Boreas: Semantic-Aware Framework for Buffer Overflow Detection to Reduce Carbon Footprint in IoT Devices

The rapid development of the Industrial Internet of Things (IIoT) has raised concerns about device security and energy consumption. The widespread presence of buffer overflow (BOF) vulnerabilities in IoT devices not only threatens devices but also leads to increased carbon emissions. Traditional sta...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE internet of things journal Ročník 12; číslo 17; s. 34753 - 34767
Hlavní autoři: Chen, Xiao, Sha, Letian, Gao, Qingguan, Xiao, Fu, Pan, Jiaye
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4662, 2327-4662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rapid development of the Industrial Internet of Things (IIoT) has raised concerns about device security and energy consumption. The widespread presence of buffer overflow (BOF) vulnerabilities in IoT devices not only threatens devices but also leads to increased carbon emissions. Traditional static analysis methods suffer from low accuracy and high costs. Mainstream binary code similarity detection (BCSD) methods are mainly based on control flow graphs (CFGs) or instructions, which often fail to effectively capture semantic information. In this article, we propose Boreas, a semantic-aware BOF vulnerability detection framework to reduce the carbon footprint in IoT devices. The abstract syntax tree (AST) is employed to achieve precise semantic representation of multiarchitecture code. By considering the often-overlooked implicit data receiving points, Boreas comprehensively locates vulnerable binaries in firmware. By leveraging backward reaching definition analysis, Boreas removes extensive code irrelevant to BOF to simplify ASTs, enables cross-function/file detection and enhances interpretability for BCSD. Additionally, we develop a deep learning model AST-BERT for BCSD, which effectively transforms simplified ASTs into vectors. Based on the distance between target and vulnerable vectors, the accurate BOF detection is achieved. To evaluate the performance of Boreas, we construct a large-scale dataset containing real-world IoT firmware. Experiments show that Boreas outperforms state-of-the-art BCSD methods with the precision of 87.08% and leading static analysis tools with the F1-score of 88.81% in vulnerability detection. Finally, Boreas successfully discovers ten unknown critical vulnerabilities, all of which have been recognized by common vulnerabilities and exposure and covered by media.
AbstractList The rapid development of the Industrial Internet of Things (IIoT) has raised concerns about device security and energy consumption. The widespread presence of buffer overflow (BOF) vulnerabilities in IoT devices not only threatens devices but also leads to increased carbon emissions. Traditional static analysis methods suffer from low accuracy and high costs. Mainstream binary code similarity detection (BCSD) methods are mainly based on control flow graphs (CFGs) or instructions, which often fail to effectively capture semantic information. In this article, we propose Boreas, a semantic-aware BOF vulnerability detection framework to reduce the carbon footprint in IoT devices. The abstract syntax tree (AST) is employed to achieve precise semantic representation of multiarchitecture code. By considering the often-overlooked implicit data receiving points, Boreas comprehensively locates vulnerable binaries in firmware. By leveraging backward reaching definition analysis, Boreas removes extensive code irrelevant to BOF to simplify ASTs, enables cross-function/file detection and enhances interpretability for BCSD. Additionally, we develop a deep learning model AST-BERT for BCSD, which effectively transforms simplified ASTs into vectors. Based on the distance between target and vulnerable vectors, the accurate BOF detection is achieved. To evaluate the performance of Boreas, we construct a large-scale dataset containing real-world IoT firmware. Experiments show that Boreas outperforms state-of-the-art BCSD methods with the precision of 87.08% and leading static analysis tools with the F1-score of 88.81% in vulnerability detection. Finally, Boreas successfully discovers ten unknown critical vulnerabilities, all of which have been recognized by common vulnerabilities and exposure and covered by media.
Author Sha, Letian
Chen, Xiao
Gao, Qingguan
Xiao, Fu
Pan, Jiaye
Author_xml – sequence: 1
  givenname: Xiao
  orcidid: 0009-0008-1311-4994
  surname: Chen
  fullname: Chen, Xiao
  email: 2020070132@njupt.edu.cn
  organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 2
  givenname: Letian
  surname: Sha
  fullname: Sha, Letian
  email: ltsha@njupt.edu.cn
  organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 3
  givenname: Qingguan
  surname: Gao
  fullname: Gao, Qingguan
  email: gaoqg@cyberpeace.cn
  organization: Sales Department, Nanjing Cyberpeace Information Technology Company Ltd., Nanjing, China
– sequence: 4
  givenname: Fu
  orcidid: 0000-0003-1815-2793
  surname: Xiao
  fullname: Xiao, Fu
  email: xiaof@njupt.edu.cn
  organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 5
  givenname: Jiaye
  surname: Pan
  fullname: Pan, Jiaye
  email: panjy@njupt.edu.cn
  organization: School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
BookMark eNpNkE1LAzEQhoMoWGt_gOAh4HlrJsl-xFtbrVYKBa3nsJud4NZ2U7O7Lf57U1rQ0wzD884MzxU5r12NhNwAGwIwdf86WyyHnPF4KOJUQqrOSI8LnkYySfj5v_6SDJpmxRgLsRhU0iOfY-cxbx7oO27yuq1MNNrnHunU5xvcO_9FrfN03FmLni526O3a7ekjtmjaytW0dfQNy84gneS-CIOpc-3WV3VLq5rO3DKwu8pgc00ubL5ucHCqffIxfVpOXqL54nk2Gc0jw2XWRinLAZTiGLOs4LaMeWkllEqUBQiDaZZAlhUlxAWWzHDOAigFKCyVLQprRJ_cHfduvfvusGn1ynW-Die14DKVTMUSAgVHynjXNB6tDj9vcv-jgemDU31wqg9O9clpyNweMxUi_vHAIGEyE7-kYHRS
CODEN IITJAU
Cites_doi 10.1109/SP.2019.00003
10.1109/TSE.2022.3231621
10.14722/ndss.2018.23159
10.1609/aaai.v34i01.5466
10.1109/SP40000.2020.00036
10.48550/ARXIV.1706.03762
10.1109/DSN.2018.00052
10.1109/SP40001.2021.00066
10.18653/v1/D19-1410
10.14722/ndss.2024.24346
10.1145/3597926.3598062
10.1109/JIOT.2024.3506976
10.48550/ARXIV.1907.11692
10.1145/2976749.2978370
10.1109/JIOT.2022.3144405
10.1145/3359789.3359826
10.1145/3338507.3358616
10.1016/j.cose.2020.102032
10.1145/3533767.3534367
10.1007/978-3-031-50051-0_12
10.1109/ICSE43902.2021.00026
10.1145/3238147.3240480
10.1109/JIOT.2024.3389014
10.1145/3564625.3567975
10.5555/3241189.3241275
10.1109/TII.2024.3477563
10.1145/3133956.3134018
10.1109/DSN48987.2021.00036
10.1145/3460120.3484587
10.1145/3604611
10.1109/SP54263.2024.00127
10.1145/3460120.3484543
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2025.3574179
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 34767
ExternalDocumentID 10_1109_JIOT_2025_3574179
11016048
Genre orig-research
GrantInformation_xml – fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province
  grantid: KYCX20_0829
  funderid: 10.13039/501100005145
– fundername: 2024 Frontier Technology Research and Development Program of Jiangsu
  grantid: BF2024071
  funderid: 10.13039/501100020963
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
M43
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c248t-70a11992e508b2fd52df41d93db13ce786188bd15bed0c220e504319ed9fbbfc3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001556064800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Thu Nov 20 16:01:34 EST 2025
Sat Nov 29 07:37:00 EST 2025
Wed Aug 27 07:37:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 17
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-70a11992e508b2fd52df41d93db13ce786188bd15bed0c220e504319ed9fbbfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-1311-4994
0000-0003-1815-2793
PQID 3247409541
PQPubID 2040421
PageCount 15
ParticipantIDs proquest_journals_3247409541
crossref_primary_10_1109_JIOT_2025_3574179
ieee_primary_11016048
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
Devlin (ref38) 2018
ref11
ref10
Gibbs (ref15)
ref17
ref16
ref19
(ref2) 2025
Pindur (ref7) 2024
ref18
(ref47) 2025
ref42
ref41
Wang (ref50)
ref43
(ref44) 2025
ref4
ref3
ref6
ref5
Jiang (ref40)
ref35
ref34
ref36
ref31
ref30
(ref48) 2025
ref33
ref32
ref1
(ref45) 2025
ref39
(ref8) 2025
Zheng (ref21)
ref24
ref23
ref26
ref25
ref20
ref22
Chen (ref13)
ref28
ref27
ref29
Son (ref49) 2024
(ref46) 2025
(ref9) 2025
He (ref37)
References_xml – volume-title: 2024 CVE review—The ’critical, high, medium’ position shifting in cybersecurity.
  year: 2025
  ident: ref47
– ident: ref24
  doi: 10.1109/SP.2019.00003
– volume-title: Top 50 vendors by total number of ’distinct’ vulnerabilities
  year: 2025
  ident: ref8
– volume-title: National vulnerability database.
  year: 2025
  ident: ref48
– start-page: 1099
  volume-title: Proc. 28th USENIX Secur. Symp.
  ident: ref21
  article-title: FIRM-AFL: High-throughput greybox fuzzing of IoT firmware via augmented process emulation
– ident: ref28
  doi: 10.1109/TSE.2022.3231621
– ident: ref17
  doi: 10.14722/ndss.2018.23159
– ident: ref33
  doi: 10.1609/aaai.v34i01.5466
– volume-title: Binwalk.
  year: 2025
  ident: ref44
– start-page: 1759
  volume-title: Proc. 33rd USENIX Secur. Symp.
  ident: ref37
  article-title: Code is not natural language: Unlock the power of semantics-oriented graph representation for binary code similarity detection
– ident: ref12
  doi: 10.1109/SP40000.2020.00036
– ident: ref39
  doi: 10.48550/ARXIV.1706.03762
– volume-title: Two bytes is plenty: FortiGate RCE with CVE-2024-21762.
  year: 2024
  ident: ref7
– volume-title: PyTorch.
  year: 2025
  ident: ref46
– ident: ref11
  doi: 10.1109/DSN.2018.00052
– ident: ref18
  doi: 10.1109/SP40001.2021.00066
– start-page: 303
  volume-title: Proc. 30th USENIX Secur. Symp.
  ident: ref13
  article-title: Sharing more and checking less: Leveraging common input keywords to detect bugs in embedded systems
– ident: ref43
  doi: 10.18653/v1/D19-1410
– ident: ref16
  doi: 10.14722/ndss.2024.24346
– start-page: 54
  volume-title: Proc. 37th Conf. Uncertainty Artif. Intell.
  ident: ref40
  article-title: TreeBERT: A tree-based pre-trained model for programming language
– ident: ref14
  doi: 10.1145/3597926.3598062
– ident: ref5
  doi: 10.1109/JIOT.2024.3506976
– ident: ref42
  doi: 10.48550/ARXIV.1907.11692
– volume-title: IDA pro.
  year: 2025
  ident: ref45
– ident: ref29
  doi: 10.1145/2976749.2978370
– ident: ref4
  doi: 10.1109/JIOT.2022.3144405
– ident: ref20
  doi: 10.1145/3359789.3359826
– ident: ref19
  doi: 10.1145/3338507.3358616
– ident: ref32
  doi: 10.1016/j.cose.2020.102032
– ident: ref26
  doi: 10.1145/3533767.3534367
– ident: ref3
  doi: 10.1007/978-3-031-50051-0_12
– ident: ref41
  doi: 10.1109/ICSE43902.2021.00026
– volume-title: Ongoing Mirai Botnet Campaign Targeting Industrial Routers
  year: 2025
  ident: ref2
– ident: ref31
  doi: 10.1145/3238147.3240480
– ident: ref34
  doi: 10.1109/JIOT.2024.3389014
– volume-title: CVE-2024-42815 (CVSS 9.8): Buffer overflow flaw in TP-link routers opens door to RCE.
  year: 2024
  ident: ref49
– ident: ref27
  doi: 10.1145/3564625.3567975
– ident: ref10
  doi: 10.5555/3241189.3241275
– volume-title: 2024 lebanon electronic device attacks.
  ident: ref1
– ident: ref6
  doi: 10.1109/TII.2024.3477563
– volume-title: Common vulnerabilities and exposures
  year: 2025
  ident: ref9
– ident: ref30
  doi: 10.1145/3133956.3134018
– ident: ref35
  doi: 10.1109/DSN48987.2021.00036
– start-page: 4265
  volume-title: Proc. 33rd USENIX Secur. Symp.
  ident: ref50
  article-title: Improving ML-based binary function similarity detection by assessing and deprioritizing control flow graph features
– ident: ref25
  doi: 10.1145/3460120.3484587
– start-page: 7123
  volume-title: Proc. 33rd USENIX Secur. Symp.
  ident: ref15
  article-title: Operation mango: Scalable discovery of taint-style vulnerabilities in binary firmware services
– ident: ref36
  doi: 10.1145/3604611
– year: 2018
  ident: ref38
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv:1810.04805
– ident: ref23
  doi: 10.1109/SP54263.2024.00127
– ident: ref22
  doi: 10.1145/3460120.3484543
SSID ssj0001105196
Score 2.350714
Snippet The rapid development of the Industrial Internet of Things (IIoT) has raised concerns about device security and energy consumption. The widespread presence of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 34753
SubjectTerms Abstract syntax tree (AST)
Accuracy
binary code similarity detection (BCSD)
Binary codes
buffer overflow (BOF)
Buffer overflows
Buffers
Carbon
Carbon footprint
Computer architecture
Deep learning
Devices
Emissions
encoder representations from transformer (BERT)
Energy consumption
Firmware
Flow graphs
Footprint analysis
Industrial applications
Industrial Internet of Things
Industrial Internet of Things (IIoT)
Internet of Things
Logic
Microprogramming
reaching definition analysis
Semantics
siamese network
Static analysis
Syntactics
Title Boreas: Semantic-Aware Framework for Buffer Overflow Detection to Reduce Carbon Footprint in IoT Devices
URI https://ieeexplore.ieee.org/document/11016048
https://www.proquest.com/docview/3247409541
Volume 12
WOSCitedRecordID wos001556064800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86PHhxfkycTsnBk9CtST_SeNumw4lsolN2K03yigNtZevcv2-StQwRD95KSUp5v3y8j997D6FLCsIHE2QV2lJzfGUcTcCpo4RMg0RfCMq6sl8f2GgUTaf8sUxWt7kwAGDJZ9A2jzaWr3K5NK6yDrH10PxoG20zxtbJWhuHCjHaSFhGLonLO_fD8URbgDRoewEznbZ-3D22mcqvE9heK4P6P39oH-2V-iPurgE_QFuQHaJ61ZsBl1v1CL31ckM3v8bP8KGFN5NOd5XMAQ8qMhbW2iruLU17FDzW6zl9z1f4BgpLzcpwkeMnU9UVcD-ZC_1ikOeFcQIWeJbhYT7RY-0h00Avg9tJ_84puyo4kvpR4TA3IYZzClo1EzRVAVWpTxT3lCCeBBaFJIqEIoEA5UpKXTBFzggHxVMhUukdo1qWZ3CCMJPcVR4NohCUHyk30VCnqRZ9SLlSkjXRVSXv-HNdPCO2RofLYwNObMCJS3CaqGEEvBlYyraJWhVEcbm_FrFWA5m2TAOfnP4x7Qztmq-v6WAtVCvmSzhHO_KrmC3mF3bpfAP_18Or
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gV58i9Wqe_AkRLObTZP1ptXSam1Fq3gL2d0JFjSRmurfd3ebIiIevIWwS8J8-5jHNzMAhwwlRxtklcZS87i2jiYUzNNSZWFqLgTtXNmP3ajXi5-exG2VrO5yYRDRkc_w2D66WL4u1Ni6yk6oq4fG41mYDzlndJKu9e1SoVYfaVSxS-qLk6tOf2BsQBYeB2Fke239uH1cO5VfZ7C7WFor__ylVViuNEhyNoF8DWYwX4eVaXcGUm3WDXg-Lyzh_JTc46sR31B5Z5_pCElrSsciRl8l52PbIIX0zYrOXopPcoGlI2flpCzIna3riqSZjqR50SqK0roBSzLMSacYmLHumNmEh9bloNn2qr4KnmI8Lr3IT6llnaJRziTLdMh0xqkWgZY0UBjFDRrHUtNQovYVYz7aMmdUoBaZlJkKtmAuL3LcBhIp4euAhXEDNY-1nxqws8yIvsGE1iqqwdFU3snbpHxG4swOXyQWnMSCk1Tg1GDTCvh7YCXbGtSnECXVDntPjCIYGds05HTnj2kHsNge3HSTbqd3vQtL9ksTclgd5srRGPdgQX2Uw_fRvltGX1bXxvI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boreas%3A+Semantic-Aware+Framework+for+Buffer+Overflow+Detection+to+Reduce+Carbon+Footprint+in+IoT+Devices&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Chen%2C+Xiao&rft.au=Sha%2C+Letian&rft.au=Gao%2C+Qingguan&rft.au=Xiao%2C+Fu&rft.date=2025-09-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=12&rft.issue=17&rft.spage=34753&rft.epage=34767&rft_id=info:doi/10.1109%2FJIOT.2025.3574179&rft.externalDocID=11016048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon