A Hybrid Machine Learning Algorithm for Predicting Resting Motor Thresholds in Patients With Schizophrenia and Healthy Individuals Undergoing Transcranial Magnetic Stimulation

Due to the complex and varied neuroanatomy and functional states of brains, it is difficult to predict the resting motor threshold (RMT) needed as a dose parameter for treatment with transcranial magnetic stimulation (TMS). Our prior publications have shown that anatomical parameters, such as coil-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics Jg. 61; H. 9; S. 1 - 6
Hauptverfasser: Saxena, Yash R., Lewis, Connor J., Sabbir Alam, Muhammad, Atulasimha, Jayasimha, Mehta, Urvakhsh M., Hadimani, Ravi L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9464, 1941-0069
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Due to the complex and varied neuroanatomy and functional states of brains, it is difficult to predict the resting motor threshold (RMT) needed as a dose parameter for treatment with transcranial magnetic stimulation (TMS). Our prior publications have shown that anatomical parameters, such as coil-to-cortex distance (CCD), gray matter volume (GMV), depolarized GMV (DGMV), and maximum electric field (E-field) value, neuroanatomy, and connectivity derived from functional magnetic resonance imaging (fMRI) are all associated with RMT. For 54 subjects with schizophrenia and 43 healthy subjects, fMRI blood oxygen-level detection (BOLD) in 25 brain regions was turned into time series and fed into a long short-term memory (LSTM) model. The outputs of the LSTM are concatenated with the schizophrenia status, CCD, GMV, percentage of gray matter voxels depolarized over 50 V/m (DGMV50) and 100 V/M (DGMV100), and maximum E-field value and then fed into an artificial neural network (ANN) that predicted the RMT. The training and testing mean absolute errors (MAEs) are 0.1176 and 0.0845, respectively, corresponding to the errors of 3.6456% and 2.6195% of the maximum stimulator output (%MSO) in the predicted RMT values. Our novel hybrid LSTM-ANN neural network can be used as a pretreatment procedure to reduce the number of trials needed to measure RMT for patients and increase patient comfort and confidence in the procedure administered.
AbstractList Due to the complex and varied neuroanatomy and functional states of brains, it is difficult to predict the resting motor threshold (RMT) needed as a dose parameter for treatment with transcranial magnetic stimulation (TMS). Our prior publications have shown that anatomical parameters, such as coil-to-cortex distance (CCD), gray matter volume (GMV), depolarized GMV (DGMV), and maximum electric field (E-field) value, neuroanatomy, and connectivity derived from functional magnetic resonance imaging (fMRI) are all associated with RMT. For 54 subjects with schizophrenia and 43 healthy subjects, fMRI blood oxygen-level detection (BOLD) in 25 brain regions was turned into time series and fed into a long short-term memory (LSTM) model. The outputs of the LSTM are concatenated with the schizophrenia status, CCD, GMV, percentage of gray matter voxels depolarized over 50 V/m (DGMV50) and 100 V/M (DGMV100), and maximum E-field value and then fed into an artificial neural network (ANN) that predicted the RMT. The training and testing mean absolute errors (MAEs) are 0.1176 and 0.0845, respectively, corresponding to the errors of 3.6456% and 2.6195% of the maximum stimulator output (%MSO) in the predicted RMT values. Our novel hybrid LSTM-ANN neural network can be used as a pretreatment procedure to reduce the number of trials needed to measure RMT for patients and increase patient comfort and confidence in the procedure administered.
Author Saxena, Yash R.
Mehta, Urvakhsh M.
Atulasimha, Jayasimha
Sabbir Alam, Muhammad
Lewis, Connor J.
Hadimani, Ravi L.
Author_xml – sequence: 1
  givenname: Yash R.
  surname: Saxena
  fullname: Saxena, Yash R.
  organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
– sequence: 2
  givenname: Connor J.
  orcidid: 0000-0002-8204-5848
  surname: Lewis
  fullname: Lewis, Connor J.
  organization: Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0001-7520-5308
  surname: Sabbir Alam
  fullname: Sabbir Alam, Muhammad
  organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
– sequence: 4
  givenname: Jayasimha
  orcidid: 0000-0002-5681-0884
  surname: Atulasimha
  fullname: Atulasimha, Jayasimha
  organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
– sequence: 5
  givenname: Urvakhsh M.
  surname: Mehta
  fullname: Mehta, Urvakhsh M.
  organization: National Institute of Mental Health and Neurosciences, Bengaluru, India
– sequence: 6
  givenname: Ravi L.
  orcidid: 0000-0001-5939-556X
  surname: Hadimani
  fullname: Hadimani, Ravi L.
  email: rhadimani@vcu.edu
  organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
BookMark eNpNUc1O4zAQtlYgUWAfAGkPljin69_EOVYIKFIrEBTtMXLiaWOU2sV2kbovta-4DuXAZUbj78cz-s7RifMOELqiZEopqX-vlrP7KSNMTrmUgjL2A01oLWhBSFmfoAkhVBW1KMUZOo_xLY9CUjJB_2Z4fmiDNXipu946wAvQwVm3wbNh44NN_RavfcBPAYzt0gg8Q_zsS58ysOoDxN4PJmLr8JNOFlyK-E9W4pds-dfvMsNZjbUzeA56SP0BPzhjP6zZ6yHiV2cgbPxouQraxS4Xq4e80cZBsh1-SXa7H7Kzd5fodJ018POrX6DXu9vVzbxYPN4_3MwWRceESoXkgpSiXIMSsq14yyojaUs1JaSqJQfFOMlPpM0wVbKTRigqjKkVVVzxil-g66PvLvj3fT64efP74PKXDWeiElyysswsemR1wccYYN3sgt3qcGgoacZcmjGXZsyl-cola34dNRYAvvFrXtWM8v86qo1a
CODEN IEMGAQ
Cites_doi 10.1001/archgenpsychiatry.2010.46
10.1063/1.4913937
10.1093/schbul/sbt155
10.1016/b978-0-12-805353-9.00137-6
10.1016/j.brs.2011.10.001
10.1109/tmag.2022.3148214
10.1016/j.biopsych.2014.05.020
10.1063/1.4974981
10.1016/j.brs.2021.11.010
10.1016/j.biopsych.2024.01.027
10.1109/tmag.2014.2326819
10.1063/9.0000697
10.1109/tmag.2018.2846521
10.1186/1743-0003-11-40
10.1109/tmag.2023.3282784
10.1109/tmag.2017.2711962
10.1002/hbm.25968
10.1371/journal.pone.0186007
10.1109/lmag.2019.2903993
10.1109/tmag.2014.2316479
10.1063/9.0000567
10.1016/j.cortex.2008.10.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
DOI 10.1109/TMAG.2025.3554122
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0069
EndPage 6
ExternalDocumentID 10_1109_TMAG_2025_3554122
10937921
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: 2349694
– fundername: Department of Biotechnology–Wellcome Trust India Alliance Early Career Fellowship
  grantid: IA/E/12/1/500755 [to UMM]
– fundername: Virginia Commonwealth University (VCU) Breakthrough
  grantid: AP00001868
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
XXG
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c248t-5340646fe845b73b27d51b1a1007953e82307d50b45b185c5d4814dd981838373
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001561524400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9464
IngestDate Thu Nov 27 15:42:37 EST 2025
Sat Nov 29 07:36:47 EST 2025
Wed Sep 03 07:09:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-5340646fe845b73b27d51b1a1007953e82307d50b45b185c5d4814dd981838373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5939-556X
0000-0002-5681-0884
0000-0001-7520-5308
0000-0002-8204-5848
PQID 3247435266
PQPubID 85461
PageCount 6
ParticipantIDs proquest_journals_3247435266
ieee_primary_10937921
crossref_primary_10_1109_TMAG_2025_3554122
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on magnetics
PublicationTitleAbbrev TMAG
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Rothwell (ref16) 1999; 52
ref24
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
(ref3) 2024
ref2
ref1
ref17
ref19
ref18
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref2
  doi: 10.1001/archgenpsychiatry.2010.46
– ident: ref13
  doi: 10.1063/1.4913937
– ident: ref24
  doi: 10.1093/schbul/sbt155
– volume-title: FDA Permits Marketing of Transcranial Magnetic Stimulation for Treatment of Obsessive Compulsive Disorder
  year: 2024
  ident: ref3
– ident: ref6
  doi: 10.1016/b978-0-12-805353-9.00137-6
– ident: ref7
  doi: 10.1016/j.brs.2011.10.001
– volume: 52
  start-page: 97
  year: 1999
  ident: ref16
  article-title: Magnetic stimulation: Motor evoked potentials. The international federation of clinical neurophysiology
  publication-title: Electroencephalogr. Clinical Neurophysiol.
– ident: ref22
  doi: 10.1109/tmag.2022.3148214
– ident: ref4
  doi: 10.1016/j.biopsych.2014.05.020
– ident: ref14
  doi: 10.1063/1.4974981
– ident: ref1
  doi: 10.1016/j.brs.2021.11.010
– ident: ref23
  doi: 10.1016/j.biopsych.2024.01.027
– ident: ref8
  doi: 10.1109/tmag.2014.2326819
– ident: ref21
  doi: 10.1063/9.0000697
– ident: ref11
  doi: 10.1109/tmag.2018.2846521
– ident: ref18
  doi: 10.1186/1743-0003-11-40
– ident: ref9
  doi: 10.1109/tmag.2023.3282784
– ident: ref15
  doi: 10.1109/tmag.2017.2711962
– ident: ref19
  doi: 10.1002/hbm.25968
– ident: ref17
  doi: 10.1371/journal.pone.0186007
– ident: ref10
  doi: 10.1109/lmag.2019.2903993
– ident: ref12
  doi: 10.1109/tmag.2014.2316479
– ident: ref20
  doi: 10.1063/9.0000567
– ident: ref5
  doi: 10.1016/j.cortex.2008.10.002
SSID ssj0014510
Score 2.4615042
Snippet Due to the complex and varied neuroanatomy and functional states of brains, it is difficult to predict the resting motor threshold (RMT) needed as a dose...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural network (ANN)
Artificial neural networks
Biological neural networks
Brain modeling
Charge coupled devices
Depolarization
Electric fields
Errors
Functional magnetic resonance imaging
functional magnetic resonance imaging (fMRI)
Grey matter
hybrid neural network
Long short term memory
long short-term memory (LSTM)
Machine learning
Magnetic resonance imaging
Motors
Neural networks
neuromodulation
Parameters
Schizophrenia
Stimulators
Testing
Training
Transcranial magnetic stimulation
transcranial magnetic stimulation (TMS)
Title A Hybrid Machine Learning Algorithm for Predicting Resting Motor Thresholds in Patients With Schizophrenia and Healthy Individuals Undergoing Transcranial Magnetic Stimulation
URI https://ieeexplore.ieee.org/document/10937921
https://www.proquest.com/docview/3247435266
Volume 61
WOSCitedRecordID wos001561524400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014510
  issn: 0018-9464
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUKKhIcaPmoupRWc-CEFIgTG9vHVVWgUhetyiK4RYntLCuVpNoEJH4Vf5EZJ6BFiAOXJEpiy9KzM8-ZeTOM7aXKKO5yH0mLy00gIY4Kk-aRLp3LVYE2oghVS_6oszN9dWXGvVg9aGG89yH4zB_QZfDlu9re0q-yQ0p9pAzJxpeUOurEWs8uAyF5pzfhmurGi96FiW0OJ6PhCW4FE3lA1pUnyQsjFKqqvPoUB_ty_OmdI_vM1nsiCcMO-Q32wVebbG0hveAmWwnhnbbZYg9DOL0nbRaMQvCkhz6v6hSG_6b1fNZe3wDSVxjPyXFDodDwl_Jv4HlU47YcJoh5Q66qBmYVjLtsrA1cYks4Xwzcg7xy0Imb7uH3s9yrgVBhaVpTl8FAWjzg5McRTStSUsJ5O7vpi4lts4vjX5Ofp1FfqiGyidBtJFMkBuKo9FrIQqVFopzkBc8pBsPI1JM7D2_FBT5GhmClE5oL5wzyBdojp1_YclVX_iuDWFheaso7p5HdpWWRliaOLZdeO26sH7D9J-yy_11GjizsZGKTEdAZAZ31QA_YNoG18GKH04DtPsGd9Yu2yZBbIp-SSFl23mj2ja1S712M2S5bbue3_jv7aO_aWTP_EebjI3EA3yk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELVQW0Q5UChFXWhhDpyQ0saJ3djHFaJsxe5qRRfRW5TYznYlmlSbFKlf1V9kxnGrRYhDL0mUxImlZ2eeM_NmGPuYZjrjtnCRNDjdBBLiqNRpEanK2iIr0UaUvmrJOJtO1cWFngWxutfCOOd88Jk7okPvy7eNuaFfZceU-ijTJBvfpNJZQa714DQQkveKE66ocrwITkxsdTyfDL_iYjCRR2RfeZL8ZYZ8XZV_PsbewpzuPLJvL9mLQCVh2GP_ij1x9S57vpZgcJc99QGepn3N7oYwuiV1Fkx8-KSDkFl1AcNfi2a17C6vAAkszFbkuqFgaPhOGThwP2lwYQ5zRL0lZ1ULyxpmfT7WFn5iSzhfD92DorbQy5tu4exB8NWCr7G0aOiR3kQa3ODwxx4tatJSwnm3vArlxPbYj9Mv88-jKBRriEwiVBfJFKmBOKmcErLM0jLJrOQlLygKQ8vUkUMPT8UlXkaOYKQVigtrNTIGWiWnb9hG3dRun0EsDK8UZZ5TyO_SqkwrHceGS6cs18YN2Kd77PLrPidH7tcysc4J6JyAzgPQA7ZHYK3d2OM0YAf3cOdh2rY5sktkVBJJy9v_NPvAno3mk3E-Ppt-e8e26U19xNkB2-hWN-6QbZnf3bJdvfdj8w81leJy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Machine+Learning+Algorithm+for+Predicting+Resting+Motor+Thresholds+in+Patients+With+Schizophrenia+and+Healthy+Individuals+Undergoing+Transcranial+Magnetic+Stimulation&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Saxena%2C+Yash+R.&rft.au=Lewis%2C+Connor+J.&rft.au=Sabbir+Alam%2C+Muhammad&rft.au=Atulasimha%2C+Jayasimha&rft.date=2025-09-01&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=61&rft.issue=9&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FTMAG.2025.3554122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMAG_2025_3554122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon