A Hybrid Machine Learning Algorithm for Predicting Resting Motor Thresholds in Patients With Schizophrenia and Healthy Individuals Undergoing Transcranial Magnetic Stimulation
Due to the complex and varied neuroanatomy and functional states of brains, it is difficult to predict the resting motor threshold (RMT) needed as a dose parameter for treatment with transcranial magnetic stimulation (TMS). Our prior publications have shown that anatomical parameters, such as coil-t...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on magnetics Jg. 61; H. 9; S. 1 - 6 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9464, 1941-0069 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Due to the complex and varied neuroanatomy and functional states of brains, it is difficult to predict the resting motor threshold (RMT) needed as a dose parameter for treatment with transcranial magnetic stimulation (TMS). Our prior publications have shown that anatomical parameters, such as coil-to-cortex distance (CCD), gray matter volume (GMV), depolarized GMV (DGMV), and maximum electric field (E-field) value, neuroanatomy, and connectivity derived from functional magnetic resonance imaging (fMRI) are all associated with RMT. For 54 subjects with schizophrenia and 43 healthy subjects, fMRI blood oxygen-level detection (BOLD) in 25 brain regions was turned into time series and fed into a long short-term memory (LSTM) model. The outputs of the LSTM are concatenated with the schizophrenia status, CCD, GMV, percentage of gray matter voxels depolarized over 50 V/m (DGMV50) and 100 V/M (DGMV100), and maximum E-field value and then fed into an artificial neural network (ANN) that predicted the RMT. The training and testing mean absolute errors (MAEs) are 0.1176 and 0.0845, respectively, corresponding to the errors of 3.6456% and 2.6195% of the maximum stimulator output (%MSO) in the predicted RMT values. Our novel hybrid LSTM-ANN neural network can be used as a pretreatment procedure to reduce the number of trials needed to measure RMT for patients and increase patient comfort and confidence in the procedure administered. |
|---|---|
| AbstractList | Due to the complex and varied neuroanatomy and functional states of brains, it is difficult to predict the resting motor threshold (RMT) needed as a dose parameter for treatment with transcranial magnetic stimulation (TMS). Our prior publications have shown that anatomical parameters, such as coil-to-cortex distance (CCD), gray matter volume (GMV), depolarized GMV (DGMV), and maximum electric field (E-field) value, neuroanatomy, and connectivity derived from functional magnetic resonance imaging (fMRI) are all associated with RMT. For 54 subjects with schizophrenia and 43 healthy subjects, fMRI blood oxygen-level detection (BOLD) in 25 brain regions was turned into time series and fed into a long short-term memory (LSTM) model. The outputs of the LSTM are concatenated with the schizophrenia status, CCD, GMV, percentage of gray matter voxels depolarized over 50 V/m (DGMV50) and 100 V/M (DGMV100), and maximum E-field value and then fed into an artificial neural network (ANN) that predicted the RMT. The training and testing mean absolute errors (MAEs) are 0.1176 and 0.0845, respectively, corresponding to the errors of 3.6456% and 2.6195% of the maximum stimulator output (%MSO) in the predicted RMT values. Our novel hybrid LSTM-ANN neural network can be used as a pretreatment procedure to reduce the number of trials needed to measure RMT for patients and increase patient comfort and confidence in the procedure administered. |
| Author | Saxena, Yash R. Mehta, Urvakhsh M. Atulasimha, Jayasimha Sabbir Alam, Muhammad Lewis, Connor J. Hadimani, Ravi L. |
| Author_xml | – sequence: 1 givenname: Yash R. surname: Saxena fullname: Saxena, Yash R. organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA – sequence: 2 givenname: Connor J. orcidid: 0000-0002-8204-5848 surname: Lewis fullname: Lewis, Connor J. organization: Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA – sequence: 3 givenname: Muhammad orcidid: 0000-0001-7520-5308 surname: Sabbir Alam fullname: Sabbir Alam, Muhammad organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA – sequence: 4 givenname: Jayasimha orcidid: 0000-0002-5681-0884 surname: Atulasimha fullname: Atulasimha, Jayasimha organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA – sequence: 5 givenname: Urvakhsh M. surname: Mehta fullname: Mehta, Urvakhsh M. organization: National Institute of Mental Health and Neurosciences, Bengaluru, India – sequence: 6 givenname: Ravi L. orcidid: 0000-0001-5939-556X surname: Hadimani fullname: Hadimani, Ravi L. email: rhadimani@vcu.edu organization: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA |
| BookMark | eNpNUc1O4zAQtlYgUWAfAGkPljin69_EOVYIKFIrEBTtMXLiaWOU2sV2kbovta-4DuXAZUbj78cz-s7RifMOELqiZEopqX-vlrP7KSNMTrmUgjL2A01oLWhBSFmfoAkhVBW1KMUZOo_xLY9CUjJB_2Z4fmiDNXipu946wAvQwVm3wbNh44NN_RavfcBPAYzt0gg8Q_zsS58ysOoDxN4PJmLr8JNOFlyK-E9W4pds-dfvMsNZjbUzeA56SP0BPzhjP6zZ6yHiV2cgbPxouQraxS4Xq4e80cZBsh1-SXa7H7Kzd5fodJ018POrX6DXu9vVzbxYPN4_3MwWRceESoXkgpSiXIMSsq14yyojaUs1JaSqJQfFOMlPpM0wVbKTRigqjKkVVVzxil-g66PvLvj3fT64efP74PKXDWeiElyysswsemR1wccYYN3sgt3qcGgoacZcmjGXZsyl-cola34dNRYAvvFrXtWM8v86qo1a |
| CODEN | IEMGAQ |
| Cites_doi | 10.1001/archgenpsychiatry.2010.46 10.1063/1.4913937 10.1093/schbul/sbt155 10.1016/b978-0-12-805353-9.00137-6 10.1016/j.brs.2011.10.001 10.1109/tmag.2022.3148214 10.1016/j.biopsych.2014.05.020 10.1063/1.4974981 10.1016/j.brs.2021.11.010 10.1016/j.biopsych.2024.01.027 10.1109/tmag.2014.2326819 10.1063/9.0000697 10.1109/tmag.2018.2846521 10.1186/1743-0003-11-40 10.1109/tmag.2023.3282784 10.1109/tmag.2017.2711962 10.1002/hbm.25968 10.1371/journal.pone.0186007 10.1109/lmag.2019.2903993 10.1109/tmag.2014.2316479 10.1063/9.0000567 10.1016/j.cortex.2008.10.002 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1109/TMAG.2025.3554122 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1941-0069 |
| EndPage | 6 |
| ExternalDocumentID | 10_1109_TMAG_2025_3554122 10937921 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: 2349694 – fundername: Department of Biotechnology–Wellcome Trust India Alliance Early Career Fellowship grantid: IA/E/12/1/500755 [to UMM] – fundername: Virginia Commonwealth University (VCU) Breakthrough grantid: AP00001868 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK XXG AAYXX CITATION 7SP 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c248t-5340646fe845b73b27d51b1a1007953e82307d50b45b185c5d4814dd981838373 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001561524400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9464 |
| IngestDate | Thu Nov 27 15:42:37 EST 2025 Sat Nov 29 07:36:47 EST 2025 Wed Sep 03 07:09:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-5340646fe845b73b27d51b1a1007953e82307d50b45b185c5d4814dd981838373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5939-556X 0000-0002-5681-0884 0000-0001-7520-5308 0000-0002-8204-5848 |
| PQID | 3247435266 |
| PQPubID | 85461 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_3247435266 ieee_primary_10937921 crossref_primary_10_1109_TMAG_2025_3554122 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on magnetics |
| PublicationTitleAbbrev | TMAG |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Rothwell (ref16) 1999; 52 ref24 ref12 ref23 ref15 ref14 ref20 ref11 ref22 ref10 ref21 (ref3) 2024 ref2 ref1 ref17 ref19 ref18 ref8 ref7 ref9 ref4 ref6 ref5 |
| References_xml | – ident: ref2 doi: 10.1001/archgenpsychiatry.2010.46 – ident: ref13 doi: 10.1063/1.4913937 – ident: ref24 doi: 10.1093/schbul/sbt155 – volume-title: FDA Permits Marketing of Transcranial Magnetic Stimulation for Treatment of Obsessive Compulsive Disorder year: 2024 ident: ref3 – ident: ref6 doi: 10.1016/b978-0-12-805353-9.00137-6 – ident: ref7 doi: 10.1016/j.brs.2011.10.001 – volume: 52 start-page: 97 year: 1999 ident: ref16 article-title: Magnetic stimulation: Motor evoked potentials. The international federation of clinical neurophysiology publication-title: Electroencephalogr. Clinical Neurophysiol. – ident: ref22 doi: 10.1109/tmag.2022.3148214 – ident: ref4 doi: 10.1016/j.biopsych.2014.05.020 – ident: ref14 doi: 10.1063/1.4974981 – ident: ref1 doi: 10.1016/j.brs.2021.11.010 – ident: ref23 doi: 10.1016/j.biopsych.2024.01.027 – ident: ref8 doi: 10.1109/tmag.2014.2326819 – ident: ref21 doi: 10.1063/9.0000697 – ident: ref11 doi: 10.1109/tmag.2018.2846521 – ident: ref18 doi: 10.1186/1743-0003-11-40 – ident: ref9 doi: 10.1109/tmag.2023.3282784 – ident: ref15 doi: 10.1109/tmag.2017.2711962 – ident: ref19 doi: 10.1002/hbm.25968 – ident: ref17 doi: 10.1371/journal.pone.0186007 – ident: ref10 doi: 10.1109/lmag.2019.2903993 – ident: ref12 doi: 10.1109/tmag.2014.2316479 – ident: ref20 doi: 10.1063/9.0000567 – ident: ref5 doi: 10.1016/j.cortex.2008.10.002 |
| SSID | ssj0014510 |
| Score | 2.4615042 |
| Snippet | Due to the complex and varied neuroanatomy and functional states of brains, it is difficult to predict the resting motor threshold (RMT) needed as a dose... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural network (ANN) Artificial neural networks Biological neural networks Brain modeling Charge coupled devices Depolarization Electric fields Errors Functional magnetic resonance imaging functional magnetic resonance imaging (fMRI) Grey matter hybrid neural network Long short term memory long short-term memory (LSTM) Machine learning Magnetic resonance imaging Motors Neural networks neuromodulation Parameters Schizophrenia Stimulators Testing Training Transcranial magnetic stimulation transcranial magnetic stimulation (TMS) |
| Title | A Hybrid Machine Learning Algorithm for Predicting Resting Motor Thresholds in Patients With Schizophrenia and Healthy Individuals Undergoing Transcranial Magnetic Stimulation |
| URI | https://ieeexplore.ieee.org/document/10937921 https://www.proquest.com/docview/3247435266 |
| Volume | 61 |
| WOSCitedRecordID | wos001561524400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014510 issn: 0018-9464 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUKKhIcaPmoupRWc-CEFIgTG9vHVVWgUhetyiK4RYntLCuVpNoEJH4Vf5EZJ6BFiAOXJEpiy9KzM8-ZeTOM7aXKKO5yH0mLy00gIY4Kk-aRLp3LVYE2oghVS_6oszN9dWXGvVg9aGG89yH4zB_QZfDlu9re0q-yQ0p9pAzJxpeUOurEWs8uAyF5pzfhmurGi96FiW0OJ6PhCW4FE3lA1pUnyQsjFKqqvPoUB_ty_OmdI_vM1nsiCcMO-Q32wVebbG0hveAmWwnhnbbZYg9DOL0nbRaMQvCkhz6v6hSG_6b1fNZe3wDSVxjPyXFDodDwl_Jv4HlU47YcJoh5Q66qBmYVjLtsrA1cYks4Xwzcg7xy0Imb7uH3s9yrgVBhaVpTl8FAWjzg5McRTStSUsJ5O7vpi4lts4vjX5Ofp1FfqiGyidBtJFMkBuKo9FrIQqVFopzkBc8pBsPI1JM7D2_FBT5GhmClE5oL5wzyBdojp1_YclVX_iuDWFheaso7p5HdpWWRliaOLZdeO26sH7D9J-yy_11GjizsZGKTEdAZAZ31QA_YNoG18GKH04DtPsGd9Yu2yZBbIp-SSFl23mj2ja1S712M2S5bbue3_jv7aO_aWTP_EebjI3EA3yk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELVQW0Q5UChFXWhhDpyQ0saJ3djHFaJsxe5qRRfRW5TYznYlmlSbFKlf1V9kxnGrRYhDL0mUxImlZ2eeM_NmGPuYZjrjtnCRNDjdBBLiqNRpEanK2iIr0UaUvmrJOJtO1cWFngWxutfCOOd88Jk7okPvy7eNuaFfZceU-ijTJBvfpNJZQa714DQQkveKE66ocrwITkxsdTyfDL_iYjCRR2RfeZL8ZYZ8XZV_PsbewpzuPLJvL9mLQCVh2GP_ij1x9S57vpZgcJc99QGepn3N7oYwuiV1Fkx8-KSDkFl1AcNfi2a17C6vAAkszFbkuqFgaPhOGThwP2lwYQ5zRL0lZ1ULyxpmfT7WFn5iSzhfD92DorbQy5tu4exB8NWCr7G0aOiR3kQa3ODwxx4tatJSwnm3vArlxPbYj9Mv88-jKBRriEwiVBfJFKmBOKmcErLM0jLJrOQlLygKQ8vUkUMPT8UlXkaOYKQVigtrNTIGWiWnb9hG3dRun0EsDK8UZZ5TyO_SqkwrHceGS6cs18YN2Kd77PLrPidH7tcysc4J6JyAzgPQA7ZHYK3d2OM0YAf3cOdh2rY5sktkVBJJy9v_NPvAno3mk3E-Ppt-e8e26U19xNkB2-hWN-6QbZnf3bJdvfdj8w81leJy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Machine+Learning+Algorithm+for+Predicting+Resting+Motor+Thresholds+in+Patients+With+Schizophrenia+and+Healthy+Individuals+Undergoing+Transcranial+Magnetic+Stimulation&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Saxena%2C+Yash+R.&rft.au=Lewis%2C+Connor+J.&rft.au=Sabbir+Alam%2C+Muhammad&rft.au=Atulasimha%2C+Jayasimha&rft.date=2025-09-01&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=61&rft.issue=9&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FTMAG.2025.3554122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMAG_2025_3554122 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon |