Novel Semi-Supervised Seasonal-Trend VTN for Multimode Process IoT Soft Sensing
The rapid development of soft sensors has significantly enhanced industrial operations by promoting sustainability, safety, and efficiency. However, modern process industries involve highly dynamic systems with multimode and nonlinear data, posing challenges for conventional soft sensor models that...
Gespeichert in:
| Veröffentlicht in: | IEEE internet of things journal Jg. 12; H. 22; S. 47658 - 47666 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
15.11.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2327-4662, 2327-4662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The rapid development of soft sensors has significantly enhanced industrial operations by promoting sustainability, safety, and efficiency. However, modern process industries involve highly dynamic systems with multimode and nonlinear data, posing challenges for conventional soft sensor models that assume uniform data distributions. Additionally, limited target mode data hinders effective training. To address these issues, we propose the seasonal-trend variational transformer network (ST-VTN), a deep probabilistic model based on seasonal-trend decomposition. ST-VTN employs a Transformer-based encoder to extract seasonal and trend patterns from multimode data, enhancing latent Gaussian feature representation. A mode discriminator further improves mode-specific feature learning by distinguishing trend characteristics across modes. Built on a variational Bayesian framework, ST-VTN models the regression between latent features and quality variables. A two-stage pretraining and fine-tuning strategy enables effective use of source mode data, even with scarce target mode samples. Experiments on gas turbine and sulfur recovery datasets confirm ST-VTN's superior performance for multimode regression tasks. |
|---|---|
| AbstractList | The rapid development of soft sensors has significantly enhanced industrial operations by promoting sustainability, safety, and efficiency. However, modern process industries involve highly dynamic systems with multimode and nonlinear data, posing challenges for conventional soft sensor models that assume uniform data distributions. Additionally, limited target mode data hinders effective training. To address these issues, we propose the seasonal-trend variational transformer network (ST-VTN), a deep probabilistic model based on seasonal-trend decomposition. ST-VTN employs a Transformer-based encoder to extract seasonal and trend patterns from multimode data, enhancing latent Gaussian feature representation. A mode discriminator further improves mode-specific feature learning by distinguishing trend characteristics across modes. Built on a variational Bayesian framework, ST-VTN models the regression between latent features and quality variables. A two-stage pretraining and fine-tuning strategy enables effective use of source mode data, even with scarce target mode samples. Experiments on gas turbine and sulfur recovery datasets confirm ST-VTN's superior performance for multimode regression tasks. |
| Author | Xu, Yuan He, Yan-Lin Li, Xingyuan Zhu, Qun-Xiong Zhou, Yang-Xiao-Yu |
| Author_xml | – sequence: 1 givenname: Yan-Lin orcidid: 0000-0001-9999-3679 surname: He fullname: He, Yan-Lin email: heyanlin@ieee.org organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 2 givenname: Yang-Xiao-Yu surname: Zhou fullname: Zhou, Yang-Xiao-Yu email: 2024200765@buct.edu.cn organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 3 givenname: Yuan orcidid: 0000-0001-5490-2892 surname: Xu fullname: Xu, Yuan email: xuyuanbuct@163.com organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 4 givenname: Qun-Xiong orcidid: 0000-0002-2719-0516 surname: Zhu fullname: Zhu, Qun-Xiong email: buctielab@hotmail.com organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China – sequence: 5 givenname: Xingyuan orcidid: 0000-0002-3047-7219 surname: Li fullname: Li, Xingyuan email: yuan_l1106@163.com organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China |
| BookMark | eNpNkE1Lw0AQhhepYK39AYKHgOfU2a9kc5TiR6W2QqPXJe7OSkqarbtNwX9vSgt6mhl4n5fhuSSD1rdIyDWFCaVQ3L3MluWEAZMTngFToM7IkHGWpyLL2ODffkHGMa4BoMckLbIhWS78HptkhZs6XXVbDPs6ou3vKvq2atIyYGuTj3KROB-S167Z1RtvMXkL3mCMycyXycq7XU-0sW6_rsi5q5qI49MckffHh3L6nM6XT7Pp_Tw1TKhdKqpPLnPpKoWuoCiBZkWeSyPBcCWUM4I5Y5VFEJI5FILnaMEaapWThaV8RG6PvdvgvzuMO732Xeg_jpqzvovlDLI-RY8pE3yMAZ3ehnpThR9NQR_U6YM6fVCnT-p65ubI1Ij4l6dUUAWM_wLZG2sK |
| CODEN | IITJAU |
| Cites_doi | 10.1109/TNNLS.2022.3144162 10.1016/j.engappai.2023.106124 10.1109/TII.2023.3248059 10.1109/TCYB.2021.3090996 10.1109/TIE.2018.2803727 10.48550/ARXIV.1706.03762 10.1109/TNNLS.2021.3085869 10.1109/TII.2022.3183211 10.1016/j.jprocont.2022.09.008 10.1021/acs.iecr.5c00283 10.1109/JSEN.2023.3336789 10.1016/j.chemolab.2020.103981 10.1016/j.engappai.2022.105180 10.1109/TCYB.2020.3010331 10.48550/arXiv.1312.6114 10.3906/elk-1807-87 10.1109/TCYB.2022.3143613 10.1109/TIM.2024.3353844 10.1109/TIE.2020.2984443 10.1016/j.engappai.2022.105737 10.1002/cjce.23665 10.1109/TASE.2023.3309339 10.1109/TIM.2025.3572162 10.1109/TKDE.2023.3268125 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2025.3602808 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 47666 |
| ExternalDocumentID | 10_1109_JIOT_2025_3602808 11141802 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62073022 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c248t-4ab3575fa8ef91e50169775c50c3848fc42fcd8de0452fe4437ed0dc1d8f59d13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001611617900037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Thu Nov 20 16:51:22 EST 2025 Sat Nov 29 06:54:34 EST 2025 Wed Nov 19 08:27:19 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-4ab3575fa8ef91e50169775c50c3848fc42fcd8de0452fe4437ed0dc1d8f59d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3047-7219 0000-0001-5490-2892 0000-0001-9999-3679 0000-0002-2719-0516 |
| PQID | 3269727206 |
| PQPubID | 2040421 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_11141802 proquest_journals_3269727206 crossref_primary_10_1109_JIOT_2025_3602808 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-15 |
| PublicationDateYYYYMMDD | 2025-11-15 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Paige (ref24); 30 ref12 ref15 ref14 ref31 ref30 ref11 ref10 Oreshkin (ref22) 2019 ref2 ref1 ref17 Fortuna (ref26) 2007 Liu (ref32) 2023 ref18 Wen (ref19); 33 ref25 ref21 ref28 ref27 ref29 ref8 Lopez (ref16); 31 ref7 ref9 ref4 ref3 ref6 ref5 Wu (ref23); 34 Wen (ref20) |
| References_xml | – ident: ref8 doi: 10.1109/TNNLS.2022.3144162 – ident: ref13 doi: 10.1016/j.engappai.2023.106124 – ident: ref7 doi: 10.1109/TII.2023.3248059 – ident: ref14 doi: 10.1109/TCYB.2021.3090996 – volume: 33 start-page: 5409 volume-title: Proc. AAAI Conf. Artif. Intell. ident: ref19 article-title: RobustSTL: A robust seasonal-trend decomposition algorithm for long time series – volume: 31 start-page: 6117 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref16 article-title: Information constraints on auto-encoding variational Bayes – ident: ref4 doi: 10.1109/TIE.2018.2803727 – volume-title: Soft Sensors for Monitoring and Control of Industrial Processes year: 2007 ident: ref26 – ident: ref31 doi: 10.48550/ARXIV.1706.03762 – ident: ref29 doi: 10.1109/TNNLS.2021.3085869 – ident: ref17 doi: 10.1109/TII.2022.3183211 – ident: ref9 doi: 10.1016/j.jprocont.2022.09.008 – ident: ref3 doi: 10.1021/acs.iecr.5c00283 – ident: ref10 doi: 10.1109/JSEN.2023.3336789 – ident: ref5 doi: 10.1016/j.chemolab.2020.103981 – volume: 34 start-page: 22419 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref23 article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting – ident: ref12 doi: 10.1016/j.engappai.2022.105180 – year: 2019 ident: ref22 article-title: N-BEATS: Neural basis expansion analysis for interpretable time series forecasting publication-title: arXiv:1905.10437 – ident: ref28 doi: 10.1109/TCYB.2020.3010331 – ident: ref11 doi: 10.48550/arXiv.1312.6114 – ident: ref25 doi: 10.3906/elk-1807-87 – ident: ref15 doi: 10.1109/TCYB.2022.3143613 – year: 2023 ident: ref32 article-title: iTransformer: Inverted transformers are effective for time series forecasting publication-title: arXiv:2310.06625 – ident: ref21 doi: 10.1109/TIM.2024.3353844 – ident: ref6 doi: 10.1109/TIE.2020.2984443 – ident: ref27 doi: 10.1016/j.engappai.2022.105737 – ident: ref30 doi: 10.1002/cjce.23665 – start-page: 4653 volume-title: Proc. 13th Int. Joint Conf. Artif. Intell. ident: ref20 article-title: Time series data augmentation for deep learning: A survey – ident: ref1 doi: 10.1109/TASE.2023.3309339 – ident: ref2 doi: 10.1109/TIM.2025.3572162 – ident: ref18 doi: 10.1109/TKDE.2023.3268125 – volume: 30 start-page: 5927 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref24 article-title: Learning disentangled representations with semi-supervised deep generative models |
| SSID | ssj0001105196 |
| Score | 2.3573287 |
| Snippet | The rapid development of soft sensors has significantly enhanced industrial operations by promoting sustainability, safety, and efficiency. However, modern... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 47658 |
| SubjectTerms | Autoencoders Data models Feature extraction Gas turbines Internet of Things Multimode process Predictive models Probabilistic models soft sensing Soft sensors Statistical analysis Time series analysis Training transfer learning transformer Transformers variational Bayesian network |
| Title | Novel Semi-Supervised Seasonal-Trend VTN for Multimode Process IoT Soft Sensing |
| URI | https://ieeexplore.ieee.org/document/11141802 https://www.proquest.com/docview/3269727206 |
| Volume | 12 |
| WOSCitedRecordID | wos001611617900037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uePDi_Jg4nZKDJyFbs6YfOYo4nEgnrMpupU1eYaDt2Nffb16WMUQ8eGuhCeW9vO_83iPkLjQ2jYMnmDkOmgngBSu8QjFP5UILGapc2aklr1GSxNOpfHNgdYuFAQB7-Qx6-Ghr-bpWa0yV9Y1cCuxY1iCNKAq3YK19QoWjNxK6yiX3ZP9lNE5NBDgIen6IFcT4h-2xw1R-aWBrVoatf_7QCTl2_iN92DL8lBxAdUZau9kM1InqORkn9QY-6QS-ZmyynqNGWII277n1vZm9C0s_0oQar5VaGC4OxaEOOEBHdUonRkWbFRWmE9rkffiUPj4zNzyBqYGIV0zkhW9csTKPoZQcAuy6EkWBCjzlxyIulRiUSscasKd6CUL4EWhPK67jMpCa-xekWdUVXBIKPM9L7BMmwTAwMhGe8vwCUbc6KE0A2SH3O7Jm822PjMzGFp7MkAcZ8iBzPOiQNtJx_6EjYYd0d5zInBgtM-NbSlspDq_-WHZNjnB3RAfyoEuaq8Uabsih2qxmy8WtPSHf4fO5xA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gV58i_WZgychmnSzr6OIxWpdha7S27KbzEJB29KHv99MmiIiHrztwoYsM5l3vhmAi8jaNIlCcXscDFcoK16JSnOhS2VUGulSu6klnTjLkl4vffFgdYeFQUR3-Qyv6NHV8s1QzyhVdm3lUlHHsmVYDZVqijlc6zulIskfiXztUor0-qH9nNsYsBleBRHVEJMf1seNU_mlg51haW3985e2YdN7kOxmzvIdWMLBLmwtpjMwL6x78JwNP_GddfGjz7uzEemECRr7Xjrvm7vbsOwtz5j1W5kD4tJYHOahA6w9zFnXKmm7YkAJhX14bd3lt_fcj0_guqmSKVdlFVhnrC4TrFOJIfVdieNQh0IHiUpqrZq1NolB6qpeo1JBjEYYLU1Sh6mRwQGsDIYDPASGsixr6hSWomVhbGM8LYKKcLcmrG0I2YDLBVmL0bxLRuGiC5EWxIOCeFB4HjRgn-j4_aEnYQNOFpwovCBNCutdpq5WHB39sewc1u_zp07RaWePx7BBOxFWUIYnsDIdz_AU1vTntD8Zn7nT8gW4q70L |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Semi-Supervised+Seasonal-Trend+VTN+for+Multimode+Process+IoT+Soft+Sensing&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Yan-Lin%2C+He&rft.au=Yang-Xiao-Yu%2C+Zhou&rft.au=Xu%2C+Yuan&rft.au=Zhu%2C+Qun-Xiong&rft.date=2025-11-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=12&rft.issue=23&rft.spage=47658&rft.epage=47666&rft_id=info:doi/10.1109%2FJIOT.2025.3602808&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |