Optimal Channel Selection for FY-4B GIIRS Explainable Machine Learning Cloud Detection Algorithm

Cloud detection is a crucial preliminary step for assimilating meteorological satellite observation and retrieving other atmospheric parameters. This article presents an explainable machine learning (ML) algorithm for cloud detection using observations from the FY-4B Geostationary Interferometric In...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 12
Main Authors: Yang, Haoyu, Guan, Li
Format: Journal Article
Language:English
Published: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cloud detection is a crucial preliminary step for assimilating meteorological satellite observation and retrieving other atmospheric parameters. This article presents an explainable machine learning (ML) algorithm for cloud detection using observations from the FY-4B Geostationary Interferometric Infrared Sounder (GIIRS). Four ML models-random forest (RF), light gradient boosting machine (LightGBM), categorical boosting (CatBoost), and extreme gradient boosting (XGBoost)-were evaluated first for their effectiveness in cloud detection. The top 250 channels were selected as model inputs after feature importance analysis, which optimizes both computational efficiency and detection accuracy. Among the evaluated models, XGBoost demonstrated superior performance with a detection accuracy of 83.5%. An advanced channel selection strategy based on the SHapley Additive exPlanation (SHAP) analysis is proposed. The recognition accuracy using a subset of fewer 74 channels according to SHAP analysis is comparable with 250. FY-4B GIIRS real case applications have shown that this algorithm can be used operationally to retrieve GIIRS cloud mask products with fast speed and high accuracy. It takes no more than 1 s to do cloud mask for the entire China region. The results demonstrate a strong alignment with the Advanced Geosynchronous Radiation Imager (AGRI) L2 operational cloud mask product and visible channel albedo observations with high spatial resolution. Additionally, the algorithm maintains high detection accuracy even in regions with thin cirrus clouds. Due to the lower spatial resolution of GIIRS, the XGBoost model may classify probably cloud and probably clear areas as clear sky and clear sky areas with some cloud cover as partly cloudy covered. To evaluate its robustness and generalizability, the model was successfully applied to a similar instrument FY-3E/HIRAS-II uploaded on the polar satellite platform. It also demonstrates strong potential for operational application. Furthermore, the model robustness is tested during different seasons. The results revealed that the model was trained using combined seasonal training data (namely, increasing the representativeness of the samples) would enhance cross-seasonal cloud detection performance.
AbstractList Cloud detection is a crucial preliminary step for assimilating meteorological satellite observation and retrieving other atmospheric parameters. This article presents an explainable machine learning (ML) algorithm for cloud detection using observations from the FY-4B Geostationary Interferometric Infrared Sounder (GIIRS). Four ML models—random forest (RF), light gradient boosting machine (LightGBM), categorical boosting (CatBoost), and extreme gradient boosting (XGBoost)—were evaluated first for their effectiveness in cloud detection. The top 250 channels were selected as model inputs after feature importance analysis, which optimizes both computational efficiency and detection accuracy. Among the evaluated models, XGBoost demonstrated superior performance with a detection accuracy of 83.5%. An advanced channel selection strategy based on the SHapley Additive exPlanation (SHAP) analysis is proposed. The recognition accuracy using a subset of fewer 74 channels according to SHAP analysis is comparable with 250. FY-4B GIIRS real case applications have shown that this algorithm can be used operationally to retrieve GIIRS cloud mask products with fast speed and high accuracy. It takes no more than 1 s to do cloud mask for the entire China region. The results demonstrate a strong alignment with the Advanced Geosynchronous Radiation Imager (AGRI) L2 operational cloud mask product and visible channel albedo observations with high spatial resolution. Additionally, the algorithm maintains high detection accuracy even in regions with thin cirrus clouds. Due to the lower spatial resolution of GIIRS, the XGBoost model may classify probably cloud and probably clear areas as clear sky and clear sky areas with some cloud cover as partly cloudy covered. To evaluate its robustness and generalizability, the model was successfully applied to a similar instrument FY-3E/HIRAS-II uploaded on the polar satellite platform. It also demonstrates strong potential for operational application. Furthermore, the model robustness is tested during different seasons. The results revealed that the model was trained using combined seasonal training data (namely, increasing the representativeness of the samples) would enhance cross-seasonal cloud detection performance.
Author Yang, Haoyu
Guan, Li
Author_xml – sequence: 1
  givenname: Haoyu
  orcidid: 0009-0005-1234-3101
  surname: Yang
  fullname: Yang, Haoyu
  organization: State Key Laboratory of Climate System Prediction and Risk Management, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Li
  orcidid: 0000-0002-0903-6996
  surname: Guan
  fullname: Guan, Li
  email: liguan@nuist.edu.cn
  organization: State Key Laboratory of Climate System Prediction and Risk Management, Nanjing University of Information Science and Technology, Nanjing, China
BookMark eNpFkE1PwkAQhjdGEwH9ASYeNvFc3Nmvbo9YAUkwJIAHT3VbtlCy7NZtSfTfWwKJp7m8zzszTx9dO-8MQg9AhgAkeV5Pl6shJVQMmUhiKuUV6oEQKiKS82vUI5DIiKqE3qJ-0-wJAS4g7qGvRd1WB21xutPOGYtXxpqirbzDpQ948hnxFzydzZYrPP6pra6czq3B77rYVc7gudHBVW6LU-uPG_xq2gs8slsfqnZ3uEM3pbaNub_MAfqYjNfpWzRfTGfpaB4VlKs2YgmVjCkd61hSKDUHuVGCGc1zpShoCqIsNzGYvLtcQkKETiBXnBUs5gUVbICezr118N9H07TZ3h-D61ZmjHIpYipi0qXgnCqCb5pgyqwO3fvhNwOSnURmJ5HZSWR2Edkxj2emMsb85wEocELYH-3lbqU
CODEN IGRSD2
Cites_doi 10.1002/qj.4228
10.1109/tgrs.2023.3307563
10.1038/s41598-021-97432-y
10.1002/qj.4548
10.5194/amt-15-1511-2022
10.3390/rs16030481
10.1002/2013gl059067
10.1023/a:1010933404324
10.1175/bams-86-6-795
10.5194/essd-13-4349-2021
10.1016/j.scitotenv.2024.171295
10.1038/s41612-023-00559-0
10.1515/9781400881970-018
10.1145/3136625
10.1021/acs.estlett.1c00865
10.1109/lgrs.2020.3023683
10.1029/2023gl107194
10.1016/j.jhydrol.2021.127301
10.1038/s41551-018-0304-0
10.3390/rs12223842
10.1002/qj.4473
10.1109/tgrs.2023.3318374
10.1021/acs.est.9b05000
10.1145/2939672.2939785
10.1016/j.envpol.2022.120798
10.5555/1953048.2078195
10.3390/rs11243035
10.1002/qj.3746
10.1364/oe.520528
10.1256/qj.02.208
10.1002/qj.49712555902
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2025.3597266
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 12
ExternalDocumentID 10_1109_TGRS_2025_3597266
11121400
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U2442215
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c248t-3926338a7a7621fa416d853ea4b8821a215ffd71eb01461905a91b843c374c253
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001560173500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Sat Nov 01 15:05:26 EDT 2025
Sat Nov 29 07:34:41 EST 2025
Wed Sep 03 07:11:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-3926338a7a7621fa416d853ea4b8821a215ffd71eb01461905a91b843c374c253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0903-6996
0009-0005-1234-3101
PQID 3246572570
PQPubID 85465
PageCount 12
ParticipantIDs crossref_primary_10_1109_TGRS_2025_3597266
ieee_primary_11121400
proquest_journals_3246572570
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref14
ref36
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref19
ref18
Liu (ref16) 2023
Prokhorenkova (ref31); 31
Wang (ref15) 2021; 42
Shi (ref4) 2021
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
Ke (ref30); 30
ref5
References_xml – ident: ref3
  doi: 10.1002/qj.4228
– volume: 30
  start-page: 3149
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: LightGBM: A highly efficient gradient boosting decision tree
– ident: ref12
  doi: 10.1109/tgrs.2023.3307563
– ident: ref1
  doi: 10.1038/s41598-021-97432-y
– ident: ref7
  doi: 10.1002/qj.4548
– ident: ref28
  doi: 10.5194/amt-15-1511-2022
– ident: ref8
  doi: 10.3390/rs16030481
– year: 2021
  ident: ref4
  article-title: Cloud detection based on machine learning for infrared hyperspectral and its assimilation application
– ident: ref11
  doi: 10.1002/2013gl059067
– ident: ref29
  doi: 10.1023/a:1010933404324
– ident: ref9
  doi: 10.1175/bams-86-6-795
– ident: ref2
  doi: 10.5194/essd-13-4349-2021
– ident: ref23
  doi: 10.1016/j.scitotenv.2024.171295
– ident: ref25
  doi: 10.1038/s41612-023-00559-0
– ident: ref22
  doi: 10.1515/9781400881970-018
– ident: ref27
  doi: 10.1145/3136625
– ident: ref24
  doi: 10.1021/acs.estlett.1c00865
– ident: ref21
  doi: 10.1109/lgrs.2020.3023683
– ident: ref5
  doi: 10.1029/2023gl107194
– ident: ref19
  doi: 10.1016/j.jhydrol.2021.127301
– ident: ref33
  doi: 10.1038/s41551-018-0304-0
– ident: ref10
  doi: 10.3390/rs12223842
– volume-title: GIIRS Atmospheric Vertical Profile
  year: 2023
  ident: ref16
– ident: ref26
  doi: 10.1002/qj.4473
– ident: ref18
  doi: 10.1109/tgrs.2023.3318374
– ident: ref35
  doi: 10.1021/acs.est.9b05000
– ident: ref32
  doi: 10.1145/2939672.2939785
– ident: ref34
  doi: 10.1016/j.envpol.2022.120798
– ident: ref36
  doi: 10.5555/1953048.2078195
– ident: ref20
  doi: 10.3390/rs11243035
– ident: ref6
  doi: 10.1002/qj.3746
– volume: 42
  start-page: 36
  issue: 7
  year: 2021
  ident: ref15
  article-title: Optimal selection of wave channels in hyperspectral GIIRS and its impact on cloud detection
  publication-title: Infrared
– ident: ref17
  doi: 10.1364/oe.520528
– ident: ref13
  doi: 10.1256/qj.02.208
– ident: ref14
  doi: 10.1002/qj.49712555902
– volume: 31
  start-page: 6639
  volume-title: Proc. 32nd Conf. Neural Inf. Process. Syst. (NIPS)
  ident: ref31
  article-title: CatBoost: Unbiased boosting with categorical features
SSID ssj0014517
Score 2.4652135
Snippet Cloud detection is a crucial preliminary step for assimilating meteorological satellite observation and retrieving other atmospheric parameters. This article...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Albedo
Algorithms
Atmospheric modeling
Boosting
Channels
Cirrus clouds
Cloud cover
Cloud detection
cloud mask algorithm
Clouds
Computational modeling
Data models
Fengyun 4B (FY-4B)
Geostationary Interferometric Infrared Sounder (GIIRS)
Hyperspectral imaging
Instruments
Learning algorithms
Machine learning
machine learning (ML)
Meteorological satellites
Robustness
Satellite observation
Satellites
SHapley additive exPlanation (SHAP)
Sky
Spatial discrimination
Spatial resolution
Title Optimal Channel Selection for FY-4B GIIRS Explainable Machine Learning Cloud Detection Algorithm
URI https://ieeexplore.ieee.org/document/11121400
https://www.proquest.com/docview/3246572570
Volume 63
WOSCitedRecordID wos001560173500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UaKIHP1AjiqYHTyaFfXR0PSIKkigawARPs9s6JIHNwPDv97UrYmI8eNuhXZb3W9_7vb4vhK7AaCTM4oJYLEkIZZYgoaCCyNiJ_JBy6kZ6askD6_X80Yg_m2J1XQsjpdTJZ7KmHnUsP86ipboqq8O5dMAhAA99kzFWFGt9hwyoZ5va6AYBL8IxIUzb4vVhpz8AV9Dxai7wZ0d3RFwbIT1V5Zcq1valvf_PLztAe4ZI4maB_CHakGkZ7f5oL1hG2zq9M1ocobcn0AwzWK6KCVI5xQM9_gYwwUBacfuV0Bvc6Xb7A6yS8kxFFX7UmZYSmyasY9yaZssY38rcbG5Ox9l8kr_PjtFL-27YuidmtgKJHOrnBGhRA7xTwQRoQzsRwMtisNxS0BA4ty2ACSRJzGwZqu4ywBo8we3QB-hcRiPHc09QKc1SeYpw4jHmMcrDxAkpiywuJQXaIlRnOd6QooKuV8IOPooWGoF2PSweKGQChUxgkKmgYyXd9UIj2AqqrvAJzClbBEAGGx5Tc_jO_th2jnbU24s7kyoq5fOlvEBb0Wc-Wcwv9Q_0BUW_wFE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4Y1KgHnxhR1B48mVR2S5fSIz5QIqARTPS0dne7asLDwOLvd1qKmBgP3vbQZjfzbWe-6bwATtBopMKTinoiTSkXnqKR4orqhMXViEteju3UkqZot6tPT_LeFavbWhittU0-02fm0cbyk2E8MVdlJTyXDB0C9NAXA86ZPy3X-g4a8MB31dEVin4Ec0FM35Ol7vVDB51BFpyVkUEz2xNxbobsXJVfythamPrGP79tE9YdlSS1KfZbsKAH27D2o8HgNizbBM94vAMvd6gb-rjclBMMdI907AAcRIUgbSX1Z8rPyXWj8dAhJi3P1VSRls211MS1YX0lF73hJCGXOnOba73X4eg9e-vn4bF-1b24oW66Ao0Zr2YUiVEF_VMlFOpDP1XIzBK03VrxCFm3r5ALpGkifB2Z_jLIGwIl_aiK4JUFj1lQ3oXcYDjQe0DSQIhAcBmlLOIi9qTWHImLMr3lZEWrApzOhB1-TJtohNb58GRokAkNMqFDpgB5I935QifYAhRn-ITunI1DpIOVQJhJfPt_bDuGlZtuqxk2G-3bA1g1b5reoBQhl40m-hCW4s_sfTw6sj_TF3aiw5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Channel+Selection+for+FY-4B+GIIRS+Explainable+Machine+Learning+Cloud+Detection+Algorithm&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yang%2C+Haoyu&rft.au=Guan%2C+Li&rft.date=2025&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=63&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2025.3597266&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2025_3597266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon