Distributionally Robust Optimization for STAP With Finite Samples
Drawing on the minimization of worst-case maximum likelihood (ML) estimation, this article develops a robust inverse clutter-plus-noise covariance matrix (CNCM) estimator for space-time adaptive processing against Gaussian clutter background at low sample support without any prior knowledge. Leverag...
Uloženo v:
| Vydáno v: | IEEE transactions on aerospace and electronic systems Ročník 61; číslo 5; s. 11420 - 11436 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9251, 1557-9603 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Drawing on the minimization of worst-case maximum likelihood (ML) estimation, this article develops a robust inverse clutter-plus-noise covariance matrix (CNCM) estimator for space-time adaptive processing against Gaussian clutter background at low sample support without any prior knowledge. Leveraging the nonconvex uncertainty set for CNCMs, we formulate a distributionally robust optimization-based ML estimation problem with the Wasserstein metric. We validate that the resulting nonconvex problem is algorithmically tractable. To achieve this, we reformulate the problem as a finite-dimensional semidefinite program. To pursue lower computational complexity, we establish a closed-form solution framework by imposing the rotation-equivariant property. We theoretically prove the existence and uniqueness of the solution and address the challenge of adaptively choosing the uncertainty set size. Importantly, the solution composes a nonlinear shrinkage estimator that inherently preserves the order of sample eigenvalues without additional operations. Experiments with both simulated and measured clutter data confirm the superiority of the proposed estimator in terms of estimation accuracy and robustness. |
|---|---|
| AbstractList | Drawing on the minimization of worst-case maximum likelihood (ML) estimation, this article develops a robust inverse clutter-plus-noise covariance matrix (CNCM) estimator for space–time adaptive processing against Gaussian clutter background at low sample support without any prior knowledge. Leveraging the nonconvex uncertainty set for CNCMs, we formulate a distributionally robust optimization-based ML estimation problem with the Wasserstein metric. We validate that the resulting nonconvex problem is algorithmically tractable. To achieve this, we reformulate the problem as a finite-dimensional semidefinite program. To pursue lower computational complexity, we establish a closed-form solution framework by imposing the rotation-equivariant property. We theoretically prove the existence and uniqueness of the solution and address the challenge of adaptively choosing the uncertainty set size. Importantly, the solution composes a nonlinear shrinkage estimator that inherently preserves the order of sample eigenvalues without additional operations. Experiments with both simulated and measured clutter data confirm the superiority of the proposed estimator in terms of estimation accuracy and robustness. |
| Author | Li, Jun He, Zishu Wang, Yalong Zhang, Xuejing Wang, Zhihang |
| Author_xml | – sequence: 1 givenname: Yalong orcidid: 0000-0001-8540-6883 surname: Wang fullname: Wang, Yalong email: wang_yal@163.com organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Xuejing orcidid: 0000-0002-0048-4442 surname: Zhang fullname: Zhang, Xuejing email: zhangxuejing@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Zhihang orcidid: 0000-0002-5779-8215 surname: Wang fullname: Wang, Zhihang email: zhihang_w@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Jun surname: Li fullname: Li, Jun email: lijunsc@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Zishu orcidid: 0000-0003-4491-8414 surname: He fullname: He, Zishu email: zshe@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China |
| BookMark | eNpNkEFLwzAUx4NMcJt-AMFDwXNnktek7bHMTYXBxE08hqZNMKNrapIe5qe3ZTt4erw_v__j8ZuhSWtbhdA9wQtCcP60L1a7BcWULYBxDhxfoSlhLI1zjmGCphiTLM4pIzdo5v1hWJMsgSkqno0Pzsg-GNuWTXOKPqzsfYi2XTBH81uOeaSti3b74j36MuE7WpvWBBXtymPXKH-LrnXZeHV3mXP0uV7tl6_xZvvytiw2cUWTLMQcUpCgawxcZpSymmdagiKSKMq5xBqGhEOtpaapzipWQiWTUtYyITLPK5ijx_PdztmfXvkgDrZ3w89eAOUkYZinyUCRM1U5671TWnTOHEt3EgSL0ZQYTYnRlLiYGjoP545RSv3j84zkKYE_QaRmig |
| CODEN | IEARAX |
| Cites_doi | 10.1002/mana.19901470121 10.1109/LGRS.2021.3080291 10.1109/TAES.2024.3408134 10.1109/TSP.2021.3076883 10.1109/TAC.2024.3394348 10.1109/TAES.2024.3355030 10.1109/TSP.2019.2908144 10.1109/TAES.2023.3292069 10.1109/LGRS.2016.2635104 10.1109/LSP.2015.2390148 10.1201/9781315366920 10.1109/TAES.1974.307893 10.1109/TAES.2016.150819 10.1109/TSP.2014.2355779 10.1016/j.sigpro.2016.06.023 10.1109/7.625104 10.1049/iet-spr.2016.0183 10.1109/TAES.2011.5751261 10.1287/educ.2019.0198 10.1137/140990309 10.1109/7.303737 10.1109/7.845251 10.1109/TSP.2011.2172435 10.1109/MAES.2004.1263229 10.1109/tgrs.2022.3144668 10.1049/PBRA025E 10.1109/ACSSC.1992.269236 10.1109/TAES.2022.3192223 10.1109/TSP.2023.3240312 10.1016/S0165-1684(02)00315-8 10.1109/TSP.2007.914347 10.1109/TAES.2023.3255840 10.2139/ssrn.3047302 10.1109/JSEN.2023.3303264 10.1049/rsn2.12176 10.1214/aos/1176350263 10.1109/TSP.2007.896026 10.1109/TSP.2012.2212433 10.1109/LGRS.2014.2357804 10.1109/TCOMM.2002.1010618 10.1109/TAES.2019.2958174 10.1109/TAES.2018.2867699 10.1214/19-AOS1921 10.1109/TAC.2020.3030884 10.1109/TSP.2014.2360826 10.1016/j.sigpro.2024.109585 10.1109/LGRS.2024.3424775 10.1109/TAES.2013.120389 10.1109/JSEN.2023.3245581 10.1109/ICASSP48485.2024.10448351 10.1109/TAES.2003.1188909 10.1109/TSP.2016.2546222 10.1109/TAES.2018.2813898 10.1109/TSP.2022.3176953 10.1016/j.sigpro.2013.10.026 10.1109/JSTARS.2024.3370733 10.1109/7.892662 10.1109/JSEN.2023.3263919 10.1109/TSP.2010.2053029 10.1007/978-1-4757-3403-4_7 10.1214/12-aos989 10.1109/TAES.2003.1188894 10.1287/opre.2020.2076 10.1109/78.757219 10.1109/TAES.2013.120145 10.1109/8.910535 10.1109/TSP.2011.2176335 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| DOI | 10.1109/TAES.2025.3566360 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9603 |
| EndPage | 11436 |
| ExternalDocumentID | 10_1109_TAES_2025_3566360 10981971 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Peng Cheng Shang Xue Education Fund grantid: XY2021602 – fundername: National Natural Science Foundation of China grantid: 62101101; 62031007; 62231006; 62371093 funderid: 10.13039/501100001809 – fundername: Sichuan Science and Technology Program grantid: 2024NSFSC1433 |
| GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| ID | FETCH-LOGICAL-c248t-6373b3fd036b8225d68fb3e1b1e266b0f3d6863dfbf27f8c5a3cb4abdb41b99c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001595008200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9251 |
| IngestDate | Sun Oct 19 00:04:33 EDT 2025 Sat Nov 29 07:10:24 EST 2025 Sat Oct 25 03:08:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-6373b3fd036b8225d68fb3e1b1e266b0f3d6863dfbf27f8c5a3cb4abdb41b99c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8540-6883 0000-0002-0048-4442 0000-0003-4491-8414 0000-0002-5779-8215 |
| PQID | 3261450674 |
| PQPubID | 85477 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3261450674 ieee_primary_10981971 crossref_primary_10_1109_TAES_2025_3566360 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on aerospace and electronic systems |
| PublicationTitleAbbrev | T-AES |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 Hangui (ref51) 2022; 11 ref5 Rahimian (ref52) 2019 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref61 doi: 10.1002/mana.19901470121 – ident: ref13 doi: 10.1109/LGRS.2021.3080291 – ident: ref4 doi: 10.1109/TAES.2024.3408134 – ident: ref41 doi: 10.1109/TSP.2021.3076883 – ident: ref60 doi: 10.1109/TAC.2024.3394348 – ident: ref18 doi: 10.1109/TAES.2024.3355030 – ident: ref37 doi: 10.1109/TSP.2019.2908144 – ident: ref42 doi: 10.1109/TAES.2023.3292069 – ident: ref69 doi: 10.1109/LGRS.2016.2635104 – ident: ref17 doi: 10.1109/LSP.2015.2390148 – ident: ref65 doi: 10.1201/9781315366920 – ident: ref7 doi: 10.1109/TAES.1974.307893 – ident: ref27 doi: 10.1109/TAES.2016.150819 – ident: ref34 doi: 10.1109/TSP.2014.2355779 – ident: ref46 doi: 10.1016/j.sigpro.2016.06.023 – ident: ref15 doi: 10.1109/7.625104 – ident: ref45 doi: 10.1049/iet-spr.2016.0183 – ident: ref30 doi: 10.1109/TAES.2011.5751261 – ident: ref53 doi: 10.1287/educ.2019.0198 – ident: ref64 doi: 10.1137/140990309 – ident: ref10 doi: 10.1109/7.303737 – ident: ref8 doi: 10.1109/7.845251 – ident: ref44 doi: 10.1109/TSP.2011.2172435 – ident: ref1 doi: 10.1109/MAES.2004.1263229 – ident: ref2 doi: 10.1109/tgrs.2022.3144668 – ident: ref67 doi: 10.1049/PBRA025E – ident: ref9 doi: 10.1109/ACSSC.1992.269236 – ident: ref49 doi: 10.1109/TAES.2022.3192223 – ident: ref55 doi: 10.1109/TSP.2023.3240312 – ident: ref58 doi: 10.1016/S0165-1684(02)00315-8 – ident: ref29 doi: 10.1109/TSP.2007.914347 – ident: ref38 doi: 10.1109/TAES.2023.3255840 – ident: ref66 doi: 10.2139/ssrn.3047302 – ident: ref32 doi: 10.1109/JSEN.2023.3303264 – volume: 11 start-page: 676 issue: 4 year: 2022 ident: ref51 article-title: Deep unfolding based space-time adaptive processing method for airborne radar publication-title: J. Radars – ident: ref50 doi: 10.1049/rsn2.12176 – ident: ref59 doi: 10.1214/aos/1176350263 – ident: ref24 doi: 10.1109/TSP.2007.896026 – ident: ref57 doi: 10.1109/TSP.2012.2212433 – ident: ref68 doi: 10.1109/LGRS.2014.2357804 – ident: ref16 doi: 10.1109/TCOMM.2002.1010618 – ident: ref14 doi: 10.1109/TAES.2019.2958174 – ident: ref36 doi: 10.1109/TAES.2018.2867699 – ident: ref40 doi: 10.1214/19-AOS1921 – ident: ref54 doi: 10.1109/TAC.2020.3030884 – ident: ref35 doi: 10.1109/TSP.2014.2360826 – ident: ref48 doi: 10.1016/j.sigpro.2024.109585 – ident: ref6 doi: 10.1109/LGRS.2024.3424775 – ident: ref26 doi: 10.1109/TAES.2013.120389 – ident: ref43 doi: 10.1109/JSEN.2023.3245581 – ident: ref3 doi: 10.1109/ICASSP48485.2024.10448351 – ident: ref23 doi: 10.1109/TAES.2003.1188909 – ident: ref28 doi: 10.1109/TSP.2016.2546222 – ident: ref31 doi: 10.1109/TAES.2018.2813898 – ident: ref63 doi: 10.1109/TSP.2022.3176953 – year: 2019 ident: ref52 article-title: Distributionally robust optimization: A review – ident: ref25 doi: 10.1016/j.sigpro.2013.10.026 – ident: ref5 doi: 10.1109/JSTARS.2024.3370733 – ident: ref22 doi: 10.1109/7.892662 – ident: ref47 doi: 10.1109/JSEN.2023.3263919 – ident: ref33 doi: 10.1109/TSP.2010.2053029 – ident: ref62 doi: 10.1007/978-1-4757-3403-4_7 – ident: ref39 doi: 10.1214/12-aos989 – ident: ref11 doi: 10.1109/TAES.2003.1188894 – ident: ref56 doi: 10.1287/opre.2020.2076 – ident: ref21 doi: 10.1109/78.757219 – ident: ref12 doi: 10.1109/TAES.2013.120145 – ident: ref19 doi: 10.1109/8.910535 – ident: ref20 doi: 10.1109/TSP.2011.2176335 |
| SSID | ssj0014843 |
| Score | 2.4663477 |
| Snippet | Drawing on the minimization of worst-case maximum likelihood (ML) estimation, this article develops a robust inverse clutter-plus-noise covariance matrix... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 11420 |
| SubjectTerms | Closed form solutions Clutter Computational complexity Covariance matrices Covariance matrix Distributionally robust optimization (DRO) Eigenvalues Eigenvalues and eigenfunctions finite samples Gaussian process inverse clutter-plus-noise covariance matrix estimation Maximum likelihood estimation Optimization Robustness Robustness (mathematics) space–time adaptive processing (STAP) Training Uncertainty Vectors |
| Title | Distributionally Robust Optimization for STAP With Finite Samples |
| URI | https://ieeexplore.ieee.org/document/10981971 https://www.proquest.com/docview/3261450674 |
| Volume | 61 |
| WOSCitedRecordID | wos001595008200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014843 issn: 0018-9251 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjB3-J0Sg6ehM62SZfmWHTDg8zhJu5W8pIUB3OTtRP8703STAfiwVspTShf-_K95L33PYSuuAhTGQllj5figCquAxFrCDjXKpSQ8lg7ndkH1u-n4zEf-GJ1VwujtXbJZ7ptL10sX83l0h6VGQvnhsBsxfgmY6wu1voOGdDUp8hFxoINa_sQphlzM8q6Q7MVjJM2Md4LcXKUPyTkuqr8Woodv_T2_vlm-2jXO5I4q7_8AdrQs0O0syYveISyO6uK6xtaien0Ez_NYVlW-NGsE2--ABMbrxUPR9kAv0yqV9ybWCcUD4VVDS6P0XOvO7q9D3zLhEDGNK2CDmEESKEML4Gh_kR10gKIjiDShokhLIi50yGqgCJmRSoTQSRQAQpoBJxLcoIas_lMnyIMwKhkIpRWgJ4lEUChRMKoBmUmj0gTXa8wzN9rZYzc7ShCnlvAcwt47gFvomML2tqDNV5N1FrBnnvjKXPjUUY0MTRKz_4Ydo627ex1Ul0LNarFUl-gLflRTcrFpfsvvgDiGrZ2 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBfXgz4nTqTl4EqpNk67NcejGxDnFTfRW8pIUB3OTrRP8703STAXx4K2Upi1f-_K95L33PYROuQhTSYSy20tRwBTXgYg0BJxrFUpIeaSdzmw36fXS52d-74vVXS2M1toln-lze-hi-Woi53arzFg4NwRmK8aXY8YiUpZrfQUNWOqT5IixYcPbPohpRl0Mmq2-WQxG8Tk1_gt1gpTfNOT6qvyajB3DtDf_-W5baMO7krhZfvtttKTHO2j9h8DgLmpeWV1c39JKjEYf-GEC81mB78xM8epLMLHxW3F_0LzHT8PiBbeH1g3FfWF1g2dV9NhuDS47gW-aEMiIpUXQoAkFmivDTGDIP1aNNAeqCRBtuBjCnJozDapyyKMkT2UsqAQmQAEjwLmke6gynoz1PsIACZOJCKWVoE9iApArESdMgzI3J7SGzhYYZm-lNkbm1hQhzyzgmQU884DXUNWC9uPCEq8aqi9gz7z5zDLjUxIWGyJlB38MO0GrncFtN-te924O0Zp9UpliV0eVYjrXR2hFvhfD2fTY_SOfjoK5vQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributionally+Robust+Optimization+for+STAP+With+Finite+Samples&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Wang%2C+Yalong&rft.au=Zhang%2C+Xuejing&rft.au=Wang%2C+Zhihang&rft.au=Li%2C+Jun&rft.date=2025-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=61&rft.issue=5&rft.spage=11420&rft.epage=11436&rft_id=info:doi/10.1109%2FTAES.2025.3566360&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |