkwpb1pBnsOmEg-q0L03OT87uH6x6Zgn7UNdW-uKmqMyeEbFeVX0uxlS83G__8s01YbxVJdtEgvwULqtiGtbnygtuw0nY4H37uQHmlTPR4WSnJbNJtiS_NWseey4lm91k-ZheTQTkd1cNXRqosm-3sE9lIPIMgywrJHrNqzB4IbGmi2AdsVLCmN4S56TVh5dUuPN1cP17eOm2zBSf3w7h2RKBljLQAoO9xHWGcYxQQ0fORJL7SHKVGHWlfIZea9EIkTQMFmS-ZCHOSf3uwVJSF2gdGrECyWjKMhAwjL4_pnGCG0g8xcRO3A2cz7qdvTU2N1NoibpIaqFIDVdpC1YFdw-6fB1tOd-BoBljaTrsqJe2QB4FHx8Efrx3Cqvl6E8J3BEv19F0dw3L-UY-q6YkdUV9chMqZ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BmDR4GKwU0THADzxN8pZvJ48TW1VgRJXaaX2LcrHddhsJajok_vudHRcqoT2gPCQ5JUp0P9t35_sC-JTIWAgVJ5zMiZRHqoo46iDiKksQdamJ0jWbEHmezmbZ2CWr21wYpZQNPlMn5tL68mVT3ZutslMSVWbIpE_hmWmd5dK1_jgNMmELe9Ic9ngUiplzYvpedvp1cpGTMRjEJ6beV2Lq6myJIdtX5Z_F2EqY4cv__LdXsO9USXbWYX8AT1TdgxdbBQZ7sOd6nC9-v4bmXJn48aZVktm02wZvutWOXTd3mo3L6pad3c2b1XK9-MFImWWbvX0iG5lnMGRlLdm0bG_ZhOCWJo59zpY167pDmJu8Cyxv-3A1vJh-HnHXboFXQZSuuQi1TJGWAAz8RMeYVhiHRPQDJJmvdIJSo451oDCRmjRDJF0DBRkwpYgqkoBvYKduavUWGLECyW4pMRYyiv0qpXOGJcogwszLvAEcb7hf_OyqahTWGvGywkBVGKgKB9UA-obdfx90nB7A0Qawwk28tiD9MAlDn47DR177CHuj6ffL4vJL_u0dPDdf6gL6jmBnvbpX72G3-rVetqsPdnQ9ABQUzeI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposed+Multiobjective+Wolf+Pack+Algorithm+for+Resource+Allocation+and+Task+Scheduling+in+Computing+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Wu%2C+Lijuan&rft.au=Lv%2C+Li&rft.au=Pan%2C+Jeng-Shyang&rft.au=Wang%2C+Hui&rft.date=2025-08-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=15&rft.spage=30005&rft.epage=30019&rft_id=info:doi/10.1109%2FJSEN.2025.3581619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2025_3581619 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |