Distributionally Robust Optimization for STAP With Finite Samples

Drawing on the minimization of worst-case maximum likelihood (ML) estimation, this article develops a robust inverse clutter-plus-noise covariance matrix (CNCM) estimator for space-time adaptive processing against Gaussian clutter background at low sample support without any prior knowledge. Leverag...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on aerospace and electronic systems Ročník 61; číslo 5; s. 11420 - 11436
Hlavní autoři: Wang, Yalong, Zhang, Xuejing, Wang, Zhihang, Li, Jun, He, Zishu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9251, 1557-9603
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Drawing on the minimization of worst-case maximum likelihood (ML) estimation, this article develops a robust inverse clutter-plus-noise covariance matrix (CNCM) estimator for space-time adaptive processing against Gaussian clutter background at low sample support without any prior knowledge. Leveraging the nonconvex uncertainty set for CNCMs, we formulate a distributionally robust optimization-based ML estimation problem with the Wasserstein metric. We validate that the resulting nonconvex problem is algorithmically tractable. To achieve this, we reformulate the problem as a finite-dimensional semidefinite program. To pursue lower computational complexity, we establish a closed-form solution framework by imposing the rotation-equivariant property. We theoretically prove the existence and uniqueness of the solution and address the challenge of adaptively choosing the uncertainty set size. Importantly, the solution composes a nonlinear shrinkage estimator that inherently preserves the order of sample eigenvalues without additional operations. Experiments with both simulated and measured clutter data confirm the superiority of the proposed estimator in terms of estimation accuracy and robustness.
AbstractList Drawing on the minimization of worst-case maximum likelihood (ML) estimation, this article develops a robust inverse clutter-plus-noise covariance matrix (CNCM) estimator for space–time adaptive processing against Gaussian clutter background at low sample support without any prior knowledge. Leveraging the nonconvex uncertainty set for CNCMs, we formulate a distributionally robust optimization-based ML estimation problem with the Wasserstein metric. We validate that the resulting nonconvex problem is algorithmically tractable. To achieve this, we reformulate the problem as a finite-dimensional semidefinite program. To pursue lower computational complexity, we establish a closed-form solution framework by imposing the rotation-equivariant property. We theoretically prove the existence and uniqueness of the solution and address the challenge of adaptively choosing the uncertainty set size. Importantly, the solution composes a nonlinear shrinkage estimator that inherently preserves the order of sample eigenvalues without additional operations. Experiments with both simulated and measured clutter data confirm the superiority of the proposed estimator in terms of estimation accuracy and robustness.
Author Li, Jun
He, Zishu
Wang, Yalong
Zhang, Xuejing
Wang, Zhihang
Author_xml – sequence: 1
  givenname: Yalong
  orcidid: 0000-0001-8540-6883
  surname: Wang
  fullname: Wang, Yalong
  email: wang_yal@163.com
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Xuejing
  orcidid: 0000-0002-0048-4442
  surname: Zhang
  fullname: Zhang, Xuejing
  email: zhangxuejing@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Zhihang
  orcidid: 0000-0002-5779-8215
  surname: Wang
  fullname: Wang, Zhihang
  email: zhihang_w@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  email: lijunsc@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Zishu
  orcidid: 0000-0003-4491-8414
  surname: He
  fullname: He, Zishu
  email: zshe@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNpNkEFLwzAUx4NMcJt-AMFDwXNnktek7bHMTYXBxE08hqZNMKNrapIe5qe3ZTt4erw_v__j8ZuhSWtbhdA9wQtCcP60L1a7BcWULYBxDhxfoSlhLI1zjmGCphiTLM4pIzdo5v1hWJMsgSkqno0Pzsg-GNuWTXOKPqzsfYi2XTBH81uOeaSti3b74j36MuE7WpvWBBXtymPXKH-LrnXZeHV3mXP0uV7tl6_xZvvytiw2cUWTLMQcUpCgawxcZpSymmdagiKSKMq5xBqGhEOtpaapzipWQiWTUtYyITLPK5ijx_PdztmfXvkgDrZ3w89eAOUkYZinyUCRM1U5671TWnTOHEt3EgSL0ZQYTYnRlLiYGjoP545RSv3j84zkKYE_QaRmig
CODEN IEARAX
Cites_doi 10.1002/mana.19901470121
10.1109/LGRS.2021.3080291
10.1109/TAES.2024.3408134
10.1109/TSP.2021.3076883
10.1109/TAC.2024.3394348
10.1109/TAES.2024.3355030
10.1109/TSP.2019.2908144
10.1109/TAES.2023.3292069
10.1109/LGRS.2016.2635104
10.1109/LSP.2015.2390148
10.1201/9781315366920
10.1109/TAES.1974.307893
10.1109/TAES.2016.150819
10.1109/TSP.2014.2355779
10.1016/j.sigpro.2016.06.023
10.1109/7.625104
10.1049/iet-spr.2016.0183
10.1109/TAES.2011.5751261
10.1287/educ.2019.0198
10.1137/140990309
10.1109/7.303737
10.1109/7.845251
10.1109/TSP.2011.2172435
10.1109/MAES.2004.1263229
10.1109/tgrs.2022.3144668
10.1049/PBRA025E
10.1109/ACSSC.1992.269236
10.1109/TAES.2022.3192223
10.1109/TSP.2023.3240312
10.1016/S0165-1684(02)00315-8
10.1109/TSP.2007.914347
10.1109/TAES.2023.3255840
10.2139/ssrn.3047302
10.1109/JSEN.2023.3303264
10.1049/rsn2.12176
10.1214/aos/1176350263
10.1109/TSP.2007.896026
10.1109/TSP.2012.2212433
10.1109/LGRS.2014.2357804
10.1109/TCOMM.2002.1010618
10.1109/TAES.2019.2958174
10.1109/TAES.2018.2867699
10.1214/19-AOS1921
10.1109/TAC.2020.3030884
10.1109/TSP.2014.2360826
10.1016/j.sigpro.2024.109585
10.1109/LGRS.2024.3424775
10.1109/TAES.2013.120389
10.1109/JSEN.2023.3245581
10.1109/ICASSP48485.2024.10448351
10.1109/TAES.2003.1188909
10.1109/TSP.2016.2546222
10.1109/TAES.2018.2813898
10.1109/TSP.2022.3176953
10.1016/j.sigpro.2013.10.026
10.1109/JSTARS.2024.3370733
10.1109/7.892662
10.1109/JSEN.2023.3263919
10.1109/TSP.2010.2053029
10.1007/978-1-4757-3403-4_7
10.1214/12-aos989
10.1109/TAES.2003.1188894
10.1287/opre.2020.2076
10.1109/78.757219
10.1109/TAES.2013.120145
10.1109/8.910535
10.1109/TSP.2011.2176335
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2025.3566360
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 11436
ExternalDocumentID 10_1109_TAES_2025_3566360
10981971
Genre orig-research
GrantInformation_xml – fundername: Peng Cheng Shang Xue Education Fund
  grantid: XY2021602
– fundername: National Natural Science Foundation of China
  grantid: 62101101; 62031007; 62231006; 62371093
  funderid: 10.13039/501100001809
– fundername: Sichuan Science and Technology Program
  grantid: 2024NSFSC1433
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c248t-6373b3fd036b8225d68fb3e1b1e266b0f3d6863dfbf27f8c5a3cb4abdb41b99c3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001595008200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9251
IngestDate Sun Oct 19 00:04:33 EDT 2025
Sat Nov 29 07:10:24 EST 2025
Sat Oct 25 03:08:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-6373b3fd036b8225d68fb3e1b1e266b0f3d6863dfbf27f8c5a3cb4abdb41b99c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8540-6883
0000-0002-0048-4442
0000-0003-4491-8414
0000-0002-5779-8215
PQID 3261450674
PQPubID 85477
PageCount 17
ParticipantIDs proquest_journals_3261450674
ieee_primary_10981971
crossref_primary_10_1109_TAES_2025_3566360
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
Hangui (ref51) 2022; 11
ref5
Rahimian (ref52) 2019
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref61
  doi: 10.1002/mana.19901470121
– ident: ref13
  doi: 10.1109/LGRS.2021.3080291
– ident: ref4
  doi: 10.1109/TAES.2024.3408134
– ident: ref41
  doi: 10.1109/TSP.2021.3076883
– ident: ref60
  doi: 10.1109/TAC.2024.3394348
– ident: ref18
  doi: 10.1109/TAES.2024.3355030
– ident: ref37
  doi: 10.1109/TSP.2019.2908144
– ident: ref42
  doi: 10.1109/TAES.2023.3292069
– ident: ref69
  doi: 10.1109/LGRS.2016.2635104
– ident: ref17
  doi: 10.1109/LSP.2015.2390148
– ident: ref65
  doi: 10.1201/9781315366920
– ident: ref7
  doi: 10.1109/TAES.1974.307893
– ident: ref27
  doi: 10.1109/TAES.2016.150819
– ident: ref34
  doi: 10.1109/TSP.2014.2355779
– ident: ref46
  doi: 10.1016/j.sigpro.2016.06.023
– ident: ref15
  doi: 10.1109/7.625104
– ident: ref45
  doi: 10.1049/iet-spr.2016.0183
– ident: ref30
  doi: 10.1109/TAES.2011.5751261
– ident: ref53
  doi: 10.1287/educ.2019.0198
– ident: ref64
  doi: 10.1137/140990309
– ident: ref10
  doi: 10.1109/7.303737
– ident: ref8
  doi: 10.1109/7.845251
– ident: ref44
  doi: 10.1109/TSP.2011.2172435
– ident: ref1
  doi: 10.1109/MAES.2004.1263229
– ident: ref2
  doi: 10.1109/tgrs.2022.3144668
– ident: ref67
  doi: 10.1049/PBRA025E
– ident: ref9
  doi: 10.1109/ACSSC.1992.269236
– ident: ref49
  doi: 10.1109/TAES.2022.3192223
– ident: ref55
  doi: 10.1109/TSP.2023.3240312
– ident: ref58
  doi: 10.1016/S0165-1684(02)00315-8
– ident: ref29
  doi: 10.1109/TSP.2007.914347
– ident: ref38
  doi: 10.1109/TAES.2023.3255840
– ident: ref66
  doi: 10.2139/ssrn.3047302
– ident: ref32
  doi: 10.1109/JSEN.2023.3303264
– volume: 11
  start-page: 676
  issue: 4
  year: 2022
  ident: ref51
  article-title: Deep unfolding based space-time adaptive processing method for airborne radar
  publication-title: J. Radars
– ident: ref50
  doi: 10.1049/rsn2.12176
– ident: ref59
  doi: 10.1214/aos/1176350263
– ident: ref24
  doi: 10.1109/TSP.2007.896026
– ident: ref57
  doi: 10.1109/TSP.2012.2212433
– ident: ref68
  doi: 10.1109/LGRS.2014.2357804
– ident: ref16
  doi: 10.1109/TCOMM.2002.1010618
– ident: ref14
  doi: 10.1109/TAES.2019.2958174
– ident: ref36
  doi: 10.1109/TAES.2018.2867699
– ident: ref40
  doi: 10.1214/19-AOS1921
– ident: ref54
  doi: 10.1109/TAC.2020.3030884
– ident: ref35
  doi: 10.1109/TSP.2014.2360826
– ident: ref48
  doi: 10.1016/j.sigpro.2024.109585
– ident: ref6
  doi: 10.1109/LGRS.2024.3424775
– ident: ref26
  doi: 10.1109/TAES.2013.120389
– ident: ref43
  doi: 10.1109/JSEN.2023.3245581
– ident: ref3
  doi: 10.1109/ICASSP48485.2024.10448351
– ident: ref23
  doi: 10.1109/TAES.2003.1188909
– ident: ref28
  doi: 10.1109/TSP.2016.2546222
– ident: ref31
  doi: 10.1109/TAES.2018.2813898
– ident: ref63
  doi: 10.1109/TSP.2022.3176953
– year: 2019
  ident: ref52
  article-title: Distributionally robust optimization: A review
– ident: ref25
  doi: 10.1016/j.sigpro.2013.10.026
– ident: ref5
  doi: 10.1109/JSTARS.2024.3370733
– ident: ref22
  doi: 10.1109/7.892662
– ident: ref47
  doi: 10.1109/JSEN.2023.3263919
– ident: ref33
  doi: 10.1109/TSP.2010.2053029
– ident: ref62
  doi: 10.1007/978-1-4757-3403-4_7
– ident: ref39
  doi: 10.1214/12-aos989
– ident: ref11
  doi: 10.1109/TAES.2003.1188894
– ident: ref56
  doi: 10.1287/opre.2020.2076
– ident: ref21
  doi: 10.1109/78.757219
– ident: ref12
  doi: 10.1109/TAES.2013.120145
– ident: ref19
  doi: 10.1109/8.910535
– ident: ref20
  doi: 10.1109/TSP.2011.2176335
SSID ssj0014843
Score 2.4663477
Snippet Drawing on the minimization of worst-case maximum likelihood (ML) estimation, this article develops a robust inverse clutter-plus-noise covariance matrix...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 11420
SubjectTerms Closed form solutions
Clutter
Computational complexity
Covariance matrices
Covariance matrix
Distributionally robust optimization (DRO)
Eigenvalues
Eigenvalues and eigenfunctions
finite samples
Gaussian process
inverse clutter-plus-noise covariance matrix estimation
Maximum likelihood estimation
Optimization
Robustness
Robustness (mathematics)
space–time adaptive processing (STAP)
Training
Uncertainty
Vectors
Title Distributionally Robust Optimization for STAP With Finite Samples
URI https://ieeexplore.ieee.org/document/10981971
https://www.proquest.com/docview/3261450674
Volume 61
WOSCitedRecordID wos001595008200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014843
  issn: 0018-9251
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjB3-J0Sg6ehM62SZfmWHTDg8zhJu5W8pIUB3OTtRP8703STAfiwVspTShf-_K95L33PYSuuAhTGQllj5figCquAxFrCDjXKpSQ8lg7ndkH1u-n4zEf-GJ1VwujtXbJZ7ptL10sX83l0h6VGQvnhsBsxfgmY6wu1voOGdDUp8hFxoINa_sQphlzM8q6Q7MVjJM2Md4LcXKUPyTkuqr8Woodv_T2_vlm-2jXO5I4q7_8AdrQs0O0syYveISyO6uK6xtaien0Ez_NYVlW-NGsE2--ABMbrxUPR9kAv0yqV9ybWCcUD4VVDS6P0XOvO7q9D3zLhEDGNK2CDmEESKEML4Gh_kR10gKIjiDShokhLIi50yGqgCJmRSoTQSRQAQpoBJxLcoIas_lMnyIMwKhkIpRWgJ4lEUChRMKoBmUmj0gTXa8wzN9rZYzc7ShCnlvAcwt47gFvomML2tqDNV5N1FrBnnvjKXPjUUY0MTRKz_4Ydo627ex1Ul0LNarFUl-gLflRTcrFpfsvvgDiGrZ2
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBfXgz4nTqTl4EqpNk67NcejGxDnFTfRW8pIUB3OTrRP8703STAXx4K2Upi1f-_K95L33PYROuQhTSYSy20tRwBTXgYg0BJxrFUpIeaSdzmw36fXS52d-74vVXS2M1toln-lze-hi-Woi53arzFg4NwRmK8aXY8YiUpZrfQUNWOqT5IixYcPbPohpRl0Mmq2-WQxG8Tk1_gt1gpTfNOT6qvyajB3DtDf_-W5baMO7krhZfvtttKTHO2j9h8DgLmpeWV1c39JKjEYf-GEC81mB78xM8epLMLHxW3F_0LzHT8PiBbeH1g3FfWF1g2dV9NhuDS47gW-aEMiIpUXQoAkFmivDTGDIP1aNNAeqCRBtuBjCnJozDapyyKMkT2UsqAQmQAEjwLmke6gynoz1PsIACZOJCKWVoE9iApArESdMgzI3J7SGzhYYZm-lNkbm1hQhzyzgmQU884DXUNWC9uPCEq8aqi9gz7z5zDLjUxIWGyJlB38MO0GrncFtN-te924O0Zp9UpliV0eVYjrXR2hFvhfD2fTY_SOfjoK5vQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributionally+Robust+Optimization+for+STAP+With+Finite+Samples&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Wang%2C+Yalong&rft.au=Zhang%2C+Xuejing&rft.au=Wang%2C+Zhihang&rft.au=Li%2C+Jun&rft.date=2025-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=61&rft.issue=5&rft.spage=11420&rft.epage=11436&rft_id=info:doi/10.1109%2FTAES.2025.3566360&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon