Novel Semi-Supervised Seasonal-Trend VTN for Multimode Process IoT Soft Sensing

The rapid development of soft sensors has significantly enhanced industrial operations by promoting sustainability, safety, and efficiency. However, modern process industries involve highly dynamic systems with multimode and nonlinear data, posing challenges for conventional soft sensor models that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal Jg. 12; H. 22; S. 47658 - 47666
Hauptverfasser: He, Yan-Lin, Zhou, Yang-Xiao-Yu, Xu, Yuan, Zhu, Qun-Xiong, Li, Xingyuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 15.11.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2327-4662, 2327-4662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The rapid development of soft sensors has significantly enhanced industrial operations by promoting sustainability, safety, and efficiency. However, modern process industries involve highly dynamic systems with multimode and nonlinear data, posing challenges for conventional soft sensor models that assume uniform data distributions. Additionally, limited target mode data hinders effective training. To address these issues, we propose the seasonal-trend variational transformer network (ST-VTN), a deep probabilistic model based on seasonal-trend decomposition. ST-VTN employs a Transformer-based encoder to extract seasonal and trend patterns from multimode data, enhancing latent Gaussian feature representation. A mode discriminator further improves mode-specific feature learning by distinguishing trend characteristics across modes. Built on a variational Bayesian framework, ST-VTN models the regression between latent features and quality variables. A two-stage pretraining and fine-tuning strategy enables effective use of source mode data, even with scarce target mode samples. Experiments on gas turbine and sulfur recovery datasets confirm ST-VTN's superior performance for multimode regression tasks.
AbstractList The rapid development of soft sensors has significantly enhanced industrial operations by promoting sustainability, safety, and efficiency. However, modern process industries involve highly dynamic systems with multimode and nonlinear data, posing challenges for conventional soft sensor models that assume uniform data distributions. Additionally, limited target mode data hinders effective training. To address these issues, we propose the seasonal-trend variational transformer network (ST-VTN), a deep probabilistic model based on seasonal-trend decomposition. ST-VTN employs a Transformer-based encoder to extract seasonal and trend patterns from multimode data, enhancing latent Gaussian feature representation. A mode discriminator further improves mode-specific feature learning by distinguishing trend characteristics across modes. Built on a variational Bayesian framework, ST-VTN models the regression between latent features and quality variables. A two-stage pretraining and fine-tuning strategy enables effective use of source mode data, even with scarce target mode samples. Experiments on gas turbine and sulfur recovery datasets confirm ST-VTN's superior performance for multimode regression tasks.
Author Xu, Yuan
He, Yan-Lin
Li, Xingyuan
Zhu, Qun-Xiong
Zhou, Yang-Xiao-Yu
Author_xml – sequence: 1
  givenname: Yan-Lin
  orcidid: 0000-0001-9999-3679
  surname: He
  fullname: He, Yan-Lin
  email: heyanlin@ieee.org
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 2
  givenname: Yang-Xiao-Yu
  surname: Zhou
  fullname: Zhou, Yang-Xiao-Yu
  email: 2024200765@buct.edu.cn
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 3
  givenname: Yuan
  orcidid: 0000-0001-5490-2892
  surname: Xu
  fullname: Xu, Yuan
  email: xuyuanbuct@163.com
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 4
  givenname: Qun-Xiong
  orcidid: 0000-0002-2719-0516
  surname: Zhu
  fullname: Zhu, Qun-Xiong
  email: buctielab@hotmail.com
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 5
  givenname: Xingyuan
  orcidid: 0000-0002-3047-7219
  surname: Li
  fullname: Li, Xingyuan
  email: yuan_l1106@163.com
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
BookMark eNpNkE1Lw0AQhhepYK39AYKHgOfU2a9kc5TiR6W2QqPXJe7OSkqarbtNwX9vSgt6mhl4n5fhuSSD1rdIyDWFCaVQ3L3MluWEAZMTngFToM7IkHGWpyLL2ODffkHGMa4BoMckLbIhWS78HptkhZs6XXVbDPs6ou3vKvq2atIyYGuTj3KROB-S167Z1RtvMXkL3mCMycyXycq7XU-0sW6_rsi5q5qI49MckffHh3L6nM6XT7Pp_Tw1TKhdKqpPLnPpKoWuoCiBZkWeSyPBcCWUM4I5Y5VFEJI5FILnaMEaapWThaV8RG6PvdvgvzuMO732Xeg_jpqzvovlDLI-RY8pE3yMAZ3ehnpThR9NQR_U6YM6fVCnT-p65ubI1Ij4l6dUUAWM_wLZG2sK
CODEN IITJAU
Cites_doi 10.1109/TNNLS.2022.3144162
10.1016/j.engappai.2023.106124
10.1109/TII.2023.3248059
10.1109/TCYB.2021.3090996
10.1109/TIE.2018.2803727
10.48550/ARXIV.1706.03762
10.1109/TNNLS.2021.3085869
10.1109/TII.2022.3183211
10.1016/j.jprocont.2022.09.008
10.1021/acs.iecr.5c00283
10.1109/JSEN.2023.3336789
10.1016/j.chemolab.2020.103981
10.1016/j.engappai.2022.105180
10.1109/TCYB.2020.3010331
10.48550/arXiv.1312.6114
10.3906/elk-1807-87
10.1109/TCYB.2022.3143613
10.1109/TIM.2024.3353844
10.1109/TIE.2020.2984443
10.1016/j.engappai.2022.105737
10.1002/cjce.23665
10.1109/TASE.2023.3309339
10.1109/TIM.2025.3572162
10.1109/TKDE.2023.3268125
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2025.3602808
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 47666
ExternalDocumentID 10_1109_JIOT_2025_3602808
11141802
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62073022
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c248t-4ab3575fa8ef91e50169775c50c3848fc42fcd8de0452fe4437ed0dc1d8f59d13
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001611617900037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Thu Nov 20 16:51:22 EST 2025
Sat Nov 29 06:54:34 EST 2025
Wed Nov 19 08:27:19 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 22
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-4ab3575fa8ef91e50169775c50c3848fc42fcd8de0452fe4437ed0dc1d8f59d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3047-7219
0000-0001-5490-2892
0000-0001-9999-3679
0000-0002-2719-0516
PQID 3269727206
PQPubID 2040421
PageCount 9
ParticipantIDs ieee_primary_11141802
proquest_journals_3269727206
crossref_primary_10_1109_JIOT_2025_3602808
PublicationCentury 2000
PublicationDate 2025-11-15
PublicationDateYYYYMMDD 2025-11-15
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Paige (ref24); 30
ref12
ref15
ref14
ref31
ref30
ref11
ref10
Oreshkin (ref22) 2019
ref2
ref1
ref17
Fortuna (ref26) 2007
Liu (ref32) 2023
ref18
Wen (ref19); 33
ref25
ref21
ref28
ref27
ref29
ref8
Lopez (ref16); 31
ref7
ref9
ref4
ref3
ref6
ref5
Wu (ref23); 34
Wen (ref20)
References_xml – ident: ref8
  doi: 10.1109/TNNLS.2022.3144162
– ident: ref13
  doi: 10.1016/j.engappai.2023.106124
– ident: ref7
  doi: 10.1109/TII.2023.3248059
– ident: ref14
  doi: 10.1109/TCYB.2021.3090996
– volume: 33
  start-page: 5409
  volume-title: Proc. AAAI Conf. Artif. Intell.
  ident: ref19
  article-title: RobustSTL: A robust seasonal-trend decomposition algorithm for long time series
– volume: 31
  start-page: 6117
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref16
  article-title: Information constraints on auto-encoding variational Bayes
– ident: ref4
  doi: 10.1109/TIE.2018.2803727
– volume-title: Soft Sensors for Monitoring and Control of Industrial Processes
  year: 2007
  ident: ref26
– ident: ref31
  doi: 10.48550/ARXIV.1706.03762
– ident: ref29
  doi: 10.1109/TNNLS.2021.3085869
– ident: ref17
  doi: 10.1109/TII.2022.3183211
– ident: ref9
  doi: 10.1016/j.jprocont.2022.09.008
– ident: ref3
  doi: 10.1021/acs.iecr.5c00283
– ident: ref10
  doi: 10.1109/JSEN.2023.3336789
– ident: ref5
  doi: 10.1016/j.chemolab.2020.103981
– volume: 34
  start-page: 22419
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting
– ident: ref12
  doi: 10.1016/j.engappai.2022.105180
– year: 2019
  ident: ref22
  article-title: N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
  publication-title: arXiv:1905.10437
– ident: ref28
  doi: 10.1109/TCYB.2020.3010331
– ident: ref11
  doi: 10.48550/arXiv.1312.6114
– ident: ref25
  doi: 10.3906/elk-1807-87
– ident: ref15
  doi: 10.1109/TCYB.2022.3143613
– year: 2023
  ident: ref32
  article-title: iTransformer: Inverted transformers are effective for time series forecasting
  publication-title: arXiv:2310.06625
– ident: ref21
  doi: 10.1109/TIM.2024.3353844
– ident: ref6
  doi: 10.1109/TIE.2020.2984443
– ident: ref27
  doi: 10.1016/j.engappai.2022.105737
– ident: ref30
  doi: 10.1002/cjce.23665
– start-page: 4653
  volume-title: Proc. 13th Int. Joint Conf. Artif. Intell.
  ident: ref20
  article-title: Time series data augmentation for deep learning: A survey
– ident: ref1
  doi: 10.1109/TASE.2023.3309339
– ident: ref2
  doi: 10.1109/TIM.2025.3572162
– ident: ref18
  doi: 10.1109/TKDE.2023.3268125
– volume: 30
  start-page: 5927
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Learning disentangled representations with semi-supervised deep generative models
SSID ssj0001105196
Score 2.3573287
Snippet The rapid development of soft sensors has significantly enhanced industrial operations by promoting sustainability, safety, and efficiency. However, modern...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 47658
SubjectTerms Autoencoders
Data models
Feature extraction
Gas turbines
Internet of Things
Multimode process
Predictive models
Probabilistic models
soft sensing
Soft sensors
Statistical analysis
Time series analysis
Training
transfer learning
transformer
Transformers
variational Bayesian network
Title Novel Semi-Supervised Seasonal-Trend VTN for Multimode Process IoT Soft Sensing
URI https://ieeexplore.ieee.org/document/11141802
https://www.proquest.com/docview/3269727206
Volume 12
WOSCitedRecordID wos001611617900037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uePDi_Jg4nZKDJyFbs6YfOYo4nEgnrMpupU1eYaDt2Nffb16WMUQ8eGuhCeW9vO_83iPkLjQ2jYMnmDkOmgngBSu8QjFP5UILGapc2aklr1GSxNOpfHNgdYuFAQB7-Qx6-Ghr-bpWa0yV9Y1cCuxY1iCNKAq3YK19QoWjNxK6yiX3ZP9lNE5NBDgIen6IFcT4h-2xw1R-aWBrVoatf_7QCTl2_iN92DL8lBxAdUZau9kM1InqORkn9QY-6QS-ZmyynqNGWII277n1vZm9C0s_0oQar5VaGC4OxaEOOEBHdUonRkWbFRWmE9rkffiUPj4zNzyBqYGIV0zkhW9csTKPoZQcAuy6EkWBCjzlxyIulRiUSscasKd6CUL4EWhPK67jMpCa-xekWdUVXBIKPM9L7BMmwTAwMhGe8vwCUbc6KE0A2SH3O7Jm822PjMzGFp7MkAcZ8iBzPOiQNtJx_6EjYYd0d5zInBgtM-NbSlspDq_-WHZNjnB3RAfyoEuaq8Uabsih2qxmy8WtPSHf4fO5xA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gV58i_WZgychmnSzr6OIxWpdha7S27KbzEJB29KHv99MmiIiHrztwoYsM5l3vhmAi8jaNIlCcXscDFcoK16JSnOhS2VUGulSu6klnTjLkl4vffFgdYeFQUR3-Qyv6NHV8s1QzyhVdm3lUlHHsmVYDZVqijlc6zulIskfiXztUor0-qH9nNsYsBleBRHVEJMf1seNU_mlg51haW3985e2YdN7kOxmzvIdWMLBLmwtpjMwL6x78JwNP_GddfGjz7uzEemECRr7Xjrvm7vbsOwtz5j1W5kD4tJYHOahA6w9zFnXKmm7YkAJhX14bd3lt_fcj0_guqmSKVdlFVhnrC4TrFOJIfVdieNQh0IHiUpqrZq1NolB6qpeo1JBjEYYLU1Sh6mRwQGsDIYDPASGsixr6hSWomVhbGM8LYKKcLcmrG0I2YDLBVmL0bxLRuGiC5EWxIOCeFB4HjRgn-j4_aEnYQNOFpwovCBNCutdpq5WHB39sewc1u_zp07RaWePx7BBOxFWUIYnsDIdz_AU1vTntD8Zn7nT8gW4q70L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Semi-Supervised+Seasonal-Trend+VTN+for+Multimode+Process+IoT+Soft+Sensing&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Yan-Lin%2C+He&rft.au=Yang-Xiao-Yu%2C+Zhou&rft.au=Xu%2C+Yuan&rft.au=Zhu%2C+Qun-Xiong&rft.date=2025-11-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=12&rft.issue=23&rft.spage=47658&rft.epage=47666&rft_id=info:doi/10.1109%2FJIOT.2025.3602808&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon